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Abstract. The SmartFactoryKL is an arbitrarily modifiable and expandable 
(flexible) intelligent production environment, connecting components from 
multiple manufacturers (networked), enabling its components to perform con-
text-related tasks autonomously (self-organizing), and emphasizing user-
friendliness (user-oriented). This paper presents the results of a research project 
focusing on the run-time generation and adaptation of a universal task-oriented 
user interface for such intelligent production environments. It employs a Room-
based Use Model (RUM) developed in the context of a continuing research  
project series on universal remote control devices for intelligent production en-
vironments. The SmartFactoryKL is the first ambient intelligent production  
environment for demonstration and development purposes worldwide. After 
three years of research, a first prototype has been finished that allows for con-
trolling the production line using a single remote user interface able to adapt to 
varying remote devices according to the actual context of use, in a complex, 
model-based approach.  

Keywords: MBUID, Model driven development, generating user interfaces, 
modeling, adaptable user interfaces. 

1   Introduction 

The ongoing technological development of microelectronics and communication 
technology is leading to more pervasive communication between single devices or 
entire pervasive networks of intelligent devices (smart phone, PDA, Netbook, etc.). 
Furthermore, distributed computing power continues to increase – also for industrial 
devices and components. Especially industrial devices and applications can take ad-
vantage of modern smart technologies, e.g. based on ad-hoc networks, dynamic sys-
tem collaboration, and context-adaptive human-machine interaction systems. The 
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vision of Mark Weiser [12] concerning ubiquitous computing – also in production 
environments – is becoming a reality. 

Besides the many different benefits offered by smart technologies, there are also 
drawbacks. One main drawback is the fact that the number and complexity of techni-
cal devices, their user interfaces, and their usage situations in industrial production 
environments are constantly growing. In today’s production environments, technical 
devices often stem from multiple vendors with different user interfaces differing in 
complexity, look&feel, and interaction styles. Such highly complex and networked 
technical devices or systems can provide any information at any time and in any 
place. This advantage can turn out to be a disadvantage when information is not pre-
sented properly according to the users’ needs. This leads to problems, especially con-
cerning the usability of the user interface. The level of acceptance of a user interface 
largely depends on its ease and convenience of use. A user can work with a technical 
device more efficiently if the user interface is tailored to the users’ needs, on the one 
hand, and to their abilities on the other hand. Therefore, providing information in a 
context- and location-sensitive manner (depending on user, situation, machine, envi-
ronmental conditions, etc.) has to be ensured. 

To reduce the usage complexity of user interfaces and improve their usability, one 
of our goals is to adequately support users in performing their tasks by interacting 
with a user interface. Therefore, the particular user interface has to be adaptable to 
different usage situations – definable, for example, by user, task, interaction device, 
and device functionality. The increasing complexity due to technological develop-
ment will be reduced by using a model-based approach for the generation of user 
interfaces [9]. The core model of a model-based approach focusing on user-centered 
development is often the task model of a user interface. A task model describes the 
tasks a user wants to perform in a system. One comprehensive task model is the Use 
Model, which integrates detailed information about the tasks, e.g., temporal relation-
ships, conditions, or task types [7]. The Use Model is formalized through the XML-
based Useware Markup Language (useML). For describing Use Models in ubiquitous 
environments, the Use Model needs to be extended to include the integration of spa-
tial information, which leads to the Room-based Use Model. First evaluation results 
have been obtained in the SmartFactoryKL, our testbed for future production envi-
ronments, which is located in Kaiserslautern, Germany.  

The remainder of this paper is structured as follows. Section 2 describes the Room-
based Use Model on the basis of an enhanced version of useML as well as the func-
tion model. Section 3 introduces the model-driven generation process, the interpreter, 
the adaptation mechanisms, and the first prototype developed. In section 4, we con-
clude and provide an outlook to the future. 

2   The Room-Based Use Model (RUM) 

The Room-based Use Model (RUM) is a partial model focusing on the tasks of users 
and the way they fulfill tasks using multiple devices in complex, highly instrumented 
environments. In the following, we will describe the enhancement of the original 
useML and the structure of the function model, which is necessary for the automatic 
generation process that we will elaborate later. 
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2.1   Enhancing useML 

useML was originally introduced by Reuther [11] (see Fig. 1) to formalize several 
user groups’ task models into a single model. The semantic of the first version of 
useML was later enhanced substantially [7]. Such a model stores all potential varia-
tions of all user groups’ approaches to achieving desired goals. This model can then 
be instantiated at any time to automatically adapt the respective device’s user inter-
face to perfectly fit the current user’s tasks and needs. 

Use ModelUse Model

Use ObjectUse Object

Elementary Use ObjectElementary Use Object

changechange triggertrigger selectselect enterenter informinform

 

Fig. 1. Use Model structure according to Reuther. [11] 

useML was restricted to static user interfaces and to single devices or device fami-
lies only. It has been extended by a hierarchical structure of – logical (organizational) 
or physical – rooms containing device compounds that themselves can comprise other 
device compounds or devices (see Fig. 2.). Thereby, whole business processes can be 
represented – from a human-machine interaction perspective – in an RUM. 

While the RUM provides merely structural elements to specify spatial and device 
hierarchies, it further allows adding, for example, device profiles, coordinates, and 
interaction zones. It also provides means for modeling interactions between devices 
and for defining common Use Models for groups of devices, among other things. In 
addition to the hierarchical task structure common in task modeling languages (see 
[8]), the RUM also comprises modeling tools common in software engineering (activ-
ity diagrams) and provides support for the application of usability patterns. Still, 
complex tasks can be refined into less complex and finally elementary tasks (here: 
elementary use objects) in the classical, hierarchical way. 

RUMs can be extended by additional formal elements and sub-structures. When 
needed, they are supplemented with user models, usage situation models, or other 
(semi-)formal context representations. An RUM representing the SmartFactoryKL was 
complemented by a function model linking user tasks with data sets of the wireless 
communication protocols of the SmartFactoryKL development and demonstration 
facility. By using a wireless, mobile interaction device, we were able to automatically 
generate fully functional user interfaces. The used function model will be presented in 
detail in the next subsection. 

However, since [6] has shown that a model of human-machine interactions must 
consist of, at least, a task, a dialog, and a presentation model, we needed a mapping 
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Fig. 2. Integrated Room-based Use Model, containing contextual information about the entire 
environment, as well as all interactional information about the tasks to be performed by users. 
[3,4,5]  

between tasks and user interface objects (see Section 3) for automated user interface 
generation and adaptation at run-time. Section 3 will show the feasibility of our  
approach of combining these models. 

2.2   Function Model 

The central idea of the function model is to create a linkage between a user interface 
and the application logic based merely on a given RUM. One major challenge we 
explored in our previous work was to automatically interface the application services 
while generating the user interface [1]. For this, we formalized what is communicated 
between the interaction device and the device to be controlled and how. This exten-
sion makes it possible to bind the application logic to the individual graphical ele-
ments with an UI generator in a completely automated way. 

These models were elicited on the basis of the PROFIBUS implementation [10] 
used in the demonstration environment, as in the case of many current production 
environments. Therefore, it is important to mention that this kind of communication is 
bi-directional: Once the connection to the target device is established, communication 
frames can be exchanged cyclically. 
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Fig. 3. A device compound node provides a function model consisting of connection informa-
tion as well as the structure of the data to be transferred 

With respect to the structure of the RUM (see Fig. 2.), we created extensions on two 
different levels of abstraction. First, in order to establish communication between two 
devices, we needed information about the host to be addressed and the communication 
channel – this information is device-specific. Second, we needed to know how the con-
tent of the communication has to be structured in order to be understood by its receiver. 

Due to the fact that in our application domain, the type and channel of communica-
tion can vary depending on the type and manufacturer of the device, we attach this 
specific information to every device compound node. 

As shown in Fig. 3, the function model consists of the nodes connection and data. 
The structure of this model was elicited from several sample projects and imple-
mented with respect to the uniform resource identifier (URI) standard [2]. Consisting 
of scheme, host, data-reference (data-structure, see below), device number, device 
type, and priority, this information is sufficient for an interpreter to establish a  
communication channel to this particular device.  

 
Fig. 4. Connection is a description of the structure of information needed to establish the con-
nection to the desired device 

Additionally, it is important to know how to communicate with the respective tar-
get device and, therefore, how the transferred data needs to be structured in order to 
be understood by this device. The PROFIBUS protocol stipulates that communication 
between devices is, by definition, message-based. Therefore, the content of these 
messages is embedded into a clearly defined structure, which depends on what kind of 
information is to be communicated.  

Fig. 5 shows that the data node consists of distinct structures for incoming and 
outgoing datasets. Analogously to the protocol, one dataset is composed of a position 
(of the data within the sent/received frame), a length (of the information within this 
frame), a (unique) identifier, and a defined data format. Additional, but not compul-
sory, information might be the measurement unit (e.g., gallon, liter, Celsius, Fahren-
heit), the conversion factor (if the data needs to be post-processed),the min/max  
(possible) range, significant digits, and a status message. 
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Fig. 5. According to the direction of the communication, the data node distinguishes between 
outgoing datasets and incoming datasets. A dataset consists of several necessary properties. 

 

Fig. 6. Each instance of an elementary use object possesses an assignment node containing a 
link to a specific function 

Using this structure, an interpreter will be able to encode the information received 
from a user’s interaction in a way the device can understand and vice versa.  

The RUM already supports extensions according to assignments on the level of 
elementary use objects. We equipped each assignment node with the ability to attach 
a function node pointing to a particular dataset structure, by using the unique identi-
fier (see Fig. 6).  

Hence, if an elementary use object is activated by the user, the interpreter knows 
how to encode the given data according to the dataset structure. Since data structures 
are assigned to a particular device compound that provides a connection node, the 
interpreter can send this encoded information. 

3   Generation and Adaptation of the User Interface 

As a result, the RUM contains information about the user interaction with all  
devices of the environment as well as information about how to interact with the  
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corresponding application services, if triggered by the user – which is sufficient for 
automatically generating a functional user interface. To demonstrate the feasibility of 
this model-driven approach, we set up an interpretation process and implemented a 
basic prototype generator.  

Prior to this, we formalized our demonstration environment – the SmartFactoryKL 
– as an RUM. From this model, we derived instances that comprise certain subsets of 
the demonstration environments or certain user roles such as a guest user role re-
stricted to read-only access to the modeled devices. 

In the following sections, we will elaborate the process/interpreter, the prototype in 
the demonstration environment, and our idea of an adaptation mechanism at run-time 
supported by this model. 

3.1   The Generation Process and Interpreter 

The aim of this process is to visualize the modeled environment in a single user inter-
face, which will provide control over devices present in the environment. In case of 
the prototype, we use a simplified presentation model in which the available device 
compounds and devices will be displayed as a slim navigation structure in a canonical 
mapping and the use objects will group the functions of the underlying elementary use 
objects. To activate a certain device (and therefore a certain Use Model), the user 
selects the respective device in the navigation bar. 

Concerning the interpretation of the selected Use Model, let W be the set of avail-
able user interface widgets (such as labels, buttons, text fields, etc.) the interpreter 
will be able to use in order to compose the final user interface. On the other hand, let 
EUO be the set of elementary use objects and elementary use objects in compound 
configurations. The function m:EUO → W describes the relation of how the interaction 
objects are mapped onto real user interface widgets that are displayed and can be 
manipulated by the user. This function needs to be formalized in the implementation 
of the interpreter; in the case of our prototype, it has to be hard-coded. The interpreter 
will map all (elementary) use objects to a dedicated visual use object (graphical  
widget).  

In addition, the interpreter should not only be able to control devices that are  
present, but also be adaptive – e.g., hiding the user interfaces of devices that are  
described in the RUM, but are not really present in the environment. 

3.2   Adaptation 

According to the RUM, let DM be the set of devices defined in this model – the de-
vices (device types) the interpreter is able to cope with. Let DP be the set of devices 
present in the environment to be addressed. Available devices are found by scanning 
for Bluetooth devices, and by querying known Programmable Logic Controllers. 
Then, the interpreter has to create the intersection between these sets to provide a 
functional user interface. Hence, DD := DM ∩ DP is the set of devices that can actu-
ally be controlled with the generated user interface and consequently will be provided 
by the interpreter.  

At this moment, we have an adaptation mechanism for providing a usable user in-
terface that is a direct result of the generation process. Violating this basic type of 
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adaptation might result in usage-related errors. Assuming DM/DP ≠ ∅ as well as 
DP/DM ≠ ∅, if only DM were to be displayed, the user interface would provide func-
tionality for devices that are not present, and if only DP were to be displayed, the 
interpreter would have to generate user interfaces without knowing how to interface 
the application logic.  

Another adaptation feature supported by the RUM is adaptation according to the 
role of the user. Analogously to the function model, the user model provides user 
restriction definitions on the level of the Use Models, attached to each device com-
pound. These definitions result in a restricted view on the Use Model and therefore on 
the user interface to be displayed. In our scenario, we currently assume that a certain 
role applies to the complete usage lifecycle of the generated user interface. Thus, 
DD' = view(DD, userrole) is the restricted view on the user interface to be displayed 
according to the actual user role. According to the mapping function defined earlier, 
the final user interface is the result of the function m(DD’). 

In the next iteration of our prototype, which is described below, we will integrate 
more and different implementations of these adaptation mechanisms in order to 
evaluate them. Due to the fact that this is still research in progress, we have only 
shown the feasibility so far. But it will be very interesting, of course, to evaluate the 
influence of different adaptation mechanism on the user experience. 

3.3   The Prototype 

The prototype was implemented in Java and the generator composes the user interface 
using elements of the swing library. Xmlbeans was used to create a simple interface to 
the XML structure of the source files. The wireless communication infrastructure in 
the SmartFactoryKL mainly relies on Bluetooth connections, so it was necessary to 
include a Bluetooth stack in the implementation, which was BlueCove. According to 
the function model, we included Bluetooth-specific communication information in the 
connection node, enabling the generator to integrate Bluetooth calls in the action 
events of the interaction widgets. 

 

 

Fig. 7. SmartFactoryKL – the comprehensive user interface running on the PaceBlade touch 
screen (foreground) is used to steer devices of the production environment (background) 



 Run-Time Adaptation of a Universal User Interface 671 

The software runs on a PaceBlade Slimbook P110 TabletPC. It permanently que-
ries the RUM file for changes, in order to let the generator adapt the user interfaces 
immediately whenever the model is being changed. Fig. 7 shows the generated user 
interface in the demonstrator environment. 

4   Conclusion and Future Work 

In this paper, we elaborated the extension of an existing model-based approach to 
meet the requirements of user interface generation and adaptation in intelligent pro-
duction environments at run-time. The newly developed Room-based Use Model 
(RUM) is capable of providing a description of the entire environment, comprising all 
devices present as well as their user task models. Additionally, we integrated a ge-
neric function model, which contains information about the type and way of commu-
nication with the application logic, if triggered by a user event. In order to deal with 
highly dynamic environments, adaptive user interfaces are necessary in order to pre-
vent usage errors. These models were the basis of an automatic model-driven user 
interface generation process. In our sample production environment, the SmartFac-
toryKL, we showed that the information provided by these models is sufficient for 
creating a functional user interface at run-time. We were also able to integrate basic 
mechanisms to ensure the adaptability of the user interface to the environmental con-
figuration as well as to the user – which means that the user interface always reflects 
the configuration of the devices present. 

A next step will be to conduct several evaluations using this first prototype. Since 
the intention was to support the user in interacting with a heterogeneous set of devices 
(a range of UIs from different vendors providing different user experiences, located in 
various places, etc.) and to reduce human errors while improving the users’ workflow, 
one goal would be to measure the effectiveness of interacting with our prototype 
compared to the previous situation of distributed heterogeneous user interfaces. It 
would be interesting to evaluate how easily users can handle adaptable user interfaces, 
even if those reflect the current physical configuration. What is the influence on the 
user experience? Should the adaptation be performed completely automatically or is it 
possible to integrate the user into this process, improving the level of acceptance? 
What is the adequate level of user integration: e.g., adaptation only, information, or 
mutual adaptation? 
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