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Abstract. Cognitive and Computer sciences have a long history of shared  
concepts and shared terminology. This paper explores a radical way of interdis-
ciplinary thinking that ventures beyond loosely modeled metaphorical applica-
tions of computer systems and the use of terminology with mere face validity. 
Our focus is on interdisciplinary conceptual, structure and process commonal-
ities. We provide an example of the discovery of shared concepts, knowledge 
structures and a common mental model using semantic memory organization in 
humans and object oriented programming, in particular the principle of inheri-
tance. We discuss whether JAVA applications forget and suggest further re-
search topics.  
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1   Brief Historical Context  

The concept of the “brain as a computational system” has been part of popular culture 
for decades. See for instance the 1960s U.S. television series Star Treck and its alien 
but human like, Vulcan life form Mr. Spock. His persona became exemplary for 
equating cognitive processing with computational system’s activity: In [22] Captain 
Kirk comments, ‘You'd make a splendid computer, Mr. Spock.’, to which a flattered 
Spock replies, ‘Thank you, Captain!’ Ten years later, in the classic British television 
series “The Sweeney” [15] and “Open all hours” [5], the characters refer to human 
cognitive activity as “running things through the biological computer”.The human 
mind as an information processing system whose performance is measureable dates 
back to the Dutch physiologist, and perhaps the first psychometrician, Franciscus 
Cornelius Donders (1818–89) [12]. Donders measured reaction times and decision 
making latencies, and interpreted them as processing times of human cognition [12]; 
Based his model of additive processing times he developed the subtraction method 
which allowed him to compute the time it takes to make a decision about visual stim-
uli; (For contemporary evidence see [14].) Similarly Wilhelm Wundt, founder of the 
first psychology laboratory (1879), measured awareness (attention) as a serial process 
using his thought meter paradigm [12], [17].  The core research concepts of informa-
tion processing and their emphases on understanding mechanisms and measuring per-
formance were displaced temporarily in the first half of the 20th century by behaviorist 
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dogma, which delegated perception and cognition to the black box. The renaissance 
of cognitive sciences began in the 1950s with a re-evaluation of human information 
processing in parallel with the growing discipline of computer sciences [3]. Regard-
less of one’s acceptance of the computer metaphor [9], [16], the synergy between 
cognitive psychology and computer sciences acted as a catalyst to advance our under-
standing of human cognitive performance: For instance, Miller’s seminal paper on 
short term memory provides us with generalized finding about its capacity [20], [34]; 
Broadbent’s work established the serial nature of attention [4] which later informed 
Simon’s seminal work on attention economics [1]; and Baddeley’s model of working 
memory discovered the modular nature and parallel processing of distinct modality 
inputs in working memory [1], [2]. 

2   Surface Commonalities: A Not so Common Vocabulary  

Based on the shared concept of information processing, the analogy between neuro-
logical webs and logic circuits has guided the development of constructs, measure-
ments and vocabulary in cognitive science. For instance, cognitive psychologists have 
been generously employing the terms of input, output, storage, capacity, modules, 
buffers, primary memory, secondary memory, prototype, etc. While one might  
surmise that word sharing provides a basis for interdisciplinary integration, the opera-
tional definitions of the same terms in computer and cognitive science vary and  
potentially lead to mutual confusion. For example in 2007, Unsworth and Engle [34] 
introduced the terms primary and secondary memory to investigate individual  
differences in working memory capacity. They refer to primary memory as an active 
workspace that holds approximately four items that can be replaced by incoming in-
formation (new input).  Items in primary memory can also be replaced by retrieving 
items from secondary memory which is considered permanent, long term and search-
able. Their terminology is derived from primary and secondary memory or storage in 
computers: Here, primary memory refers to a temporary and quickly accessible data 
that is directly linked to the central processing unit [21]; secondary memory is often 
referred to as storage and it is not directly accessible by the central processing unit. 
Data access and retrieval are comparatively slower than accessing data in primary 
memory. Unlike primary memory, secondary storage is not volatile: one does not lose 
one’s data when the device is powered down [18]. The similarity between cognitive 
and computer science uses of these memory related terms is at the surface level and 
lacks conceptual integration which is necessary for interdisciplinary exchange.  

Another example of cosmetic use of computer science derived terminology is 
Baddeley’s [2] use of the term buffer for the concept of episodic buffer. The  
episodic buffer links information across long term memory and working memory 
module to form integrated units of visual, spatial, and verbal information with 
chronological ordering; This use of buffer coveys more sophisticated functions than 
that the computer science buffer concept, which is limited to data being held tempo-
rarily after they have been retrieved from an input device (such as a mouse) or be-
fore they are sent to an output device (such as a printer) [18]. Data integration at the 
buffer level is not accomplished but the passing of data between different units that 
require synchronization.  
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This section has been intended to pique interdisciplinary awareness and to evaluate 
the utility of cosmetic word usage. So far the state of the sciences seems to indicate 
that modern commonality is limited to the same words pointing to different models 
and definitions. However, further examination in the next section provides an exam-
ple of an existing, common conceptual architecture that has given rise to a divergent 
terminology.   

3   Below the Surface: Common Concept  

This section provides an example of a modern integration based on the commonality 
of two mature areas in cognitive and computer sciences, respectively: Semantic mem-
ory organization and object oriented programming. 

3.1   Semantic Memory Organization  

Tulving [33] defines semantic memory as the storage of generalized world knowledge 
that is not attached to autobiographical or temporal codes. The Hierarchical Network 
Model [33] conceptualizes that within memory, categorical information is stored 
though its associations. In this model, categories are arranged according to their rela-
tions. This is done so that general categories (like food) are stored at higher levels, 
more specific categories (like fruit) are stored at intermediate levels, and highly spe-
cific items (like tangerine) are stored at lower levels. 

A group of these related items makes up a network. The associations are repre-
sented by arrows which show the relation between the category represented by nodes. 
For example, the item tangerine may point towards the category fruit, because tanger-
ines are an example of fruit. However, this relationship is unidirectional, and an arrow 
would not point from fruit towards tangerine, because fruit are not an example of tan-
gerines. Characteristics that apply to all the categories would be stored at the highest 
level of the hierarchy, while lower level characteristics would only apply to that par-
ticular item and not to all in the hierarchy. For example, “plant life” may be a high 
level characteristic applying to all fruit, but “segmented”, “round”, “orange in color”, 
“easy to peel” may be more lower level characteristics applying specific fruits. 

Collins & Quillian [6] developed the hierarchical network model to conceptualize 
human semantic memory. They proposed two main features: The first is that moving 
from one level to another in the hierarchy takes time. The second is that retrieving 
features stored at another level also takes time. The data collected in their studies sup-
ported both feature assumptions about human memory. Conrad [7] noted that this 
model is economical because all characteristics do not need to be stored at each cate-
gory, but can be stored at the most general category that applies. Further, these char-
acteristics are “inherited” by the lower level categories that apply. 

Related to hierarchical network modeling, Rosch et al. [23] hypothesized that there 
are at least three hierarchical semantic categories: the largest and most general are the 
superordinate categories, the intermediate categories are the basic-level categories, 
and the highly specific are the subordinate categories. Differentiation of categories is 
difficult at the superordinate and subordinate levels because they represent items that 
have either very few attributes, or that have very specific attributes, respectively. The 
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basic level categories provide an intermediate level of categorization. The reason for 
their frequent is likely the result of their high degree of differentiation, their promi-
nence in language and early acquisition during cognitive development [23]. However, 
with increasing domain expertise, differentiation and classification abilities are en-
hanced and refined and it appears that subordinate categories may rise to the level of 
basic categories; this hypothesis was confirmed by subsequent research [28]: Experts 
classified birds and dogs and then vice versa; the subordinate level classifications 
were made just as quickly as the basic-level classifications by experts compared to 
novices who exhibited increased latency for subordinate classification. 

In summary, hierarchical network models employ at least three levels of semantic 
categories, they rely on at least two semantic relationships (category level member-
ship and attribute relation) and they store attributes parsimoniously at the highest 
level applicable without redundancy at lower levels in the hierarchy.  

3.2   What Is Object-Oriented Programming? 

The object-oriented programming (OOP) paradigm involves the categorization of data 
and code and can be conceptualized as programming with taxonomically organized 
data [13]. Object-oriented programming first appeared in the programming language 
Simula and was focused towards the simulation of real-world phenomena [29]. 

OOP divides the data being processed into objects with both “static aspects”, the 
object’s characteristics, and “dynamic aspects”, the object’s behaviors [10], [13]. A 
“class” is a blueprint for a set of objects that share some characteristics [10], [13]. 
Each of an object’s static characteristics has a value and a type; According to [13] a 
type is a set of values, and a value is a mathematical abstraction. A class is required to 
create an instance of an object. The object instances created from the same class are 
distinct from one another. An object instance is considered a labeled set of labeled 
constants [13] and can accept parameters unique to the instance [10]. Thus, an in-
stance of a class may contain the same or different values as another instance while 
having a different label. 

Since a proposed class may include static and dynamic aspects that closely resem-
ble another concept that requires a class definition, the object-oriented idea of  
inheritance was developed. Inheritance is the mechanism that combines the specific 
properties of a newly-defined class with the properties of one of more existing classes 
from which it inherits; in this way, a programmer only needs to develop the differ-
ences between the more specific class and the more general class [2]. For example, 
the class convertible may inherit the properties from the class car and hence is 
equipped with four wheels, an engine, a steering wheel, etc. Although different defini-
tions of relationships between classes resulting from inheritance have been defined, in 
general inheritance seems to be tied to the concept of specialization, meaning that 
new concepts can be derived from less specific classes [10], [29]. Taivalsaari [29] 
clarifies that the distinction between the inheritance and specialization: specialization 
appears to be abstract, while inheritance appears to be a tool of convenience. Formica 
& Missikoff [13] note that specialization may also be called subtyping. An additional 
distinction can be made that nonstrict inheritance is based on programming language 
convenience, whereas “strict inheritance” requires that the derived class and the more 
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general class are “behaviorally compatible” [35],, [36]. The latter rely on the imple-
mentations of inheritance with restrictions [13]. 

A restrictive relation supporting strict inheritance is the “is a” relation. The “is a” re-
lation expresses belonging of a class to superclass. For instance, superclass car and  
subclass convertible are related such that the convertible “is a” car. The “is a” relation 
appears to create ambiguity in cases of a union between two classes which have differ-
ent behavior for two properties of the same name. Such ambiguity appears to be solved, 
however, by “overriding” (redefining the domain of) the conflicting properties [13], 
[29]. Unlike single inheritance, multiple inheritance allows a subclass to derive from 
multiple superclasses. Singh [26] describes a few uses for multiple inheritance that vary 
across their purposes and the relatedness of the classes involved. The main advantage 
however is that single inheritance might not accurately represent the data for real world 
simulations because realistic classes tend to share attributes and behaviors.  

In summary, class definition in OOP are hierarchically organized blueprints of ob-
jects who store a set of attributes at the class level; these sets can be inherited by sub-
classes without the necessity of duplication and may be further refined or specialized 
as needed. Strict inheritance requires the “is a” relationship which is a onedirectional 
relationship pointing from subclass to a superclass: a convertible is (always) a car but 
not all cars are convertibles. 

4   Common Structure and Process  

Four points of commonality, the last being initially in the guise of a difference be-
tween object oriented programming (OOP) and the hierarchal networks of semantic 
memory, are the subject of this section. We present the equivalency of classes and 
categories, semantic relations and attribute storage, and the reverse engineering of 
their processes. 

1. OOP’s classes are equivalent to categories or levels of classification, where super-
classes serve as superordinate or basic levels and subclasses as subordinate levels 
or highly specific categories. 

2. Hierarchical network models and OOP make use of relations. Specifically, the “is 
a” relation is structurally and semantically equivalent to the subordinate to basic to 
superordinate classification in semantic memory. (See the tangerine example as a 
subordinate example in semantic memory section.) 

3. Both approaches rely on graph structures and traversal time across the network 
with focus on optimization. In particular, both concepts appear to make use of  
distributing information across several layers of their network structures. This eco-
nomical allocation of class or category attributes and behaviors (characteristics) al-
lows both inheritance and the hierarchical network model of semantic memory to 
reduce processing time for information retrieval.  

4. OOP is focused on generating new objects or exemplars; Hierarchical network 
models were developed to explain classification and organization of existing 
knowledge. The main difference between OOP class structures and semantic mem-
ory networks lies in the directionality of their application and function. Classes are 
defined in order to create new instances of objects with certain attributes and be-
haviors that exist, e.g., in a virtual world. Semantic hierarchical networks provide 
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categories for the classification of the real world. They have been experimentally 
investigated in sentence verification paradigms collecting response latencies to test 
whether memory is indeed organized as hypothesized. For example, a participant 
judges the following statements, one at a time, to be true or false: A robin is a bird; 
a robin is an animal.  The process of using a structure for generating objects is the 
reversal of testing the structure for its properties. Hence, while the applications in 
cognitive and computer sciences appear different they have reverse engineered 
each others processes.  

5   Synthesis Example: Forgetting  

What appears to be a distinction may well be the impetus for venturing to a new per-
spective on the utility of OOP class structures and semantic networks. We suggest 
that concept such as creativity (creating new instances) and forgetting (loss of objects) 
will be relevant for the growing understanding and development in network structure 
research with benefits for both fields. For instance, we were reminded that OOP has 
the express purpose of creating objects. Objects as instances (or class exemplars) con-
sume memory resources. JAVA is a popular OOP language that makes use of auto-
matic garbage collection. Garbage collection is a mechanism that allows for memory 
that is being consumed by an object and its values, to be given back to the system by 
destroying the object. While a destructor can be invoked deliberately in the code, 
automated destruction is handled by the garbage collector and relies on the absence of 
pointers. This means that an object is considered unused and marked for garbage col-
lection if it is no longer referenced, referred to, pointed to, or associated (all synony-
mous). One might infer that JAVA applications forget. 

Human memory as a connectionist semantic organization relies on its associa-
tions. In order to retrieve information we step through a series of associated items. 
Likewise, recall of memories or knowledge in general is triggered by associations. 
By this explanation, one might concur that in the absence of any association (even 
those supplied by sensory data) the memory has been destroyed. The implication of 
the analogy between JAVA destructors and loss of memories is that poorly associ-
ated contents in long term memory are more likely to decay. This is not a new 
proposition: The acquisition of new knowledge requires semantic relation building 
also referred to as semantic elaboration. The more connected a concept is the easier 
it is to retrieve. Conversely, we suggest that items without semantic relations can be 
considered non-existent.  

6   Common Research Topics and Conclusions 

This paper explored a radical way of interdisciplinary thinking with the emphasis on 
discovering commonalities. We suggest that a modern integration between computer 
and cognitive sciences must venture beyond loosely modeled metaphorical applications 
of computer systems and the use of terminology with mere face validity. In this paper 
we provided an example of the discovery our shared concepts, knowledge structure and 
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a common mental model of semantic structure and process. A problem space of particu-
lar interest for joint research appears to be parallel processing and programming.  

The human brain is a sophisticated, albeit poorly understood system built on paral-
lel processes with perceptual and cognitive components [24], [30]. One of the hard 
problems in perception and cognitive sciences is the binding problem: How are fea-
tures or data processed by separate neurological pathways and/or in separate areas of 
the brain integrated and perceived as a gestalt? Stryker [27] proposed the synchroni-
zation hypotheses where features of the same object, processed separately, are  
integrated with a synchronized neurological firing rate. Furthermore it appears that 
attention increases synchronous firing [11]. Related problems dealing with how to 
synchronize data, how to design data storage (unitary vs. multiple memory stores) and 
delays resulting from synchronization and communication between multiple process-
ing streams are currently under investigation in computer sciences [24]. An interdis-
ciplinary investigation to address these issues may focus on the phenomenon of  
illusory conjunctions. Illusory conjunctions illustrate the break down of the binding 
process where features (color, shape, hairstyle, glasses) are associated incorrect ob-
jects (or people) [11], [32]. Illusory conjunctions appear as memory errors resulting 
form parallel process integration errors. It appears reasonable that by investigating 
how the human brain manages the parallel process we may discover meaningful solu-
tions to the questions currently under investigation in parallel computing. 

While processor speed enhancements are asymptotic, the next enhancement is the 
optimization and development of efficient robust parallel programs. Given the “bio-
logical computer concept” and our current set of questions as cognitive and computer 
scientist, some of our options are to reverse engineer existing phenomena and poten-
tial solutions and to advance the state of modern artificial intelligence by continued 
efforts to model human processing authentically. Hence, the inevitable conclusion to 
this paper is that interdisciplinary exchange on the findings and hypotheses in our 
respective fields may inspire all parties involved to follow new lines of investigation 
and to experiment with new ways of problem solving.    
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