
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 624–633, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Agent-Based Architecture for Interactive System Design:
Current Approaches, Perspectives and Evaluation

Christophe Kolski1, Peter Forbrig2, Bertrand David3,
Patrick Girard4, Chi Dung Tran1, and Houcine Ezzedine1

1 LAMIH – UMR8530, University of Valenciennes and Hainaut-Cambrésis,
Le Mont-Houy, F-59313 Valenciennes Cedex 9, France
firstname.name@univ-valenciennes.fr

2 University of Rostock, Computer Science Department,
Albert-Einstein-Str 21, D-18051 Rostock, Germany

Peter.Forbrig@informatik.uni-rostock.de
3 LIESP, Ecole Centrale de Lyon,

36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
Bertrand.David@ec-lyon.fr

4 ENSMA / LISI, Teleport 2, 1 Avenue Clément Ader, B.P. 40109,
F-86961 Futuroscope Chasseneuil Cedex, France

girard@ensma.fr

Abstract. This paper proposes a survey concerning agent-based architectures of
interactive systems. This survey is focused on certain models and perspectives.
Indeed, general agent-based architectures are first presented. Then agent-based
approaches dedicated to CSCW systems are reviewed. The appearance of web
services requires new agent-based approaches; basic ideas are introduced.
Agent-based interactive systems necessitate new tools for their evaluation; an
example of representative evaluation tool is presented.

Keywords: Human-computer interaction, Architecture model, agent-based
systems, CSCW, design, evaluation.

1 Introduction

Since 1983 and the Seeheim’s workshop, architecture is an important research topic in
the Human-Computer Interaction domain. It started by defining recommendations for
developers, and today, it allows tool definition that will help designing, developing and
validating interactive systems. Different types of interactive system architectures have
been proposed in the literature. The paper proposes a survey about agent-based architec-
tures. A first global overview of models available in the literature is showed in Fig. 1.

The paper is composed of four main parts. In the first one, basic principles of ar-
chitecture models will be introduced; general agent-based approaches will be listed.
The second part concerns agent-based approaches dedicated to Computer Supported
Cooperative Work (CSCW). The third part will link agent-based architecture and web
services domains. Finally, the fourth part concerns evaluation of interactive systems
based on an agent-based architecture; the first version of a dedicated evaluation tool
will be briefly exposed.

 Agent-Based Architecture for Interactive System Design 625

Fig. 1. Global overview of available architecture models

2 From Seeheim Model to Agent-Based Architectures

Two main approaches of architecture models were first elaborated: global models,
and agent-based models. Global models define a precise structure based on a fixed
number of components, whose role and nature are precisely defined. The well-known
Seeheim model is the first of them [1]. It recommends developing user interfaces as a
separate module, connected to a functional core on which it must lean. The interface
itself is organized in three parts: the Presentation (devoted to the management of
inputs and outputs), the Controller (defined as a component that manages the se-
quence of interaction elements) and the Application Interface (which allows the trans-
lation between the interactive “world” and the functional core). The main interest of
the Seeheim model is to give original definitions that establish good foundations for
all works on architecture and tools in HCI. For example, the Arch model [2] proposes
some modifications of the Seeheim model (including the functional core into the
model, defining an additional component, defining the notion of a “slinky model”),
but keeps the main definitions, namely for dialogue control.

Nevertheless, global models bring forward some drawbacks, mainly when trying to
apply object-oriented approach. While current object-oriented interactive application
may involve hundreds of cases, the global structure gives no help on defining elemen-
tary interaction classes.

MVC (Model-View-Controller) [3], and then agent-based architecture models,
such as PAC (Presentation-Abstraction-Control [4], AMF (multi-Agent-Multi-Facets
[5]) and AoMVC (Agent-oriented MVC [6]), were designed to solve this problem.
They define elementary software bricks composed of some parts (fixed number or
not), and define the relations that must exist between bricks and parts. Some of them
have been defined as design patterns. So doing, global functions such as Dialogue
Control or Presentation are split in each elementary agent, what helps to support itera-
tive design. Some tools to help define applications with these models have been de-
signed, see for instance [7]. However, as global models, agent-based architecture
models suffer from problems. Choosing the right level of decomposition is hard for
non-experienced developers. More, ensuring strictly the rules of the model (for exam-
ple, a PAC object only knows its father and its sons) may be difficult when imple-
mentation considerations are to be taken into account.

Hybrid models, which are supposed to benefit the most from the two approaches,
emerged. Mainly, these models lean on a global definition of the architecture based on

626 C. Kolski et al.

the Arch model, and use an object-oriented approach to refine some of the main com-
ponents, such as the Presentation or the Controller. For example, PAC-Amodeus [8]
facilitates the design of multimodal applications. Another example is H4, a model that
was defined firstly for the Computer Aided Design area; tools were created for vari-
ous applications, to help the design of applications [9, 10], to help their validation
[11], or both [12]. Other related research proposes architecture models concerning
distributed and plastic UI [13, 14].

3 Agent-Based Architectures: Approaches Dedicated to CSCW
Systems

CSCW systems are not only interactive systems, but also and mainly multi-user dis-
tributed systems. For these reasons their architecture must answer new requirements.
Three important characteristics are: (1) taxonomy of collaborations, which can be
either related to the crossing in a matrix location (local or distant), and temporal view
(synchronous or asynchronous), as suggested by [15], or related to the nature of coop-
eration (asynchronous cooperation, in session cooperation, in meeting cooperation
and close cooperation [16]); (2) awareness is the information about activities done by
other actors, needed in synchronous cooperation, which can be actor oriented (their
effective participation) or production oriented expressed by WYSIWIS (What You
See Is What I See) acronym with a strict or relaxed view of working data; (3) nature
of cooperation activities can be examined, as initially proposed by [17] in relation to
the support of three main kinds of activities, i.e. production, conversation/ communi-
cation and coordination between participants.

From an architectural point of view, CSCW systems are clearly inspired by interac-
tive systems architectures, i.e. layered, agent and hybrid architecture are also used for
CSCW systems. We can mention Zipper [18] and Dewan [19] models for layered col-
laborative systems, based mainly on ARCH model adaptation to multi-user distributed
situations. ALV and AMF-C [20] are the representatives of agent-based systems. They
generalize PAC agent model for collaborative distributed situations. CoPAC, PAC* and
Clover (all described in [21]) are typical examples for hybrid systems. In this last case,
they reuse ARCH model and adapt it to multi-user and distributed situations. All these
architecture models take into account synchronous collaboration allowing real time
interaction between cooperating actors. Distant and local interactions are treated in the
same way, as only mediated interactions are taken into account, i.e. direct local non-
mediated interaction is not supported. Asynchronous collaboration is not addressed
mainly because in this case multi-user interaction, awareness and cooperative operations
are not done by interaction. Awareness of shared artifacts (data) and participating actors
is more or less supported as well as strict and relaxed WYSIWIS. Concerning coopera-
tion activities (production, conversation and coordination), these are either fundamental
elements (for PAC* and Clover) or naturally integrated (AMF-C). Hybrid architectures
are either agent-based only in Control part of the model (CoPAC and PAC*) or agent
orientation can be used also in other parts of the model.

Recent evolution of cooperative systems is related to the mobility of the actors,
evolving in augmented real environment with pervasive behavior of the environment
and related context-aware computing. The concept of nomadism (networking, handheld

 Agent-Based Architecture for Interactive System Design 627

devices, mobile communicating objects technology, localization and permanent or non
permanent connectivity) extends the CSCW and allows us to introduce the concept of
"capillary" CSCW [16]. We use this term by analogy with the network of blood vessels.
As its name implies, the purpose of the capillary CSCW is "to extend the capacities
provided by co-operative working tools in increasingly finer ramifications, from their
use on fixed proprietary workstations to small handheld devices". Main characteristics
are: management of collaboration and coordination of the mobile actors, coherence and
validity of the information exchanged between handheld devices which are connected
only intermittently to the network and the "group" with the aim of having the most syn-
chronized possible information, heterogeneity of the communication protocols of the
handheld devices and constraints of interface and overall capacity of the handheld de-
vices in terms of size of screen, speed transmission, memory, autonomy, as well as the
interaction devices. In recent evolution of the AMF-C model, its transformation from a
fully agent-based system to hybrid system, integration of IRVO perception of new para-
digm of interaction (interaction with real and virtual objects) allows it to fully address
problems with capillary cooperative systems.

In this new mobility context adaptation to different interaction devices, environ-
mental situations, software and hardware platforms and user preferences becomes
the core problem. Adaptation techniques can be classified in four different categories
ranging from easiest to implement to most powerful: Translation techniques; Markup
language-based approaches; Reverse and re-engineering techniques; Model-based ap-
proaches. Designing and implementing interactive collaborative applications that are
adaptable (manually) or adaptive (automatically) to the context of use requires consid-
eration of the characteristics of the user, the interactive platform as well as the con-
straints and capabilities of each environment. A state of the art survey shows us that
among the large majority of existing approaches for adaptation, the model-based
approach seems to be the most powerful. Such approach uses high level and abstract
representations that can be instantiated latter on in the development lifecycle to meet
specific usability requirements. However, these approaches need to combine apparently
independent models such as concepts (e.g. UML), task (e.g. CTT), platform (e.g.
CC/PP) or user profiles. The relationships between these models need to be defined at
the design step and refined at run-time in order to be able to achieve the overall usabil-
ity. Our belief is that, what we refer to as an interaction model is the right place to glue
together all the models and usability attributes. This model must support both design
stage linking other models and run-time. In addition, because Software Engineering and
HCI have shown the importance of clearly separate functional core from presentation
components, our interaction model is supported by a well structured architecture.

In this new version of the AMF-C architectural model [22], we maintain the basic
characteristic of the model, i.e. the Multi-faceted approach allows the creation of new
facets, to clarify the behavior and allow automation of implementation process; a
graphical formalism that expresses the control structure of multi-user interactions and
adaptation in real time of awareness characteristics; and a run-time model that allows
dynamic control of interactions. We add IRVO interaction formalism allowing the
expression of new augmented reality interactions and we structure the system with
hybrid approach, allowing to mix XML specifications, engine based interpretation
and connection to real components of functional core or managing new interaction
devices (Fig. 2).

628 C. Kolski et al.

Fig. 2. Relations between Arch model (dashed lines), AMF-C and IRVO models

4 Web Services and Agent-Based Architectures

Web services lead to new possibilities and problems concerning distributed system
design. Fig. 3 suggests a complex industrial organization exploiting web services.

Fig. 3. Example of different actors communicating directly or not via web services [23]

The traditional web services provide functionalities based on classical client/server
architecture, but agent-based architectures offer new perspectives in this field. They
utilize autonomous and proactive behaviors of agents. Interesting new approaches
appear in the literature. For instance, a technical framework for AWS (agent-based
web services) is described in [24]; it supports the idea of capturing, modeling and
implementing service functionalities with autonomous and dynamic interactions.
Technically agent-oriented software construction, knowledge representation and in-
teraction mechanisms are integrated. Fig. 4 gives an impression of the framework.
DAML-S (DARPA agent markup language for services) is a semantic markup lan-
guage for describing web services and related ontologies. It has been superseded by
OWL-S [25].

A discussion of dynamic web-service invocation by agents can be found in [26].
Their infrastructure is a hybrid peer-to-peer model. Agents are used to specify service
providers and service customers. For this purpose JADE [27] (Java Agent Develop-
ment Environment) is used; it is a framework developed as open source project. A

 Agent-Based Architecture for Interactive System Design 629

web service can be published as a JADE agent service and agents services can be
published as web service endpoints (see also [24]).

Such propositions have to be considered with attention regarding agent-based ar-
chitecture perspectives concerning service-oriented interactive systems.

S
O

A
P HTTP

S
O

A
P

S
O

A
P HTTP

S
O

A
P

TransportationCommunication
Business
Operator

Service
Protocols

Business Application Environment (Business-oriented protocols)
(e.g. contract net and e-auction for e-Marketplace)

Web Service Operation Protocols (e.g. WSDL, BPEL4WS and WS Security)

Representation
Application

Entities

Problem-
Solving
Problem-
Solving

Problem-
Solving
Problem-
SolvingIn

te
ra

ct
io

n

C
o

m
m

u
n

ic
at

ioIn
teractio

n

C
o

m
m

u
n

icatio

KnowledgeKnowledge

AWS: #m AWS: #m

(e.g. DAML-S)(e.g. DAML-S)

Fig. 4. Integrated technical framework for agent-based web services [24]

5 Agent-Based Architectures: The Evaluation Problem

The evaluation of interactive systems aims at ensuring that users are capable of realiz-
ing their tasks. The evaluation methods and tools are numerous and of different types;
they are generally based on two global criteria: utility and/or usability [28]. When the
interactive system uses an agent-based architecture, new methodological and concep-
tual questions appear. For instance: how to evaluate such systems? Is it necessary to
combine several evaluation methods? Is it possible to be assisted by automated or
semi-automated evaluation tools? How to connect such tools to the agent-based sys-
tems? How to link the agents’ behaviors with the analyzed situations? There are sev-
eral further questions.

We are particularly interested in automated or semi-automated tools.
An electronic informer (EI) is a software tool that captures automatically interac-

tions between the user and the UI in real situations in a discreet and transparent way,
so that the user does not feel hampered by the tool. The captured data are objective
and can be scientifically analyzed by the evaluators. For a review about EI, we refer
to [29]. Several tools are available, but very few of them take into account the speci-
ficities of agent-based interactive systems in their evaluation approaches [30, 31, 32,
33]. The architecture of a tool dedicated to such systems is showed in Fig. 5. This
kind of EI aims at capturing not only interactions between user and interface agents in
terms of occurred UI events like other EIs, but also interactions between agents them-
selves in terms of interactions between services. It aims also to go further than other
EIs to assist evaluators in interpreting analysis results of captured data in order to
evaluate three aspects of an agent-based interactive system: user interface (UI), some
non-functional properties (such as response time, reliability, complexity, etc.), and

630 C. Kolski et al.

Fig. 5. Example of a tool for evaluating agent-based interactive systems [33]

properties of users to operate systems (ability, habits, preferences, progress of a cer-
tain user, etc.).

Seven independent modules compose this tool. The module 1 is responsible of cap-
turing events that occur from all agents of the system and then, it saves them into a
database that will be analyzed by other modules. The connection between this EI and
the evaluated agent-based system is based on the association of each type of agents
(interface agents, controller agents, application agents) with a corresponding in-
former. The evaluation can be remotely realized. This module 1 and the evaluated
system can run on the same machine, or on two different ones on the network.

After capturing data, this EI enables the evaluator to determine tasks that user has
realized (module 2). Some synthetic calculations and statistics can be realized on
captured data such as the number and frequency of occurred events, average response
time of service interactions, time taken to realize a task, number of successful or
failed tasks, etc., of any chosen agent or all the agents in any chosen period of time.
These analysis results will be showed to the evaluator using tables or graphs (module
3). The tool also enables the generation of Petri Nets (PNs) and the evaluator can

 Agent-Based Architecture for Interactive System Design 631

compare PNs (module 4 and 5). A generated PN describes user’s actions in terms of
UI events (that have ever occurred on interface agents) and system’s actions in terms
of executed services of agents in order to realize a certain task. Generated PNs are
called observed PNs or real PNs. The evaluator can compare real PNs to realize a
certain task of a certain user with theoretical PNs predicted by the designers for the
same task or he/she can do the comparison between real PNs to realize the same task
of different users. Exploiting formal aspect of the PNs, such comparisons are very
useful for evaluators to detect problems of the interface, the system or the users such
as: bad or useless actions of users, non-optimal way chosen by users to realize tasks,
failed service interactions, properties of users (habits, evaluation and comparison of
abilities of different users, supervision of the progress of abilities of a certain user,
etc.). The analysis results of the module 3, the generation and comparison of PNs, all
these results can be interpreted with the indications of module 6 (that enables the
association with an open list of determined criteria) to help evaluators critique the
system and propose useful suggestions to the designers for improvements.

This tool is representative of a new generation of tools dedicated to agent-based in-
teractive systems. A lot of research is still necessary in this domain (adaptation to
different application fields and architecture models, helps in real time…).

6 Conclusion and Perspectives

Since the eighties, many models and approaches are proposed in the literature con-
cerning so-called distributed or agent-based architectures of interactive systems. By
lack of place, it was just possible to propose a brief overview of this domain, about
(1) general agent-based architecture models, (2) models dedicated to CSCW systems,
(3) interactive systems based on web services, (4) evaluation of interactive systems
using agent-based architecture. Many research and development perspectives can be
now envisaged. Currently, general agent-based architecture models are mainly used at
the conceptual level. They allow good design of application, minimizing dependen-
cies and improving maintainability of applications. They need now to be more largely
used at the implementation level. Their inclusion into integrated development envi-
ronments, such as Eclipse for example, might be the next step to allow tools to be
developed. Help for software design, simulation, and evaluation are the main topics
that are to be addressed.

Capillary cooperative systems need important context adaptation. These mecha-
nisms are more easily elaborated in hybrid architectures using agents in several layers.
The benefits of autonomous behavior and independence of agent-based systems con-
stitutes an important advantage. Many researches concern currently context-aware
interactive systems; different types or generations of adapted agent-based architecture
models have to be progressively proposed. Agent-based systems might help to dy-
namically compose web services. In this way they can support dynamic adaptation of
workflow systems.

Many research problems have also to be studied and solved regarding the evalua-
tion of agent-based interactive systems.

632 C. Kolski et al.

Acknowledgements. The present research work has been supported by CISIT, the
Nord-Pas-de-Calais Region, the European Community (FEDER). The authors gratefully
acknowledge the support of these institutions.

References

1. Pfaff, G.E.: User interface management system. Springer, Heidelberg (1985)
2. Bass, L., Little, R., Pellegrino, R., Reed, S.: The Arch Model: Seeheim revisited. In: Pro-

ceedings of User Interface Developers Workshop, Seeheim (1991)
3. Goldberg, A.: Smalltalk-80, the interactive programming environment. Addison-Wesley,

Reading (1983)
4. Coutaz, J.: PAC, an Object-Oriented Model for Dialog Design. In: Bullinger, H.-J.,

Shackel, B. (eds.) Proc. Interact 1987, 2nd IFIP International Conference on Human-
Computer Interaction, Stuttgart, Germany, September 1-4, 1987, pp. 431–436 (1987)

5. Ouadou, K.: AMF: Un modèle d’architecture multi-agents multi-facettes pour Interfaces
Homme-Machine et les outils associés (in French), PhD Thesis, ECL, Lyon (1994)

6. Goschnick, S., Sterling, L.: Shadowboard: an Agent-oriented Model-View-Controller
(AoMVC) architecture for a digital self. In: Proc. Int. Workshop on Agent Technologies
over Internet Applications (ATIA 2001), Tamkang University, Taipei, Taiwan (2001)

7. Jambon, F.: From Formal Specifications to Secure Implementations. In: Kolski, C., Van-
derdonckt, J. (eds.) Computer-Aided Design of User Interfaces (CADUI 2002), pp. 43–54.
Kluwer Academics, Dordrecht (2002)

8. Nigay, L.: Conception et modélisation logicielles des systèmes interactifs: application aux
interfaces multimodales (in French), PhD Thesis, Joseph Fourier Univ., Grenoble (1994)

9. Texier, G., Guittet, L., Girard, P.: The Dialog Toolset: a new way to create the dialog
component. In: Stephanidis, C. (ed.) Universal Access in HCI, pp. 200–204. Lawrence
Erlbaum Associates, Mahwah (2001)

10. Depaulis, F., Maiano, S., Texier, G.: DTS-Edit: an Interactive Development Environment
for Structured Dialog Applications. In: Kolski, C., Vanderdonckt, J. (eds.) Computer-
Aided Design of User Interfaces (CADUI 2002), pp. 75–82. Kluwer Academics, Dordrecht
(2002)

11. Francis, J., Girard, P., Boisdron, Y.: Dialogue Validation from Task Analysis. In: Duke,
D.J., Puerta, A. (eds.) Eurographics Workshop on Design, Specification, and Verification
of Interactive Systems (DSV-IS 1999), Braga, Portugal, pp. 205–224. Springer, Heidelberg
(1999)

12. Baron, M., Girard, P.: SUIDT: Safe User Interface Design Tool. In: International Confer-
ence on Intelligent User Interfaces Computer-Aided Design of User Interfaces (IUI-
CADUI 2004), Madeira, Portugal, pp. 350–351. ACM Press, New York (2004)

13. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: A Soft-
ware Architecture Reference Model for Distributed, Migratable, and Plastic User Inter-
faces. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS,
vol. 3295, pp. 291–302. Springer, Heidelberg (2004)

14. Calvary, G., Daassi, O., Coutaz, J., Demeure, A.: Des widgets aux comets pour la plasticité
des systèmes interactifs. Revue d’interaction Homme-Machine 6(1), 33–53 (2005)

15. Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware: some issues and experiences. Communica-
tion of ACM 34(1), 39–58 (1991)

 Agent-Based Architecture for Interactive System Design 633

16. David, B., Chalon, R., Vaisman, G., Delotte, O.: Capillary CSCW. In: Stephanidis, C.,
Jacko, J. (eds.) Human-Computer Interaction Theory and Practice, LEA, pp. 879–883
(2003)

17. Ellis, C.A., Wainer, J.: A Conceptual Model of Groupware. In: Proceedings of CSCW
1994 Conference, pp. 79–88. ACM Press, New York (1994)

18. Patterson, J.F.: A taxonomy of architectures for synchronous groupware applications. In:
Workshop on Software architectures for cooperative systems CSCW 1994. ACM SIGOIS
Bulletin Special Issue Papers of the CSCW 1994 workshops, vol. 15(3) (April 1995)

19. Dewan, P., Choudhary, R.: Coupling the User Interfaces of a Multiuser Program. ACM
Transactions on Computer-Human Interaction 2(1), 1–39 (1995)

20. Tarpin-Bernard, F.: Architectures logicielles pour le travail cooperatif (in French), PhD
Thesis, Ecole Centrale de Lyon, France (1997)

21. Laurillau, Y.: Conception et réalisation logicielles pour les collecticiels centrées sur
l’activité de groupe: le modèle et la plate-forme Clover (in French), PhD Thesis, Joseph
Fourier University, Grenoble (2002)

22. Tarpin-Bernard, F., Samaan, K., David, B.: Achieving usability of adaptable software: the
AMF-based approach. In: Seffah, A., Vanderdonckt, J., Desmarais, M.C. (eds.) Human-
Centered Software Engineering, Software Engineering Models, Patterns and Architectures
for Human-Computer Interaction, Springer, Heidelberg (2009)

23. Idoughi, D.: Contribution à un cadre de spécification et conception d’IHM de supervision à
base de services web dans les systèmes industriels complexes, application à une raffinerie
de sucre (in French), Ph.D. Thesis, University of Valenciennes, France (2008)

24. Li, Y., Shen, W.-m., Ghenniwa, H., Lu, X.: Model-Driven Agent-Based Web Services
IDE. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F.,
Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp.
518–528. Springer, Heidelberg (2004)

25. Paolucci, M., Sycara, K.: Autonomous Semantic Web Services. IEEE Internet Comput-
ing 7, 34–41 (2003)

26. Yang, H., Chen, J., Meng, X., Zhang, Y.: A Dynamic Agent-based Web Service Invoca-
tion Infrastructure. In: Proceedings of the First Int. Conf. on Advances in Computer-
Human Interaction, Sainte Luce, Martinique, pp. 206–211 (2008)

27. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A software framework for de-
veloping multi-agent applications. Lessons learned, Information & Software Technol-
ogy 50(1-2), 10–21 (2008)

28. Nielsen, J.: Usability Engineering. Academic Press, Boston, MA (1993)
29. Hilbert, D.M., Redmiles, D.F.: Extracting usability information from user interface events.

ACM Computing Surveys 32(4), 384–421 (2000)
30. Trabelsi, A., Ezzedine, H., Kolski, C.: Architecture modelling and evaluation of agent-

based interactive systems. In: Proc. IEEE SMC 2004, The Hague, pp. 5159–5164 (2004)
31. Tarby, J.-C., Ezzedine, H., Rouillard, J., Tran, C.D., Laporte, P., Kolski, C.: Traces using

aspect oriented programming and interactive agent-based architecture for early usability
evaluation: Basic principles and comparison. In: Jacko, J.A. (ed.) HCI 2007. LNCS,
vol. 4550, pp. 632–641. Springer, Heidelberg (2007)

32. Ezzedine, H., Bonte, T., Kolski, C., Tahon, C.: Integration of traffic management and trav-
eller information systems: basic principles and case study in intermodal transport system
management. Int. J. of Comp., Com. & Control (IJCCC) 3, 281–294 (2008)

33. Tran, C.-D., Ezzedine, H., Kolski, C.: A generic and configurable electronic informer to
assist the evaluation of agent-based interactive systems. In: 7th international conference on
Computer-Aided Design of User Interfaces, CADUI 2008, Albacete (June 2008)

	Agent-Based Architecture for Interactive System Design: Current Approaches, Perspectives and Evaluation
	Introduction
	From Seeheim Model to Agent-Based Architectures
	Agent-Based Architectures: Approaches Dedicated to CSCW Systems
	Web Services and Agent-Based Architectures
	Agent-Based Architectures: The Evaluation Problem
	Conclusion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

