
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 846–855, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Visualization of Software and Systems as Support 
Mechanism for Integrated Software Project Control 

Peter Liggesmeyer1,2, Jens Heidrich1, Jürgen Münch1, Robert Kalcklösch2, 
Henning Barthel1, and Dirk Zeckzer2 

1 Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany 
{peter.liggesmeyer,jens.heidrich,juergen.muench,  

henning.barthel}@iese.fraunhofer.de 
2 TU Kaiserslautern, Post Office Box 3049, 67653 Kaiserslautern, Germany 

{kalckloesch,zeckzer}@informatik.uni-kl.de 

Abstract. Many software development organizations still lack support for ob-
taining intellectual control over their software development processes and for 
determining the performance of their processes and the quality of the produced 
products. Systematic support for detecting and reacting to critical process and 
product states in order to achieve planned goals is usually missing. One means 
to institutionalize measurement on the basis of explicit models is the develop-
ment and establishment of a so-called Software Project Control Center (SPCC) 
for systematic quality assurance and management support. An SPCC is compa-
rable to a control room, which is a well known term in the mechanical produc-
tion domain. One crucial task of an SPCC is the systematic visualization of 
measurement data in order to provide context-, purpose-, and role-oriented  
information for all stakeholders (e.g., project managers, quality assurance man-
agers, developers) during the execution of a software development project. The 
article will present an overview of SPCC concepts, a concrete instantiation that 
supports goal-oriented data visualization, as well as examples and experiences 
from practical applications. 

Keywords: Software Project Control Centers, Visualization Mechanisms, Data 
Visualization, GQM. 

1   Introduction 

The complexity of software-intensive systems and development projects continues to 
increase. One major reason is the ever-increasing complexity of functional as well as 
non-functional software and systems requirements (e.g., reliability or time constraints 
for safety critical systems). The more complex the requirements, the more people are 
usually involved in meeting them, which further increases the complexity of control-
ling and coordinating a project. This, in turn, makes it even harder to develop the 
system according to plan (i.e., matching time, quality, and budget constraints). Project 
control issues are very hard to handle. Many software development organizations still 
lack support for obtaining intellectual control over their software development pro-
jects and for determining the performance of their processes and the quality of the 



 Visualization of Software and Systems as Support Mechanism 847 

produced products. Systematic support for detecting and reacting to critical process 
and product states in order to achieve planned goals and quality is usually missing 
[15]. One way to support effective control of software development projects is the use 
of basic engineering principles [7], [19], with particular attention to the monitoring 
and analysis of actual product and process states, the comparison of actual states with 
planned states, and the initiation of any necessary corrective actions during project 
execution. Effectively applying these principles requires the collection, interpretation, 
and appropriate visualization of measurement data according to a previously meas-
urement goals and plans in order to provide stakeholders with up-to-date information 
about the project state. One major challenge is to adequately (and partially integrated) 
visualize process and product properties during project execution so that informed 
decisions can be made by the relevant stakeholders (such as project managers, quality 
assurance personnel). This addresses, for instance, early warning mechanisms that 
recognize insufficient quality characteristics of development products or the ability to 
generate accurate effort and cost predictions.  

In the aeronautical domain, air traffic control systems are used to ensure the safe 
operation of commercial and private aircraft. Air traffic controllers use these systems 
to coordinate the safe and efficient movement of air traffic (e.g., to make certain that 
planes stay a safe distance apart or to minimize delays). These systems collect and 
visualize all critical data (e.g., the distance between two planes, the planned arrival 
and departure times) in order to support decisions by air traffic controllers. Software 
project control requires an analogous approach that is tailored to the specifics of the 
process being used (e.g., its non-deterministic, concurrent, and distributed nature). A 
Software Project Control Center (SPCC) [15] is a control system for software devel-
opment that collects all data relevant to project control, interprets and analyzes the 
data according to the project’s control needs, visualizes the data for different project 
roles, and suggests corrective actions in the case of plan deviations. An SPCC could 
also support the packaging of data (e.g., as predictive models) for future use and con-
tribute to an improvement cycle spanning a series of projects. Controlling a project 
means ensuring the satisfaction of project objectives by monitoring and measuring 
progress regularly in order to identify variances from the plan during project execu-
tion, so that corrective action can be taken when necessary [17]. Planning is the basis 
for project control and defines expectations, which can be checked during project 
execution. Project control is driven by different role-oriented needs. We define con-
trol needs as a set of role-dependent requirements for obtaining project control. A 
project manager needs different kinds of data, data of different granularity, or differ-
ent data visualizations than a quality assurance manager. 

In this article, we want to illustrate selected existing project control approaches 
(Section 2), and then focus on a concrete instantiation that supports goal-oriented data 
visualization, the so called Specula approach (Section 3). Afterwards, we will present 
advanced visualization mechanisms used for controlling risks and quality of devel-
opment projects and selected lessons learned from their application (Section 4). Fi-
nally, we will give a summary and illustrate future research fields (Section 5). 



848 P. Liggesmeyer et al. 

2   Related Work 

An overview of the state of the art in Software Project Control Centers can be found 
in [15]. Most of the existing, rather generic, approaches for control centers offer only 
partial solutions. Especially purpose- and role-oriented usages based on a flexible set 
of techniques and methods are not comprehensively supported. In practice, many 
companies develop their own dashboards (mainly based on Spreadsheet applications) 
or use dashboard solutions that provide a fixed set of predefined functions for project 
control (e.g., deal with product quality only or solely focus on project costs) and are 
very specific to the company for which they were developed. 

The indicators used to control a development project depend on the project’s goals 
and the organizational environment. There is no default set of indicators that is always 
used in all development projects in the same manner. According to [14], a “good” 
indicator has to (a) support analysis of the intended information need, (b) support the 
type of analysis needed, (c) provide the appropriate level of detail, (d) indicate a pos-
sible management action, and (e) provide timely information for making decisions 
and taking action. The concrete indicators that are chosen should be derived in a sys-
tematic way from the project goals [12], making use of, for instance, the Goal Ques-
tion Metric (GQM) approach [3]. Some examples from indicators used in practice can 
be found in [1]. With respect to controlling project cost, the Earned Value approach 
provides a set of commonly used indicators and interpretation rules. With respect to 
product quality, there exists even an ISO standard [10]. However, the concrete usage 
of the proposed measures depends upon the individual organization. 

The test / diagnosis of complex systems was put on a formal basis in 1967 by [16]. 
One of the drawbacks was addressed by [13]. A good overview of system diagnosis 
models can be found in [2]. With respect to the visualization and applicable tools, an 
overview is presented in [20]. 

3   Goal-Oriented Software Project Control 

Specula [8] is a state-of-the-art SPCC. It interprets and visualizes collected measure-
ment data in a goal-oriented way in order to effectively detect plan deviations. The 
control functionality provided by Specula depends on the underlying goals with  
respect to project control. If these goals are explicitly defined, the corresponding 
functionality is composed out of packaged, freely configurable control components. 
Specula provides four basic components: (1) a logical architecture for implementing 
software cockpits, (2) a conceptual model formally describing the interfaces between 
data collection, data interpretation, and data visualization [9], (3) an implementation 
of the conceptual model, including a construction kit of control components, and (4) a 
methodology of how to select control components according to explicitly stated goals 
and customize the SPCC functionality [8]. The methodology is based on the Quality 
Improvement Paradigm (QIP) and makes use of the GQM approach [3] for specifying 
measurement goals. QIP is used to implement a project control feedback cycle and 
make use of experiences and knowledge gathered in order to reuse and customize 
control components. GQM is used to drive the selection process of finding the right 
control components according to defined goals. The different phases that have to be 



 Visualization of Software and Systems as Support Mechanism 849 

considered for setting up and applying project control mechanisms can be character-
ized as follows: 

I. Characterize Control Environment: First, stakeholders characterize the environ-
ment in which project control shall be applied in order to set up a measurement pro-
gram that is able to provide a basis for satisfying all needs. 

II. Set Control Goals: Then, measurement goals for project control are defined and 
metrics are derived determining what kind of data to collect. In general, any goal 
derivation process can be used for defining control objectives. For practical reasons, 
we focus on the GQM paradigm for defining concrete measurement goals addressing 
the measurement object, purpose, quality focus, viewpoint, and context information.  

III. Goal-oriented Composition: Next, all control mechanisms for the project are 
composed based on the defined goals in order to provide online feedback on the basis 
of the data collected during project execution; that is, control techniques and visuali-
zation mechanisms are selected from a corresponding repository and instantiated in 
the context of the project that has to be controlled. This process is driven by interpre-
tation and visualization models that clearly define which indicators contribute to spe-
cific control objectives, how to assess and aggregate indicator values, and how to 
visualize control objectives and intermediate results. 

IV. Execute Project Control Mechanisms: Once all control mechanisms are specified, a 
set of role-oriented views is generated for controlling the project. When measurement 
data are collected, the control mechanisms interpret and visualize them accordingly, so 
that plan deviations and project risks are detected and a decision-maker can react accord-
ingly. If a deviation is detected, its root cause must be determined and the control mecha-
nisms have to be adapted accordingly. This, does, for example, require data analyses on 
different levels of abstraction in order to be able to trace causes of plan deviations. 

V. Analyze Results: After project completion, the resulting visualization catena has to 
be analyzed with respect to plan deviations and project risks detected in time, too late, 
or not detected at all. The causes for plan deviations and risks that were detected too 
late or that were not detected at all have to be determined. 

VI. Package Results: The analysis results of the control mechanisms that were applied 
may be used as a basis for defining and improving control mechanisms for future 
projects (e.g., selecting the right control techniques and data visualizations, choosing 
the right parameters for controlling the project). 

Fig. 1 illustrates the basic conceptual modules of the Specula approach. The cus-
tomization module is responsible for selecting and adapting the control components 
according to project goals and characteristics and defined measurement (control) 
goals. It is possible to include past experience (e.g., effort baselines, thresholds) in the 
selection and adaptation process. This experience is stored in a experience base. A 
Visualization Catena (VC) is created, which formally describes how to collect, inter-
pret, and visualize measurement data. The set of reusable control components from 
which the VC is instantiated basically consists of integrated project control techniques 
(for interpreting the data in the right way) and data visualization mechanisms (for 
presenting the interpreted data in accordance with the role interested in the data). The 
central processing module collects measurement data during project performance and 



850 P. Liggesmeyer et al. 

interprets and visualizes them according to the VC specification. Measurement data 
can be retrieved automatically from project repositories or manually from data collec-
tion forms and formal documents. Finally, charts and tables are produced to allow for 
online project control. A packaging module collects feedback from project stake-
holders about the application of the control mechanisms and stores them in an Experi-
ence Base (e.g., whether a baseline worked, whether all plan deviations were detected, 
or whether retaliatory actions had a measurable effect). Using these modules, the 
Specula framework is able to specify a whole family of project control centers (which 
is comparable to a software product line for control centers). 

Online ControlOnline Control

GQM
Plan
GQM
Plan

Visualisation
Catena
Visualisation
Catena

Project 
Planners

Goals and 
Characteristics

Goals and 
Characteristics

CustomisationCustomisation

Experience 
Base

Experience 
Base

Data Collection, Interpretation, 
and Visualisation

Data Collection, Interpretation, 
and Visualisation

Control 
Components

Control 
Components

Project 
Members

Project 
Stakeholders

WFIWFIWFIWFI

DEDE DEDEDEDE

DBDB

FIFI FIFI

FIFI

VIVI VIVI

VIVI

FIFI

IDEIDE

DEDE

VIVI

GG

QQ QQ QQ

MM MM MM MM MM

PackagingPackaging

Project
Repositories

Project
Repositories

Documents

GQM Goal Question Metric
VI View Instance
FI Function Instance
DE Data Entry
WFI Web Form Instance

Association
Data Flow

GQM Goal Question Metric
VI View Instance
FI Function Instance
DE Data Entry
WFI Web Form Instance

Association
Data Flow

 

Fig. 1. Overview of the Specula framework 

 

Fig. 2. Example visualization of a simple hierarchical Gantt chart 

The Specula approach was evaluated as part of industrial case studies in the Soft-
Pit project (a public German research project, no. 01ISE07A) in which a prototypical 
implementation of the concepts was used. Results of the first two iterations can be 



 Visualization of Software and Systems as Support Mechanism 851 

found in [5] and [6]. In general, people perceived the usefulness and ease of use of the 
Specula control center as positive. However, usefulness and ease of use also varied 
across the different case study providers depending on the state of the practice before 
introducing the control center solution and it also largely varied across the different 
visualization mechanisms used. In the Soft-Pit case, mostly “standard visualizations” 
for project control were used, such as Gantt charts, line/bar charts, tables/matrixes and 
simple trees (see, e.g., Fig. 2). One major success factor for the usefulness of visuali-
zations was how intuitive the visualization can be interpreted. Especially, when ag-
gregating data and complex, multi-dimensional relationships needs to be illustrated, 
this requires more advanced visualization concepts. 

4   Advanced Visualization Mechanisms 

The following sub-sections present examples for advanced mechanisms used for visu-
alizing the risks and quality of development projects and summarize lessons learned 
from their application. Further visualization mechanisms of quality properties, espe-
cially safety and security for embedded systems, is currently investigated in the Ger-
man research project ViERforES (see http://www.vierfores.de). 

 

Fig. 3. 3D Treemap visualizing different metrics 

4.1   Visualizing Code Quality 

To analyze the quality of a software system, metrics are used that measure certain 
attributes of the software’s internal structure. Many metric tools exist that are able to 
define such metrics and collect measurement data automatically. For analysis pur-
poses different visualization techniques such as node-link diagrams and graphs are 
used in order to help the user in drawing conclusions about the quality of the software 
system. These techniques use a limited set of graphical elements like text, simple 



852 P. Liggesmeyer et al. 

geometric shapes or uniform color fills to highlight relevant attributes of the software 
system being visualized. For combining different metric values within one picture, a 
3D-Treemap technique (see Fig. 3. ) was developed and integrated into a code analy-
sis system at Fraunhofer IESE. This visualization mechanism allows us to map data 
measuring code quality to different graphical properties of each cube (such as posi-
tion, size, height, and color). To further analyze these values, the user is able to inter-
actively define new views, pan and zoom within the 3D scene and use a pull-down 
menu to initialize other measurement or visualization actions. 

4.2   Visualizing Risk Management 

Risk management and especially risk avoidance plays an important role in all devel-
opment and construction activities. For managing risks, a structured process is manda-
tory. Visualization is used for analyzing risks and supporting managers in deciding 
upon necessary actions. Siemens developed a methodology named sira that is used for 
collecting data about possible risks [4]. This includes structured interviews for deter-
mining possible risks, their probability and importance as well as the possible damage 
that may be caused. Based on this analysis, a risk portfolio is created. In order to ana-
lyze these risks, the so-called sira bubble charts were created that summarize all nec-
essary information that has to be discussed with the customer (see Fig. 4 and [4]).  

 

 

Fig. 4. sira.iris, a visualization of a risk portfolio 

4.3   Fault Detection in Distributed Systems 

The functionality of a software system is distributed over many components and the 
interaction between these components plays a crucial role. In order to analyze the 
reliability of a system, data about communicating components and their error-
proneness is collected. The output is analyzed using an interactive visualization (see 
Fig. 5 and [20]). In this visualization color coding is used to characterize the “faulti-
ness” of components with respect to communication relations. The ratio between 
faulty communication and the overall amount of communication is used for coloring 



 Visualization of Software and Systems as Support Mechanism 853 

all nodes and edges of the graph, indicating starting points for bug fixing activities. 
The overall approach is described in [11]. Interaction plays an important role in this 
application. For instance, changing colors helps understanding the impact of faults. 
Changing transparency of clusters helps understanding structural information about 
the system. 
 

 
Fig. 5. Faults collected during the execution of a system 

5   Conclusions 

This article presented the basic concept of an SPCC for establishing project control by 
means of systematic visualization mechanisms. We illustrated existing approaches 
and presented a goal-oriented way to establish project control by formalizing the way 
measurement data are interpreted and visualized according to a previously defined 
measurement goal. Existing approaches offer mostly partial solutions. Especially 
goal-oriented usages based on a flexible set of techniques and methods are not com-
prehensively supported [15]. The expected benefits of the goal-oriented visualization 
approaches include: (1) improvement of quality assurance and project control by 
providing a set of custom-made views of measurement data, (2) support of project 
management through early detection of plan deviations and proactive intervention, (3) 
support of distributed software development by establishing a single point of control, 
(4) enhanced understanding of software processes, and improvement of these proc-
esses, via measurement-based feedback, and (5) preventing information overload 
through custom-made views with different levels of abstraction. 

An important research issue in this context is the development of a schema for 
adaptable control techniques and methods, which effectively allows for purpose-
driven usage of an SPCC in varying application contexts. Another research issue is 
the elicitation of information needs for the roles involved and the development of 



854 P. Liggesmeyer et al. 

mechanisms for generating adequate role-oriented visualizations of the project data. 
Another important research issue is support of change management. When the goals 
or characteristics of a project change, the real processes react accordingly. Conse-
quently, the control mechanisms, which should always reflect the real world situation, 
must be updated. This requires flexible mechanisms that allow for reacting to process 
variations. One long-term goal of engineering-style software development is to con-
trol and forecast the impact of process changes and adjustments on the quality of the 
software artifacts produced and on other important project goals. Goal-oriented visu-
alization mechanisms can be seen as a valuable contribution towards reaching this 
goal. 

References 

1. Agresti, W., Card, D., Church, V.: Manager’s Handbook for Software Development. SEL 
84-101, NASA Goddard Space Flight Center. Greenbelt, Maryland (November 1990) 

2. Barborak, M., Malek, M., Dahbura, A.T.: The Consensus Problem in Fault-Tolerant Com-
puting. ACM Computing Surveys 25(2), 171–220 (1993) 

3. Basili, V.R., Caldiera, G., Rombach, D.: The Experience Factory. Encyclopaedia of Soft-
ware Engineering 1, 469–476 (1994) 

4. Bülte, H., Mäckel, O.: Mehr sehen mit sira: Mit einem Blick IT-Projekte durchleuchten. 
In: SE 2009, Kaiserslautern, Germany (2009) 

5. Ciolkowski, M., Heidrich, J., Münch, J., Simon, F., Radicke, M.: Evaluating Software Pro-
ject Control Centers in Industrial Environments. In: Proceedings of the First International 
Symposium on Empirical Software Engineering and Measurement, pp. 314–323. IEEE 
Computer Society, Los Alamitos (2007) 

6. Ciolkowski, M., Heidrich, J., Simon, F., Radicke, M.: Empirical results from using cus-
tom-made software project control centers in industrial environments. In: Proceedings of 
the Second ACM-IEEE International Symposium on Empirical Software Engineering and 
Measurement, pp. 243–252. ACM, Kaiserslautern, Germany (2008) 

7. Gibbs, W.W.: Software’s Chronic Crisis. Scientific American, 86–95 (1994) 
8. Heidrich, J., Münch, J.: Goal-Oriented Setup and Usage of Custom-Tailored Software 

Cockpits. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008. LNCS, vol. 5089, pp. 4–18. 
Springer, Heidelberg (2008) 

9. Heidrich, J., Münch, J.: Cost-Efficient Customisation of Software Cockpits by Reusing 
Configurable Control Components. In: Dekkers, T. (ed.) Proceedings of the 4th Software 
Measurement European Forum, SMEF 2007, Rome, Italy, May 9-11, 2007, pp. 19–32 
(2007) 

10. ISO 9126: Software Engineering – Product Quality. Technical Report. ISO/IEC TR 9126. 
Geneva (2003) 

11. Kalcklösch, R.: Gossip-Based Diagnosis of Arbitrary Component-Oriented Systems. Tech-
nische Universität Kaiserslautern, PhD Thesis (2008) 

12. Kitchenham, B.A.: Software Metrics. Blackwell, Oxford (1995) 
13. Kuhl, J.G., Reddy, S.M.: Distributed fault-tolerance for large multiprocessor systems. In: 

ISCA 1980: Proceedings of the 7th Annual Symposium on Computer Architecture, La 
Baule, United States, pp. 23–30. ACM Press, New York (1980) 

14. McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., Hall, F.: Practical Soft-
ware Measurement – Objective Information for Decision Makers, 1st edn. Addison-
Wesley Professional, Reading (October 15, 2001) 



 Visualization of Software and Systems as Support Mechanism 855 

15. Münch, J., Heidrich, J.: Software Project Control Centers: Concepts and Approaches. 
Journal of Systems and Software 70(1), 3–19 (2003) 

16. Preparata, F.P., Metze, G., Chien, R.T.: On the Connection Assignment Problem of Diag-
nosable Systems. IEEE Transactions on Electronic Computers EC-16(6), 848–854 (1967) 

17. Project Management Institute: A Guide to the Project Management Body of Knowledge 
(PMBOK® Guide) 2000 edn. Project Management Institute, Four Campus Boulevard, 
Newtown Square, PA 19073-3299 USA (2000) 

18. Rombach, H.D., Verlage, M.: Directions in Software Process Research. Advances in Com-
puters 41, 1–63 (1995) 

19. Shaw, M.: Prospects for an Engineering Discipline of Software. IEEE Software 7(6), 15–
24 (1990) 

20. Zeckzer, D., Schröder, L., Kalcklösch, R., Hagen, H., Klein, T.: Analyzing the Reliability 
of Communication between Software Entities Using 3D Force-Directed Layout of Clus-
tered Graphs. In: ACM Conference on Software Visualization (SoftVis 2008), Herrsching 
am Ammersee, Germany, September 16-17 (2008) 


	Visualization of Software and Systems as Support Mechanism for Integrated Software Project Control
	Introduction
	Related Work
	Goal-Oriented Software Project Control
	Advanced Visualization Mechanisms
	Visualizing Code Quality
	Visualizing Risk Management
	Fault Detection in Distributed Systems

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




