High-Fidelity Prototyping of Interactive Systems
Can Be Formal Too

Philippe Palanque, Jean-Francois Ladry, David Navarre, and Eric Barboni

IHCS-IRIT, Université Paul Sabatier — Toulouse 3, France
{ladry,palanque,navarre,barboni}@irit.fr

Abstract. The design of safety critical systems calls for advanced software en-
gineering models, methods and tools in order to meet the safety requirements
that will avoid putting human life at stake. When the safety critical system en-
compasses a substantial interactive component, the same level of confidence is
required towards the human-computer interface. Conventional empirical or
semi-formal techniques, although very fruitful, do not provide sufficient insight
on the reliability of the human-system cooperation, and offer no easy way to,
for example, quantitatively compare two design options. The aim of this paper
is to present a method, with supporting tools and techniques, for engineering the
design and development of usable user interfaces for safety-critical applica-
tions. More precisely we present the Petshop environment which is a Petri net
based tool for the design specification, prototyping and validation of interactive
software. In this environment models of the interactive application can be inter-
actively modified and executed. This is used to support prototyping phases
(when the models and the interactive application evolve significantly to meet
late user requirements for instance) as well as in the operation phase (after the
system is deployed). The use of the description technique (the ICO formalism)
supported by PetShop is presented on a multimodal ground segment application
for satellite control and more precisely how prototyping can be performed at the
various levels of the architecture of interactive systems.

Keywords: Model-based approaches, formal description techniques, interactive
prototyping, reliability, evolvability.

1 Introduction and Related Work

Current research in Interactive systems promotes the development of new interaction
and visualization techniques in order to increase the bandwidth between the users and
the systems. Such an increase in bandwidth can have a significant impact on effi-
ciency (for instance the number of commands triggered by the users within a given
amount of time) and also on error-rate [23] and complexity. To address design issues
raised by such systems, new design and development processes have to be defined
and assessed.

Current development processes both in the field of Human-Computer Interaction
(HCI) [11] and Software Engineering (SE) [9, 4] promote iteration-centered processes
but with a different perspective. In the field of HCI, the product of each iteration is

J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 66 2009.
© Springer-Verlag Berlin Heidelberg 2009

668 P. Palanque et al.

tested with potential users of the system under development while, in SE, the product
is evaluated by different stakeholders including client or customer (the one who pays
for or buys the product) and more unlikely users (but user-centered approaches (such
as task analysis and modelling).

At design stage, HCI approaches promote iteration through the production of pro-
totypes to be presented to and used by “real” users. While such design process is
widely agreed upon, the debate is still vivid whether one should use low-fidelity [24]
or high-fidelity prototyping [26, 14].

When it comes to complex applications at the interaction level [19], or at the appli-
cation level [25], low fidelity approaches only address a small part of that complexity.
The outcome is too informal for making it exploitable further on in the development
process without losing a significant part of it. This limits the use of low-fidelity proto-
typing approaches to the earlier phases of the development process, where main de-
sign questions are addressed and low level ones left to later phases.

The main drawback of high-fidelity prototyping lays in the fact that the iterations
are more time consuming and thus prevent exploration of new ideas without jeopard-
izing the entire project by overrun on schedule. Another inconvenient of high-fidelity
prototyping is related to the product of that phase which most of the time corresponds
to program code, making its integration in the rest of the application very difficult due
to lack of abstraction.

In this paper, we promote the use of an executable formal approach called Interac-
tive Cooperative Objects (ICOs) within the high-fidelity prototyping phase of interac-
tive systems development. This formal approach solves some of the limitations of
Rapid Application Development (RAD) techniques currently used for high-fidelity
prototyping. Indeed, it provides abstraction through models, rapid execution through
simulation and testing through generation of test cases and scenarios. In addition,
when the prototyping phase is terminated, the outcome is not only a partially running
prototype, but also a partial formal description of its behaviour that can then be passed
on to the development team in charge of the development of the final system to be
deployed. Previous work we have done in that domain was focusing on the rapid
prototyping of the interactive application [17]; our current work addresses the 3 levels
of interactive systems prototyping: interaction technique level (including multimodal
interactions with non standard input devices as tactile screens), interactive component
(including sophisticated widgets such as range sliders of semi-transparent pop-up
menus) [16] and the interactive application in complex environment as cockpits (both
military and civil [1]), grounds segment for satellite control rooms [20] and Air Traf-
fic Management interactive applications.

This paper focuses on the use of the ICOs formal description technique to support
rapid prototyping of interaction techniques. More precisely, it presents how an inter-
action technique can be defined and then how it can “rapidly” evolve according to
users’ feedback and users’ performance. Indeed, the tool support environment for
ICOs (called PetShop) has been now extended to provide additional facilities such as
model-based logging of events and state-changes to support usability evaluation ac-
tivities classically imbricated with rapid prototyping. This paper also addresses how
logging support can be used to carry out performance analysis of the interaction tech-
nique thus limiting user testing to interaction techniques that have been previously
formally analysed.

High-Fidelity Prototyping of Interactive Systems Can Be Formal Too 669

This paper is organized as follows. Next section presents some related work and
research questions in the field of model-based approaches for interactive systems. The
ICO notation is described in section 3. Section 4 presents the CASE tool Petshop
which allows editing and execution of ICO models. Section 5 presents, on two small
examples, how prototyping can be managed with PetShop and ICOs. Section 6 con-
cludes the paper.

2 Model-Based Approaches for Interactive Systems

When formal methods were initially used for interactive systems [16], models were
limited to the dialog part, making them less prominent for runtime use as only one
part of the interactive system was taken into account. In order to address issues raised
by real life application, current trend in interactive systems engineering is to develop
models for all the parts of the systems.

Another parallel track of research work has been targeting at modelling new inter-
action techniques in order to be able to deal with current practice in the field of HCI.
To deal with WIMP and post-WIMP interaction techniques, several notations have
been proposed from Data-flow-based notations such as Wizz’ed [7], Icon [6], Nimmit
[23] or InTml [8] to event-based notations such as Marigold [23], Hynets [23] or ICO
[8]. Hybrid models integrating both event-based and data-flow-based notations have
also been presented in [8] and in [15]. With respect to that later work, the work pre-
sented here extends the work presented in [15] by removing the data-flow model
dealing with input devices configuration and proposing a single event-based notation
described in the next section.

The work presented in this paper is about providing a modelling technique capable
of representing the behaviour of an entire interactive application (from physical to
functional interaction) using a dedicated Petri net dialect. It also targets at new inter-
action techniques (e.g. multimodal, direct manipulation ...) such as the ones used in
the field of HCIL.

This paper shows how the CASE tool Petshop [1] embeds the system models
(which represent an interactive system from the interaction technique through to the
system functional core) using the ICO notation at runtime for:

e Prototyping of models

e Execution of application to check

e Analysis as a way of supporting models construction by providing additional in-
formation about the properties of the models under construction.

3 The ICO Formalism

The ICO formalism is a formal description technique dedicated to the specification of
interactive systems [19]. It uses concepts borrowed from the object-oriented approach
(dynamic instantiation, classification, encapsulation, inheritance, client/server rela-
tionship) to describe the structural or static aspects of systems, and uses high-level
Petri nets [23] to describe their dynamic behavioral aspects.

670 P. Palanque et al.

3.1 Cooperative Object

The ICO notation depends on Cooperative objects, A Cooperative Object states how
the object reacts to external stimuli according to its inner state. The COs behaviour is
called the Object Control Structure (ObCS) is expressed in a language based on Ob-
ject Petri Net (OPN) (see Fig. 1.). An ObCS can have multiple places and transitions
that are linked with arcs like standard Petri nets. As an extension to these standard
arcs, ICO provides additional input arcs: Test arcs and Inhibitor arcs. Each place has
an initial marking (represented by one or several tokens in the place) describing the
initial state of the system.

obCS Instance

1

+play()y
[+pause(y

B — Tt

Marking Substitution InstanceParameter

1
4 1
| [

Outputarc Inputare SynchronizedTransition Place ClassParameter

A v R a

TestArc InhibitorArc EventHandler InitialMarking

Arc Transition

Fig. 1. Metamodel of the COs exhibiting runtime features

With respect to “standard” Petri nets, the object-oriented nature of the Cooperative
Objects supports instantiation. Indeed, every ObCS can be instantiated and allows
multiple executions of the same class as in object oriented programming languages.
These instances can be parameterised by constructor arguments. This parameterisa-
tion is used to associate markings to the Petri net describing the behaviour of the in-
stantiated Cooperative Object. For example, in a case of a multiple mouse interaction
(i.e. in interactive cockpits such as the Airbus A380), each mouse driver is a distinct
instance of an ObCS class with different Class Parameters (i.e. the number of the
mouse) and so the behaviour model of each driver handle its own coordinates repre-
sented in the marking of the instance. For more details about that type of modelling
see [1]. Fig. 1 presents a subset of the class diagram of ICOs. As stated above, the
main element used for prototyping is related to the fact that each class can have sev-
eral instances (as shown on the right-hand side of the figure) and that instances can be
Played, Paused or Stopped.

3.2 Interactive Cooperative Objects

To allow dealing with the specificities of interactive systems the Cooperative Objects
formalism has been extended. The resulting notation is called Interactive Cooperative
Objects.

High-Fidelity Prototyping of Interactive Systems Can Be Formal Too 671

An ICO is a 6-tuple <CO, S, Wid, Event, Act, Rend> where:

CO is a Cooperative Object described in section 3.1,

S, is a set of user services (a user service is a set of synchronized transitions),

Wid is a set of interactive widgets (e.g. buttons, listbox, ...) linked to the ICO class,
Event is a set of user events coming from items of Wid,

Act and Rend are the activation and rendering function described below.

Act: An activation function defines the relationship between events triggered by users
while interacting with user interface objects (by manipulation of input devices such as
mouse, keyboard, voice recognition systems ...) with the transitions of the ObCS.
When an event is triggered the related transition can be fired if the transition was
fireable (according to the current marking of the Petri net).

Rend: A rendering function defines how the state changes in the ObCS influence the
changes in the presentation (what the user perceives of the application). The state
changes are linked to the entering in or exiting of a token in a place.

4 Prototyping of ICO Models Using Petshop Tool

To support the manipulation of the ICO notation, a CASE tool called Petshop [1] has
been developed. It includes a Java implementation of a Object-oriented Petri net in-
terpreter and some analysis tools for verifying properties on the models. The tool is
publicly available at http://ihcs.irit.fr/petshop.

4.1 Structure

Fig. 2 represents the high level structure of Petshop. In Petshop, it is possible to edit,
execute and analyze the instances of ObCS. When the user edits an instance, Petshop
starts to update the ObCS (the class) and then updates all the instances of this class.
During the first execution of the instance, the instantiation engine takes the ObCS to
create an instance. Next, this instance is executed and can be directly managed by the
user of Petshop (started, paused and stopped). When the instance is running, Petshop
can also analyze the model (currently limited to the calculation of place invariants and
transition invariants [10]). An example of PetShop user interface is presented in Fig. 2.

) Analyze
Edit Instance |« ﬁﬁ‘* ’
Instances T+

Update
Instances

T

Execute
Model

1

Oes

‘ Update Obcs

Fig. 2. High Level Structure of Petshop

672 P. Palanque et al.

4.2 Edition of Models

The CASE tool Petshop allows:

e to graphically add Petri net items (place, transition and different arcs)
alslala|@E | s #]a

¢ to modify the initial construction parameters of the class (e.g. editing a set of vari-
ables that may have different values for each instantiation)

e to modify the initial marking for each place (that corresponds to raw values or to

references to the initial parameters of the class),

to change the executable code in the transition,

to modify the layout of the Petri net,

to cut copy paste part of the model,

to undo redo any change,

to navigate through large models via mini map or through a large set of models via

a tree.

4.3 Execution of Models

In Petshop a toolbar (i @) allows the user to start/stop/pause an instance of
the ObCS. There are two modes of execution of instances:

e A normal execution in which the user is a spectator of execution and observes the
execution of an instance. Transitions are fired using random enabling substitu-
tions,

e A step by step execution in which the user can select a substitution to fire the tran-
sition.

At runtime, the execution of instances gives the following feedback to the user:

e The marking is shown by the number of tokens present in a place,

e The fireability of transitions is shown by colour changes: purple for fireable or
gray for not fireable,

e The firing of a transition and the updating of the marking (by the evolution of to-
kens in the input and output places of the fired transition).

Petshop also provides observability and controllability services via an API for ex-
ternals programs (in our case the window manager of the plateform handing input
devices). Observability services send events to subscribers when: markings change,
substitutions change and events are raised in code associated to the transitions. Con-
trollability services receive events from external sources and fire the related transition
of a user service. All traces of execution can be logged to an external file allowing
further analysis such as usability evaluation of the interactive systems [5].

S Prototyping Interactive Systems with ICOs

This section presents the prototyping capabilities of PetShop and the ICO notation.
These capabilities are presented on two examples extracted from case studies. They

High-Fidelity Prototyping of Interactive Systems Can Be Formal Too 673

show different aspects illustrating how prototyping can be performed at different
levels of the architecture of interactive systems.

5.1 Prototyping Interaction Techniques

The example in this section presents how it is possible using the ICO notation to pro-
totype low level interaction techniques. Such prototyping is critical to increase usabil-
ity of interactive applications as fine tuning of interaction can have a huge impact on
the overall performance of users [13].

Fig. 3. ICO model of a mouse driver

The model of Fig. 3 describes a transducer for handling low level events. It models
how events from the input device (in such as a case a pointing device like a mouse)
are received from the input device and how they are transformed according to the
need of the interactive application.

Dark transitions represent the transitions that are available according to the current
marking of the model. Their black border means that they are connected to events i.e.
even though they are available according to the current marking, they must addition-
ally receive an event to be actually fired. The model can receive 4 different events:
mouseMove, mousePressed, mouseReleased and mouseClick. The current position of
the cursor of the input device is stored in the place Currentxy. When a mouseMove
event is received the transducer has to transform the dx, dy parameters received in x
and y position to reflect that change on the mouse cursor. In order to keep the cursor
inside a set of predefined bounds (this could be for instance the size of the screen or
the size of a portion of a window) the transformation of x and y values according to
dx and dy parameters has to be constrained. This is the role of the places named
Bounds. As for a notational aspect these places are virtual places i.e. virtual copies of
a single place. This notational aspect is used to reduce the number of arcs when the
same place is connected to many transitions.

The code of the transitions mouseClick, mouseReleased and mousePressed feature
contain the Trigger construct. This means that, when one of these transitions is fired

674 P. Palanque et al.

the model will raise an event. Other models registered to the current model will then
be notified for each event triggered.

The model in Fig. 4 shows how the previous model can be modified according to
requests from modification (after usability evaluation for instance).

Fig. 4. Modified ICO model of a mouse driver (acceleration of mouse move events)

The modification includes a new element in the interaction technique: the accelera-
tion. Indeed, the movements on the table where the mouse is located are typically
much more constrained than the virtual space available to the cursor. For this reason
mouse drivers will embed an acceleration mechanism that increase cursor movement
according to speed. This is modelled by adding the places Coef in the models and
connecting them to the transitions in charge of the calculation of the new position of
the cursor. The code of these transitions shows that dx and dy parameters are multi-
plied by the coefficient (stored in the token of the place Coef).

5.2 Prototyping Applications

While the prototyping of interaction techniques is critical for fine tuning of interac-
tion, prototyping is also needed at a higher level. This section presents how PetShop
and ICO support prototyping at the dialogue level of interactive applications.
The prototyping aspects remain the same as for the interaction technique i.e. models
describing the behaviour of the applications at the dialogue level can be interactively
modified and the impact of the modifications can be immediately perceived.

The application under consideration here is called MPIA. The Multi Purpose Inter-
active Application (MPIA) is an application available in the cockpits of several air-
crafts that aims at handling several flight parameters. It is made up of 3 pages (called
WXR, GCAS and AIRCOND). The WXR page is responsible for managing weather
radar information; GCAS is responsible for the Ground Anti Collision System pa-
rameters while AIRCOND deals with settings of the air conditioning. Due to space
constraints we don’t present in details the interactive modifications of the models but
the interested reader can see detailed behaviour of that application (in a reconfigura-
tion process after hardware failure in a cockpit) in [18].

High-Fidelity Prototyping of Interactive Systems Can Be Formal Too 675

6 Conclusion

This paper presents the ICO notation for the description of interactive systems via
graphical models which can be edited and executed at runtime. The ICO notation, an
extension of object Petri nets has a dedicated CASE tool called Petshop. This runtime
capability increases the possibilities of modelling by supporting prototyping, testing,
and verification. This paper presented how prototyping of interactive applications can
be performed at two different levels: interaction technique and dialogue model. The
later is extracted from an industrial example dealing with cockpit applications in civil
aircrafts. We have studied the usability of ICOs and PetShop for prototyping phases
in an informal with software engineers involved in the field of Air Traffic Control
applications [2]. Informally we can report that modification of models was fine while
creation of models and connecting models was not performed in a satisfying way.
Testing of the tool is available at http://ihcs.irit.fr/petshop. The specific application
area that we consider in the paper is ground segment applications for satellite control,
but the results have been applied and are applicable to other application areas with
similar requirements.

Acknowledgements. This work is supported by the EU funded Network of Excel-
lence ResIST http://www.resist-noe.eu contract n°026764 and the CNES funded R&T
Tortuga project http://ihcs.irit.fr/tortuga/ contract n° R-S08/BS-0003-029. We would
also like to thanks the reviewers for their in-depth thoughtful comments.

References

1. Barboni, E., Navarre, D., Palanque, P., Basnyat, S.: Addressing Issues Raised by the Ex-
ploitation of Formal Specification Techniques for Interactive Cockpit Applications. In:
HCI Aero 2006, p. t.b.p., Seattle (2006)

2. Bastide, R., Navarre, D., Palanque, P.: A Tool-Supported Design Framework for Safety
Critical Interactive Systems. Interacting with computers 15(3), 309-328 (2003)

3. Bastide, R., Palanque, P., Duc, L.: Integrating Rendering Specifications into a Formalism
for the Design of Interactive Systems. In: DSV-IS 1998, pp. 171-190 (1998)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, US (1999)

5. Bernhaupt, R., Navarre, D., Palanque, P., Winckler, M.: Model-Based Evaluation: A New
Way to Support Usability Evaluation of Multimodal Interactive Applications In Maturing
Usability, Quality in Software, Interaction and Value. In: Human-Computer Interaction Se-
ries, pp. 96—119. Springer, Heidelberg (2007)

6. Dragicevic, P., Fekete, J.-D.: Input Device Selection and Interaction Configuration with
ICON. In: Proceedings of IHM-HCI 2001, People and Computers XV - Interaction without
Frontiers, pp. 543-448. Springer, Heidelberg (2001)

7. Esteban, O., Chatty, S., Palanque, P.: Whizz Ed: a visual environment for building highly
interactive interfaces. In: Proceedings of the Interact 1995 conference, pp. 121-126 (1995)

8. Figueroa, P., Green, M., Hoover, J.: InTml: A Description Language for VR Applications.
In: Proceedings of Web3D 2002, Arizona, USA, pp. 53-58 (2002)

9. Fowler, M., Highsmith, J.: The Agile Manifesto. Software Development (August 2001)

10. Genrich, H.J.: Predicate/Transitions Nets. In: Jensen, K., Rozenberg, G. (eds.) High-Levels
Petri Nets: Theory and Application, pp. 3-43. Springer, Berlin (1991)

676

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.
25.
26.

27.

28.

29.

P. Palanque et al.

Gulliksen, J., Goransson, B., Boivie, 1., Blomkvist, S., Persson, J., Cajander, A.: Key prin-
ciples for user-centred systems design. Behaviour and Inf. Tech. 22, 397409 (2003)
Jacob, R.: A Software Model and Specification Language for Non-WIMP User Interfaces.
ACM Transactions on Computer-Human Interaction 6(1), 1-46 (1999)

Kabbash, P., Buxton, W.A.: The “prince” technique: Fitts’ law and selection using area
cursors. In: Proceedings of the ACM CHI Conference, pp. 273-279. ACM Press, New
York (1995)

Lim, Y., Pangam, A., Periyasami, S., Aneja, S.: Comparative analysis of high- and low-
fidelity prototypes for more valid usability evaluations of mobile devices. In: Proc. of Nor-
diCHI 2006, vol. 189, pp. 291-300. ACM, New York (2006)

Navarre, D., Palanque, P., Dragicevic, P., Bastide, R.: An Approach Integrating two Com-
plementary Model-based Environments for the Construction of Multimodal Interactive
Applications. Interacting with Computers 18(5), 910-941 (2006)

Navarre, D., Palanque, P., Bastide, R., Sy, O.: Structuring interactive systems specifica-
tions for executability and prototypability. In: Palanque, P., Paternd, F. (eds.) DSV-IS
2000. LNCS, vol. 1946, pp. 97-120. Springer, Heidelberg (2001)

Navarre, D., Palanque, P., Bastide, R., Sy, O.: A Model-Based Tool for Interactive Proto-
typing of Highly Interactive Applications. In: 12th IEEE International Workshop on Rapid
System Prototyping, Monterey, USA, IEEE, Los Alamitos (2001)

Navarre, D., Palanque, P., Basnyat, S.: Usability Service Continuation through Reconfigu-
ration of Input and Output Devices in Safety Critical Interactive Systems. In: Harrison,
M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 373-386. Springer,
Heidelberg (2008)

Navarre, D., Palanque, P., Bastide, R., Schyn, A., Winckler, M., Nedel, L.P., Freitas,
C.M.D.S.: A model-based approach for engineering multimodal interactive systems. In:
Costabile, M.F., Paternd, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 170-183.
Springer, Heidelberg (2005)

Palanque, P., Bernhaupt, R., Navarre, D., Ould, M., Winckler, M.: Supporting Usability
Evaluation of Multimodal Man-Machine Interfaces for Space Ground Segment Applica-
tions Using Petri net Based Formal Specification. In: Ninth International Conference on
Space Operations, CD-ROM proceedings, Rome, Italy, June 18-22 (2006)

Parnas, D.L.: On the use of transition diagram in the design of a user interface for interac-
tive computer system. In: Proceedings of the 24th ACM Conference, pp. 379-385 (1969)
Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs (1981)

Reason, J.: Human Error, 302 pages. Cambridge University Press, Cambridge (1990)
Rettig, M.: Prototyping for tiny fingers. Commun. ACM 37(4), 21-27 (1994)

Risoldi, M., Amaral, V.: Towards a Formal, Model-Based Framework for Control Systems In-
teraction Prototyping. Rapid Integration of Software Engineering Techniques, 144—159 (2007)
Rudd, J., Stern, K., Isensee, S.: Low vs. high-fidelity prototyping debate. Interactions 3(1),
76-85 (1996)

Vanacken, D., De Boeck, J., Raymaekers, C., Coninx, K.: NIMMIiT: a Notation for Model-
ling Multimodal Interaction Techniques. In: International Conference on Computer Graph-
ics Theory and Applications, Portugal (2006)

Wieting, R.: Hybrid High-Level Nets. In: Proc. of the 1996 Winter Simulation Conference,
pp. 848-855. ACM Press, New York (1996)

Willans, J.S., Harrison, M.D.: Prototyping pre-implementation designs of virtual environ-
ment behaviour. In: Nigay, L., Little, M.R. (eds.) EHCI 2001. LNCS, vol. 2254, pp. 91—
108. Springer, Heidelberg (2001)

	High-Fidelity Prototyping of Interactive Systems Can Be Formal Too
	Introduction and Related Work
	Model-Based Approaches for Interactive Systems
	The ICO Formalism
	Cooperative Object
	Interactive Cooperative Objects

	Prototyping of ICO Models Using Petshop Tool
	Structure
	Edition of Models
	Execution of Models

	Prototyping Interactive Systems with ICOs
	Prototyping Interaction Techniques
	Prototyping Applications

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

