
J.A. Jacko (Ed.): Human-Computer Interaction, Part IV, HCII 2009, LNCS 5613, pp. 663–672, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Run-Time Adaptation of a Universal User Interface
for Ambient Intelligent Production Environments

Kai Breiner1, Daniel Görlich2, Oliver Maschino1, Gerrit Meixner3,
and Detlef Zühlke2

1 Software Engineering Research Group, University of Kaiserslautern,
67663 Kaiserslautern, Germany

{Breiner,Maschino}@cs.uni-kl.de
2 SmartFactoryKL, P.O. Box 3049,
67653 Kaiserslautern, Germany

{Daniel.Goerlich,Detlef.Zuehlke}@DFKI.de
3 German Research Center for Artificial Intelligence (DFKI),

67663 Kaiserslautern, Germany
Gerrit.Meixner@DFKI.de

Abstract. The SmartFactoryKL is an arbitrarily modifiable and expandable
(flexible) intelligent production environment, connecting components from
multiple manufacturers (networked), enabling its components to perform con-
text-related tasks autonomously (self-organizing), and emphasizing user-
friendliness (user-oriented). This paper presents the results of a research project
focusing on the run-time generation and adaptation of a universal task-oriented
user interface for such intelligent production environments. It employs a Room-
based Use Model (RUM) developed in the context of a continuing research
project series on universal remote control devices for intelligent production en-
vironments. The SmartFactoryKL is the first ambient intelligent production
environment for demonstration and development purposes worldwide. After
three years of research, a first prototype has been finished that allows for con-
trolling the production line using a single remote user interface able to adapt to
varying remote devices according to the actual context of use, in a complex,
model-based approach.

Keywords: MBUID, Model driven development, generating user interfaces,
modeling, adaptable user interfaces.

1 Introduction

The ongoing technological development of microelectronics and communication
technology is leading to more pervasive communication between single devices or
entire pervasive networks of intelligent devices (smart phone, PDA, Netbook, etc.).
Furthermore, distributed computing power continues to increase – also for industrial
devices and components. Especially industrial devices and applications can take ad-
vantage of modern smart technologies, e.g. based on ad-hoc networks, dynamic sys-
tem collaboration, and context-adaptive human-machine interaction systems. The

664 K. Breiner et al.

vision of Mark Weiser [12] concerning ubiquitous computing – also in production
environments – is becoming a reality.

Besides the many different benefits offered by smart technologies, there are also
drawbacks. One main drawback is the fact that the number and complexity of techni-
cal devices, their user interfaces, and their usage situations in industrial production
environments are constantly growing. In today’s production environments, technical
devices often stem from multiple vendors with different user interfaces differing in
complexity, look&feel, and interaction styles. Such highly complex and networked
technical devices or systems can provide any information at any time and in any
place. This advantage can turn out to be a disadvantage when information is not pre-
sented properly according to the users’ needs. This leads to problems, especially con-
cerning the usability of the user interface. The level of acceptance of a user interface
largely depends on its ease and convenience of use. A user can work with a technical
device more efficiently if the user interface is tailored to the users’ needs, on the one
hand, and to their abilities on the other hand. Therefore, providing information in a
context- and location-sensitive manner (depending on user, situation, machine, envi-
ronmental conditions, etc.) has to be ensured.

To reduce the usage complexity of user interfaces and improve their usability, one
of our goals is to adequately support users in performing their tasks by interacting
with a user interface. Therefore, the particular user interface has to be adaptable to
different usage situations – definable, for example, by user, task, interaction device,
and device functionality. The increasing complexity due to technological develop-
ment will be reduced by using a model-based approach for the generation of user
interfaces [9]. The core model of a model-based approach focusing on user-centered
development is often the task model of a user interface. A task model describes the
tasks a user wants to perform in a system. One comprehensive task model is the Use
Model, which integrates detailed information about the tasks, e.g., temporal relation-
ships, conditions, or task types [7]. The Use Model is formalized through the XML-
based Useware Markup Language (useML). For describing Use Models in ubiquitous
environments, the Use Model needs to be extended to include the integration of spa-
tial information, which leads to the Room-based Use Model. First evaluation results
have been obtained in the SmartFactoryKL, our testbed for future production envi-
ronments, which is located in Kaiserslautern, Germany.

The remainder of this paper is structured as follows. Section 2 describes the Room-
based Use Model on the basis of an enhanced version of useML as well as the func-
tion model. Section 3 introduces the model-driven generation process, the interpreter,
the adaptation mechanisms, and the first prototype developed. In section 4, we con-
clude and provide an outlook to the future.

2 The Room-Based Use Model (RUM)

The Room-based Use Model (RUM) is a partial model focusing on the tasks of users
and the way they fulfill tasks using multiple devices in complex, highly instrumented
environments. In the following, we will describe the enhancement of the original
useML and the structure of the function model, which is necessary for the automatic
generation process that we will elaborate later.

 Run-Time Adaptation of a Universal User Interface 665

2.1 Enhancing useML

useML was originally introduced by Reuther [11] (see Fig. 1) to formalize several
user groups’ task models into a single model. The semantic of the first version of
useML was later enhanced substantially [7]. Such a model stores all potential varia-
tions of all user groups’ approaches to achieving desired goals. This model can then
be instantiated at any time to automatically adapt the respective device’s user inter-
face to perfectly fit the current user’s tasks and needs.

Use ModelUse Model

Use ObjectUse Object

Elementary Use ObjectElementary Use Object

changechange triggertrigger selectselect enterenter informinform

Fig. 1. Use Model structure according to Reuther. [11]

useML was restricted to static user interfaces and to single devices or device fami-
lies only. It has been extended by a hierarchical structure of – logical (organizational)
or physical – rooms containing device compounds that themselves can comprise other
device compounds or devices (see Fig. 2.). Thereby, whole business processes can be
represented – from a human-machine interaction perspective – in an RUM.

While the RUM provides merely structural elements to specify spatial and device
hierarchies, it further allows adding, for example, device profiles, coordinates, and
interaction zones. It also provides means for modeling interactions between devices
and for defining common Use Models for groups of devices, among other things. In
addition to the hierarchical task structure common in task modeling languages (see
[8]), the RUM also comprises modeling tools common in software engineering (activ-
ity diagrams) and provides support for the application of usability patterns. Still,
complex tasks can be refined into less complex and finally elementary tasks (here:
elementary use objects) in the classical, hierarchical way.

RUMs can be extended by additional formal elements and sub-structures. When
needed, they are supplemented with user models, usage situation models, or other
(semi-)formal context representations. An RUM representing the SmartFactoryKL was
complemented by a function model linking user tasks with data sets of the wireless
communication protocols of the SmartFactoryKL development and demonstration
facility. By using a wireless, mobile interaction device, we were able to automatically
generate fully functional user interfaces. The used function model will be presented in
detail in the next subsection.

However, since [6] has shown that a model of human-machine interactions must
consist of, at least, a task, a dialog, and a presentation model, we needed a mapping

666 K. Breiner et al.

Fig. 2. Integrated Room-based Use Model, containing contextual information about the entire
environment, as well as all interactional information about the tasks to be performed by users.
[3,4,5]

between tasks and user interface objects (see Section 3) for automated user interface
generation and adaptation at run-time. Section 3 will show the feasibility of our
approach of combining these models.

2.2 Function Model

The central idea of the function model is to create a linkage between a user interface
and the application logic based merely on a given RUM. One major challenge we
explored in our previous work was to automatically interface the application services
while generating the user interface [1]. For this, we formalized what is communicated
between the interaction device and the device to be controlled and how. This exten-
sion makes it possible to bind the application logic to the individual graphical ele-
ments with an UI generator in a completely automated way.

These models were elicited on the basis of the PROFIBUS implementation [10]
used in the demonstration environment, as in the case of many current production
environments. Therefore, it is important to mention that this kind of communication is
bi-directional: Once the connection to the target device is established, communication
frames can be exchanged cyclically.

 Run-Time Adaptation of a Universal User Interface 667

Fig. 3. A device compound node provides a function model consisting of connection informa-
tion as well as the structure of the data to be transferred

With respect to the structure of the RUM (see Fig. 2.), we created extensions on two
different levels of abstraction. First, in order to establish communication between two
devices, we needed information about the host to be addressed and the communication
channel – this information is device-specific. Second, we needed to know how the con-
tent of the communication has to be structured in order to be understood by its receiver.

Due to the fact that in our application domain, the type and channel of communica-
tion can vary depending on the type and manufacturer of the device, we attach this
specific information to every device compound node.

As shown in Fig. 3, the function model consists of the nodes connection and data.
The structure of this model was elicited from several sample projects and imple-
mented with respect to the uniform resource identifier (URI) standard [2]. Consisting
of scheme, host, data-reference (data-structure, see below), device number, device
type, and priority, this information is sufficient for an interpreter to establish a
communication channel to this particular device.

Fig. 4. Connection is a description of the structure of information needed to establish the con-
nection to the desired device

Additionally, it is important to know how to communicate with the respective tar-
get device and, therefore, how the transferred data needs to be structured in order to
be understood by this device. The PROFIBUS protocol stipulates that communication
between devices is, by definition, message-based. Therefore, the content of these
messages is embedded into a clearly defined structure, which depends on what kind of
information is to be communicated.

Fig. 5 shows that the data node consists of distinct structures for incoming and
outgoing datasets. Analogously to the protocol, one dataset is composed of a position
(of the data within the sent/received frame), a length (of the information within this
frame), a (unique) identifier, and a defined data format. Additional, but not compul-
sory, information might be the measurement unit (e.g., gallon, liter, Celsius, Fahren-
heit), the conversion factor (if the data needs to be post-processed),the min/max
(possible) range, significant digits, and a status message.

668 K. Breiner et al.

Fig. 5. According to the direction of the communication, the data node distinguishes between
outgoing datasets and incoming datasets. A dataset consists of several necessary properties.

Fig. 6. Each instance of an elementary use object possesses an assignment node containing a
link to a specific function

Using this structure, an interpreter will be able to encode the information received
from a user’s interaction in a way the device can understand and vice versa.

The RUM already supports extensions according to assignments on the level of
elementary use objects. We equipped each assignment node with the ability to attach
a function node pointing to a particular dataset structure, by using the unique identi-
fier (see Fig. 6).

Hence, if an elementary use object is activated by the user, the interpreter knows
how to encode the given data according to the dataset structure. Since data structures
are assigned to a particular device compound that provides a connection node, the
interpreter can send this encoded information.

3 Generation and Adaptation of the User Interface

As a result, the RUM contains information about the user interaction with all
devices of the environment as well as information about how to interact with the

 Run-Time Adaptation of a Universal User Interface 669

corresponding application services, if triggered by the user – which is sufficient for
automatically generating a functional user interface. To demonstrate the feasibility of
this model-driven approach, we set up an interpretation process and implemented a
basic prototype generator.

Prior to this, we formalized our demonstration environment – the SmartFactoryKL
– as an RUM. From this model, we derived instances that comprise certain subsets of
the demonstration environments or certain user roles such as a guest user role re-
stricted to read-only access to the modeled devices.

In the following sections, we will elaborate the process/interpreter, the prototype in
the demonstration environment, and our idea of an adaptation mechanism at run-time
supported by this model.

3.1 The Generation Process and Interpreter

The aim of this process is to visualize the modeled environment in a single user inter-
face, which will provide control over devices present in the environment. In case of
the prototype, we use a simplified presentation model in which the available device
compounds and devices will be displayed as a slim navigation structure in a canonical
mapping and the use objects will group the functions of the underlying elementary use
objects. To activate a certain device (and therefore a certain Use Model), the user
selects the respective device in the navigation bar.

Concerning the interpretation of the selected Use Model, let W be the set of avail-
able user interface widgets (such as labels, buttons, text fields, etc.) the interpreter
will be able to use in order to compose the final user interface. On the other hand, let
EUO be the set of elementary use objects and elementary use objects in compound
configurations. The function m:EUO → W describes the relation of how the interaction
objects are mapped onto real user interface widgets that are displayed and can be
manipulated by the user. This function needs to be formalized in the implementation
of the interpreter; in the case of our prototype, it has to be hard-coded. The interpreter
will map all (elementary) use objects to a dedicated visual use object (graphical
widget).

In addition, the interpreter should not only be able to control devices that are
present, but also be adaptive – e.g., hiding the user interfaces of devices that are
described in the RUM, but are not really present in the environment.

3.2 Adaptation

According to the RUM, let DM be the set of devices defined in this model – the de-
vices (device types) the interpreter is able to cope with. Let DP be the set of devices
present in the environment to be addressed. Available devices are found by scanning
for Bluetooth devices, and by querying known Programmable Logic Controllers.
Then, the interpreter has to create the intersection between these sets to provide a
functional user interface. Hence, DD := DM ∩ DP is the set of devices that can actu-
ally be controlled with the generated user interface and consequently will be provided
by the interpreter.

At this moment, we have an adaptation mechanism for providing a usable user in-
terface that is a direct result of the generation process. Violating this basic type of

670 K. Breiner et al.

adaptation might result in usage-related errors. Assuming DM/DP ≠ ∅ as well as
DP/DM ≠ ∅, if only DM were to be displayed, the user interface would provide func-
tionality for devices that are not present, and if only DP were to be displayed, the
interpreter would have to generate user interfaces without knowing how to interface
the application logic.

Another adaptation feature supported by the RUM is adaptation according to the
role of the user. Analogously to the function model, the user model provides user
restriction definitions on the level of the Use Models, attached to each device com-
pound. These definitions result in a restricted view on the Use Model and therefore on
the user interface to be displayed. In our scenario, we currently assume that a certain
role applies to the complete usage lifecycle of the generated user interface. Thus,
DD' = view(DD, userrole) is the restricted view on the user interface to be displayed
according to the actual user role. According to the mapping function defined earlier,
the final user interface is the result of the function m(DD’).

In the next iteration of our prototype, which is described below, we will integrate
more and different implementations of these adaptation mechanisms in order to
evaluate them. Due to the fact that this is still research in progress, we have only
shown the feasibility so far. But it will be very interesting, of course, to evaluate the
influence of different adaptation mechanism on the user experience.

3.3 The Prototype

The prototype was implemented in Java and the generator composes the user interface
using elements of the swing library. Xmlbeans was used to create a simple interface to
the XML structure of the source files. The wireless communication infrastructure in
the SmartFactoryKL mainly relies on Bluetooth connections, so it was necessary to
include a Bluetooth stack in the implementation, which was BlueCove. According to
the function model, we included Bluetooth-specific communication information in the
connection node, enabling the generator to integrate Bluetooth calls in the action
events of the interaction widgets.

Fig. 7. SmartFactoryKL – the comprehensive user interface running on the PaceBlade touch
screen (foreground) is used to steer devices of the production environment (background)

 Run-Time Adaptation of a Universal User Interface 671

The software runs on a PaceBlade Slimbook P110 TabletPC. It permanently que-
ries the RUM file for changes, in order to let the generator adapt the user interfaces
immediately whenever the model is being changed. Fig. 7 shows the generated user
interface in the demonstrator environment.

4 Conclusion and Future Work

In this paper, we elaborated the extension of an existing model-based approach to
meet the requirements of user interface generation and adaptation in intelligent pro-
duction environments at run-time. The newly developed Room-based Use Model
(RUM) is capable of providing a description of the entire environment, comprising all
devices present as well as their user task models. Additionally, we integrated a ge-
neric function model, which contains information about the type and way of commu-
nication with the application logic, if triggered by a user event. In order to deal with
highly dynamic environments, adaptive user interfaces are necessary in order to pre-
vent usage errors. These models were the basis of an automatic model-driven user
interface generation process. In our sample production environment, the SmartFac-
toryKL, we showed that the information provided by these models is sufficient for
creating a functional user interface at run-time. We were also able to integrate basic
mechanisms to ensure the adaptability of the user interface to the environmental con-
figuration as well as to the user – which means that the user interface always reflects
the configuration of the devices present.

A next step will be to conduct several evaluations using this first prototype. Since
the intention was to support the user in interacting with a heterogeneous set of devices
(a range of UIs from different vendors providing different user experiences, located in
various places, etc.) and to reduce human errors while improving the users’ workflow,
one goal would be to measure the effectiveness of interacting with our prototype
compared to the previous situation of distributed heterogeneous user interfaces. It
would be interesting to evaluate how easily users can handle adaptable user interfaces,
even if those reflect the current physical configuration. What is the influence on the
user experience? Should the adaptation be performed completely automatically or is it
possible to integrate the user into this process, improving the level of acceptance?
What is the adequate level of user integration: e.g., adaptation only, information, or
mutual adaptation?

Acknowledgments. This work was funded in part by the German Research Founda-
tion (DFG).

References

1. Adam, S., Breiner, K., Mukasa, K., Trapp, M.: Challenges to the Model Driven Generation
of User Interfaces at Runtime for Ambient Intelligent Systems. In: Proceedings of the
Workshop on Model Driven Software Engineering for Ambient Intelligence Applications,
European Conference on Ambient Intelligence, Darmstadt, Germany (2007)

2. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI): Generic
Syntax. RFC. RFC Editor (1998)

672 K. Breiner et al.

3. Breiner, K., Maschino, O., Görlich, D., Meixner, G.: Towards automatically interfacing
application services integrated in an automated model-based user interface generation
process. In: Proceedings of the Workshop on Model Driven Development of Advanced
User Interfaces, 14th international Conference on intelligent User interfaces IUI 2009,
Sanibel Island, Florida, USA (2009)

4. Görlich, D., Breiner, K.: Useware modelling for ambient intelligent production environ-
ments. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735. Springer, Heidelberg (2007)

5. Görlich, D., Breiner, K.: Intelligent Task-oriented User Interfaces in Production Environ-
ments. In: Proceedings of the Workshop on Model-Driven User-Centric Design & Engi-
neering, 10th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design, and Evaluation of
Human-Machine-Systems, Seoul, Korea (2007)

6. Luyten, K.: Dynamic User Interface Generation for Mobile and Embedded Systems with
Model-Based User Interface Development, Ph.D. thesis, Limburgs Universitair Centrum,
Transnational University Limburg: School of Information Technology, October 21, Exper-
tise Centre for Digital Media, Diepenbeek, Belgium (2004)

7. Meixner, G., Seissler, M., Nahler, M.: Udit – A Graphical Editor for Task Models. In: Pro-
ceedings of the Workshop on Model Driven Development of Advanced User Interfaces,
14th international Conference on intelligent User interfaces IUI 2009, Sanibel Island, Flor-
ida, USA (2009)

8. Meixner, G., Görlich, D.: Eine Taxonomie für Aufgabenmodelle. In: Proceedings of Soft-
ware Engineering (SE 2009), Kaiserslautern, Germany (2009)

9. Myers, B., Hudson, S., Pausch, R.: Past, present, and future of user interface software
tools. In: ACM Transactions on Computer-Human Interaction (TOCHI), pp. 3–28. ACM
Press, New York (2000)

10. PROFIBUS Protocol, http://www.profibus.com/pb/ (last visited 02.02.09)
11. Reuther, A.: useML – Systematische Entwicklung von Maschinenbediensystemen mit

XML (Ph.D. thesis) In: Fortschritt-Berichte pak. vol. 8, University of Kaiserslautern,
Germany (2003)

12. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104 (1991)

	Run-Time Adaptation of a Universal User Interface for Ambient Intelligent Production Environments
	Introduction
	The Room-Based Use Model (RUM)
	Enhancing useML
	Function Model

	Generation and Adaptation of the User Interface
	The Generation Process and Interpreter
	Adaptation
	The Prototype

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

