
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 587–596, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Model-Based Specification and Validation of
User Interface Requirements

Birgit Bomsdorf1 and Daniel Sinnig2

1 Department of Applied Computer Science,
Fulda University of Applied Sciences, Germany

2 Department of Computer Science and Software Engineering,
Concordia University, Montreal, Quebec, Canada

birgit.bomsdorf@hs-fulda.de, d_sinnig@cs.concordia.ca

Abstract. Core functional requirements as captured in use case models are too
high-level to be meaningful to user interface developers. In this paper we pre-
sent how use case models can be systematically refined into detailed user inter-
face requirements specifications, captured as task models. We argue that the
transition from functional to UI specific requirements is a semi-formal step
which necessitates experience, skills and domain knowledge of the require-
ments engineer. In order to facilitate the transition we sketch out an integrated
development methodology for use case and task models. Since the engineer is
also responsible for establishing conformity between use cases and task models
we also show, how this validation can be supported by means of the WTM task
model simulator.

Keywords: Requirements specification, use case model, task model, model
simulation.

1 Introduction

A common challenge in Software Engineering (SE) as well as in Human-Computer
Interaction (HCI) is the transition from functional requirements to user interface (UI)
specific requirements. UI development and the engineering of functional requirements
are still often carried out by different teams using different processes and lifecycles
[1]. This is likely to result in duplication of effort, inconsistencies, and even contra-
dicting requirements. The apparent gap between software engineering and UI devel-
opment has been noted by several authors [2, 3, 4] and has been (partially) addressed
in our work [5] and the work of others [6, 7, 8, 9].

It has been noted that one possibility to close this gap is to conceptually join use
case models and task models in one common development process. The functional
requirements of the application are captured by the use case model, which are then
stepwise refined into UI-specific requirements captured by task models. A combina-
tion of both models has been first investigated by Paternò [10]. In his work, however,
the transition from use case to task specifications is performed informally, and task
modeling is part of the design process and is not considered at the requirements level.
Kujala [9] defines a systematic process for transforming user needs into use case

588 B. Bomsdorf and D. Sinnig

specifications, but does not take into account task model specifications. Sinnig et al.
[5] have defined a common semantic model for use case and task models, and propose
a formal, but static, refinement relation between the two artifacts. We firmly believe
that the requirements engineer should not be exempted from deciding whether or not a
task model faithfully refines the use case it is developed from. On the contrary, find-
ing the answer often depends on domain knowledge and properties specific to a pro-
ject. Often refinements validation cannot be automated but has to be carried out
manually by the requirements engineers themselves. In such a case, simulation and
animation have proven to be powerful tools, assisting the requirements engineer in
assessing the validity and accuracy of development artifacts [11, 12, 13].

Based on the discussion above, the contributions of this paper are twofold: (1) We
propose a systematic and integrated development process according to which UI
requirements are derived as a logical progression from a functional requirements
specification. (2) We demonstrate how our tool WTM Simulator [12] assists the re-
quirements engineer in verifying whether a task model is a valid refinement of a given
use case model.

The remainder of this paper is organized as follows: In Section 2, we sketch out,
from a generic point of view, the key characteristics of the development process we
propose. Section 3 and 4 define use case models and task models as means for captur-
ing functional and UI requirements, respectively. In Section 5 we introduce the Web-
TaskModel (WTM) approach and present its application to verifying conformity
between use case and task models. Finally, in Section 6 we conclude and provide an
outlook to future avenues. Related work is discussed throughout the paper.

2 Systematic and Integrated Development Process

The basic idea of our current work on a systematic and integrated development proc-
ess is depicted in Fig. 1. Use cases are used to capture the bare functional require-
ments of the system, which are afterwards refined to UI specific requirements by
means of a set of task models. Both use cases and task models belong to the family of
scenario-based notations, and as such capture sets of usage scenarios of the system. In
theory, both notations can be used to describe the same information. In practice and in
our approach however, use case models capture requirements at a higher level of
abstraction whereas task models are more detailed. Ideally, the functional require-
ments captured in use cases are independent of a particular user interface [7, 14],
whereas the refined requirements captured in the task models take into account the
specificities of a particular type of user interface and the characteristics of a detailed
user role. For example, if the application supports multiple UIs (e.g., Web UI, GUI,
Mobile, etc.) and multiple user types (e.g., novice user and expert user), then the use
case model is instantiated to several task models; one for each “type” of user interface
and user.

In modern software engineering, the development lifecycle is divided into a series of
iterations. Within each iteration, a set of disciplines and associated activities are
performed while the resulting artifacts are incrementally refined and perfected. The
development of use case and task models is no exception to this rule. On the one hand,
ongoing prioritization and filtering activities during the early stages of development will

 Model-Based Specification and Validation of User Interface Requirements 589

gradually refine the requirements captured in the use case model. On the other hand, a
task model is best developed in a top-down manner, where a coarse grained task model
is gradually refined into a more detailed or more restricted task model. In both cases, it
is important to ensure that the refining model is a proper refinement of its relative base
model (and all its predecessor models). Validation is an important step of a model-based
approach so as to avoid ill-defined or miss-behaving models impacting the final design.

Fig. 1. From Functional requirements to UI Requirements

To illustrate the introduced development process, we use an example that is based
on a scenario in which a new web-based Invoice Management System (IMS) is to be
developed. It should feature (among others) the following functionalities: “Order
Product”, “Cancel Order”, “View Orders”, and “Ship Order”. All the functionalities
shall be accessible through a Web UI and should support two user types: New Cus-
tomer and Registered Customer. As a first step, a functional requirements specifica-
tion in the form of a use case model is developed, which is shown next.

3 Functional Requirements Specification: Use Cases

Use cases were introduced in the early 90s by Jacobson [15]. He defined a use case as
a “specific way of using the system by using some part of the functionality.” Modern
popularizations of use case models are often attributed to Cockburn [14]. Use case
modeling is making its way into mainstream practice as a key activity in the software
development process (e.g. Rational Unified Process [16]). There is accumulating
evidence of significant benefits to customers and developers [17].

A use case model captures the “complete” set of use cases for an application,
where each use case specifies possible usage scenarios for a particular functionality
offered by the system. Every use case starts with a header section containing various
properties (e.g. primary actor, goal, goal level, etc). The core part of a use case is its
main success scenario. It indicates the most common way in which the primary actor
can reach his/her goal by using the system. A use case is completed by specifying the
use case extensions. These extensions define alternative scenarios which may or may
not lead to the fulfillment of the use case goal.

An example use case is given in Fig 2. The use case captures the interactions for
the “Order Product” functionality of the previously mentioned Invoice Management
System (IMS). The main success scenario of the use case describes the situation in
which the primary actor directly accomplishes his/her goal of ordering a product. The

590 B. Bomsdorf and D. Sinnig

extensions specify alternative scenarios which may (3a, 6a) or may not (7a) lead to
the abandonment of the use case goal.

In the next section we show how the “Order Product” use case is refined by UI-
specific task models.

Use Case: Order Product

Primary Actor: Customer
Goal: Customer places an order for a specific product.
Level: User-goal

Main Success Scenario:
1. Primary actor browses the product inventory and selects a specific product for purchase.
2. Primary actor specifies the desired quantity
3. System validates the availability of the product quantity and displays purchase summary.
4. Primary actor provides/validates payment and shipping information.
5. System prompts primary actor to accept the terms of conditions and to confirm the order.
6. Primary actor accepts and confirms.
7. System has the payment authorization unit to carry out payment and finalizes order.
8. System confirms and invoices the order.
9. Use case ends successfully
Extension Points:

3a. The desired product is not available:
 3a1. System notifies primary actor that product in desired quantity is not available.
 3a2. Use case ends unsuccessfully
6a. The primary actor cancels the use case:
 6a1. Use case ends unsuccessfully
7a.The payment information is invalid:
 7a1. System notifies customer that payment information provided is invalid.
7a2. Use case resumes at step 4

Fig. 2. “Order Product” Use Case

4 Refined UI Requirements Specification: Task Models

Task modeling is by now a well understood technique supporting user-centered UI
design. The resulting specification is the primary input to the UI design stage in most
HCI development approaches. Since we use task models to refine the raw require-
ments specification given by use cases, several task specifications may be defined for
a single use case, one for each type of user interface and/or user type.

A task model describes how users will be able to achieve their goals by means of
the future application. Furthermore it also indicates how the system will support the
involved (sub)tasks. Several approaches to defining such models exist (e.g., CTT
[13], TaO Spec [18], MAD [19] and VTMB [11]). The WebTaskModel (WTM) used
here is a further development of our previous work [11] to account more appropriately
for characteristics of interactive web applications. The enhancements, however, are
applicable to conventional interactive systems as well. In the following we are not
going to point out web-specific details but introduce only those extensions as relevant
for this paper. A more comprehensive overview of WTM can be found in [12, 20].

Fig 3. shows a subset of a task model refining the “Order Product” use case de-
scribed above. The task model was specifically developed for a Web UI and the user
type New Customer. As usual, the task hierarchy shows the decomposition of a task
into its subtasks which can be of different task types. In the specification of refined UI

 Model-Based Specification and Validation of User Interface Requirements 591

requirements we distinguish between cooperation tasks (represented by) to de-
note pieces of work that are performed by the user in conjunction with the application,
user tasks () denoting the user parts of the cooperation performed without system
intervention, and system tasks () defining pure system parts. Abstract tasks (),
similarly to CTT [13] and MAD [19], are compound tasks whose subtasks belong to
different task categories.

Fig. 3. “Order Product” Task Model for the role New Customer

The order of task execution is given by temporal relations. In the notation used in
the figure, temporal relations are denoted by abbreviations: The symbol defines a
selection of subtasks. >> denotes tasks that are to be performed strictly one after the
other in the specified order (visualized by).

The partial task model shown in Fig 3. specifies the task order product, which is
decomposed into the subtasks search for product (according to step S1 of the use
case), specify quantity (step S2) feedback (S3 and S3a1) and payment (steps S4 – S8).
The task feedback is decomposed into the subtasks display summary, for which we
define the precondition C1:product quantity available, and display prod.
unavailable, for which we define the precondition NOT C1. Both conditions are de-
rived from the use case extension 3a. Please note that the conditions are not shown in
the diagram but were assigned by means of the task property window of the WTM
editor (see [20]). The task display prod. unavailable is a so-called stop task. It denotes
the premature termination of the scenario and is the task model counterpart to use case
step S3a1.

In addition to the task model for the role New Customer, a task model for a Regis-
tered Customer is compiled. It differs from the presented task model in terms of how
the payment task is broken down. Instead of having to provide the shipping and pay-
ment information in each case, a registered customer has the option to alter shipping
or payment data or to entirely skip the involved subtasks. As seen, different sub-roles
lead to slightly different UI requirements. If different UI types were to be supported
the use case model would also be refined into device specific task models.

592 B. Bomsdorf and D. Sinnig

5 Tool Supported Validation

As mentioned above, use case models capture requirements at a higher level of ab-
straction whereas task models are more detailed taking into account the specificities
of a particular type of user interface and characteristics of a detailed user role. The
question arises whether or not a task model faithfully refines the use case it is based
on. The requirements engineer is not exempted from deciding this question as finding
the answer often depends on domain knowledge and project details.

In the following we demonstrate how the tool WTM Simulator [12] can be used to
check whether a task model is behaviorally equivalent to a given use case. Firstly, use
cases are transformed into a formal (machine readable) presentation based on finite
state machines. In the WTM approach, task models are represented by a set of task
state machines, which are used within the final application as part of the UI controller
[21]. Task state machines are also used to simulate task models within the develop-
ment steps. In the work reported here a formal correspondence between use case and
task models is established to simulate their execution in conjunction. This will be
presented by means of a concrete simulation example.

5.1 Mapping Use Cases to UC-FSM

At first use cases are transformed into a finite state machine representation called UC-
FSM. A UC-FSM is a labeled, directed, connected graph, where nodes denote states
and the edges represent state transitions. In a UC-FSM the execution of a step is de-
noted by a transition. The transition labels serve as references to the corresponding
steps in the original use case description. We believe that UC-FSM capture easily and
intuitively the nature of use cases.

As use cases are typically captured in purely narrative form the derivation of the
use case graph will be a manual activity. The composition of the use case graph from
a given use case depends on the flow constructs, which are implicitly or explicitly
entailed in the use case. Examples of such flow constructs are: jumps (e.g. use case
resumes at step X), sequencing information (e.g. the numbering of use case steps), or
branches to use case extensions. Concrete details on the mapping process as well a
slightly more elaborated formal model can be found in [22].

Fig. 4. Use Case FSM for “Order Product” Use Case

Fig 4 depicts the corresponding UC-FSM for the “Order Product” use case. As
shown, all the steps of the use case are also present in the UC-FSM. Note that starting
from states {quant.selected}, {awaiting confirmation} and {confirmed}, two transitions

 Model-Based Specification and Validation of User Interface Requirements 593

are defined, denoting the execution of steps in the main success scenario and alterna-
tively the execution of steps defined in the corresponding extensions.

5.2 Task State Machine and UC-FSM Assignment

In WTM each task formally possesses a state machine describing a generic task life
cycle (see Fig 5). For each task the state machine can be extended to specify applica-
tion specific task behavior. The rules that are used for this purpose are of the form
task.task-state.task-event action, where task denotes the task whose behavior is
extended, task-state and task-event denote the state and corresponding trigger event
upon which the action is to be performed. In the work presented in this paper, this
“extension” technique is used to combine task state machines with the UC-FSM. The
objective is to specify dependencies between task executions and use case steps.

Fig. 5. Generic Task State Machine

In order to run a conformance simulation we extend the various task state machines
such that they generate the trigger events needed to run the UC-FSM. The specifica-
tion of the extensions rules depends on which tasks are meant to be a refinement for
which use case step. Hereby, due to the before mentioned different levels of abstrac-
tion, one use case step is often refined by several tasks.

Table 1 (column 1 and 2) depicts the refinement mapping between use case steps
and tasks. Note that abort order product is added since S3a1 is a stop task. The map-
pings defined by the row of step S4 result from the task model differentiation of the
role Customer. Column 3 of Table 1 depicts the state of the task state machine re-
sponsible for sending the corresponding use case event to the UC-FSM. Examples of
rules resulting from Table 1 are:

display summary.completed.on_entry send S3 to Use Case product order
display prod. unavailable.completed.on_entry send S3a1 to Use Case product order

 send abort to task order product

Finally we note that the table is manually created by the requirements engineer. Ac-
cording to our experiences we argue that if the task model was specifically developed
based on a given use case specification (as suggested in the paper) the corresponding
refinement mappings are clearly defined and hence the conception of the table is a
straightforward activity.

State Meaning

initiated if all preconditions are fulfilled the

task can be started

skipped the task is omitted

running denotes the actual performance of
the task and of its subtasks, if

applicable

completed marks a successful task execution

suspended the task is interrupted terminated

initiated

completed

skipped

suspended running
Suspend

Start

End

Resume

Abort
Abort

Restart

Restart

Skip

594 B. Bomsdorf and D. Sinnig

Table 1. Refinement Mapping between Use Case Steps and Tasks

Step Task Task State
S1 search for a product completed

S2 specify quantity completed

S3 display summary completed

S3a1 display prod. unavailable completed / abort order product

New Customer: provide payment information completed
S4 Registered Customer: alter data completed or skipped

S5 prompt confirmation completed

… … …

5.3 WTM Simulation Tool and Example

In [12] we presented a tool that supports the developer in validating task, role, task-
object models and their behavioral interrelations by means of model simulation. In the
tool each task is represented by an icon showing static and dynamic information about
the task (such as the task type, temporal relations, and the current state). A context
menu attached to each task allows triggering one of the events that are defined by the
generic task state machine and are currently valid. The WTM simulator provides the
software engineer with different areas implementing several views on the models,
e.g., showing the hierarchical task structure, listing all tasks that can be started or
ended at a current point in time, respectively, and presenting task objects. Some ex-
amples are shown by the screenshots in Fig 6. Here, the object area shows only USE
CASE product order and its state changes resulting from task execution. Please note
that modeling use cases as objects is only a workaround since the use case extensions
are not yet implemented in the WTM simulator.

In the upper part of Fig 6 the UC-FSM is in the state quant.selected. Since the con-
dition C1 is fulfilled (see condition area) the task display summary can be performed
at this point in time. After its completion the UC-FSM state changes to prod. avail-
able and provide shipping information is enabled (indicated by the arrow in Fig 6).
The second scenario shows the unsuccessful run in case of NOT C1 (defined by C2):
Once the display-task is executed order product is terminated (thus the startable leaf
task area is empty) and the UC-FSM switches to state prod. unavailable.

During simulation the requirements engineer can check whether or not each task
sequence allowed by the task model is a valid scenario according to the use case
specification and vice versa. Furthermore, the simulator allows also one to observe
how the steps of a scenario under investigation affect task-objects and domain objects,
respectively. As in the case of the USE CASE object, the simulator tool represents
them in the object area showing their name, classes, and their manipulations in terms
of state changes. Similarly, but not depicted in Fig 6, a role area shows all defined
roles, allowing the investigation of role changes resulting from task execution as well
as disabling and enabling of tasks caused by role changes. For example, the require-
ments engineer can check the validity of a user registration scenario (by which the
role has to change from New Customer to Registered Customer) and its coactions with
the use cases and task models, respectively, defined for each role.

 Model-Based Specification and Validation of User Interface Requirements 595

Fig. 6. Simulating Task and Use Case Executions

6 Conclusion

In this paper we presented our current work towards an integrated development meth-
odology for the derivation of UI requirements from high-level functional requirements.
The development approach reported here consists of two basic steps. First, a use case
model is iteratively created to capture core application requirements. Next, the use case
model is successively refined into a set of task models. While use cases capture “raw”
functional requirements which are independent of a particular user interface, task mod-
els capture refined UI specific requirements which not only take into account the speci-
ficities of a particular type of user interface but also the characteristics of a detailed user
role. As a result, one use case is typically refined by several task models; one for each
UI type or user role. The focus of this paper was on the systematic development of use
case and task models. Our approach, however, takes also user roles and involved objects
into account - the description of which has been omitted for the sake of conciseness.

The tool WTM Simulator was used to check conformity between a task model and
a given use case model. In particular, we demonstrated how use cases can be trans-
lated into a state machine representation and formally combined with the task state
machine approach of WTM, which in turn is used as input to the simulator. The re-
sults of the simulation guide and assist the developer in deciding whether the task
model is a valid refinement of the underlying use case.

The research reported in this paper is the first offspring of a larger project, the goal
of which is the establishment of a model-driven UI engineering framework, encom-
passing all phases of the software lifecycle and involved models. Within our next
working step we will elaborate the refinement of the functional requirements, e.g., by
means of UML activity diagrams. We also aim to further extend the WTM Simulator
such that it allows for direct input of structured textual use cases and (semi) automati-
cally generates refinement mappings between use case steps and tasks.

scenario 1

scenario 2

596 B. Bomsdorf and D. Sinnig

References

1. Kazman, R., Gunaratne, J., Jerome, B.: Why Can’t Software Engineers and HCI Practitio-
ners Work Together? In: Proc. of HCI Intern., Crete, Greece, pp. 504–508 (2003)

2. Ferre, X., Juristo, H., Windl, H., Constantine, L.: Usability basics for software developers.
IEEE Software 18(1), 22–29 (2001)

3. Kazman, R., Bass, L., John, B.: Bridging the gaps between software engineering and hu-
man-computer interaction. In: Workshop at ICSE 2004, Scotland, UK (2004)

4. Sutcliffe, A.: Convergence or Competition between Software Engineering and Human
Computer Interaction. In: Seffah, A., Desmarais, M.C., Metzger, M. (eds.) Human-
Centered Software Engineering -Integrating Usability in the Software Development Life-
cycle, pp. 71–83. Springer, Heidelberg (2005)

5. Sinnig, D., Chalin, P., Khendek, F.: Common Semantics for Use Cases and Task Models.
In: Proc. of Integrated Formal Methods, Oxford, England, pp. 579–598 (2007)

6. Clemmensen, T., Norbjerg, J.: Separation in Theory – Coordination in Practice. In: Work-
shop Bridging the Gap between Software Engineering and HCI, Portland (2003)

7. Constantine, L.L., Lockwood, L.A.D.: Software for Use: A Practical Guide to the Models
and Methods of User Centered Design. Addison-Wesley, Reading (1999)

8. Constantine, L., Biddle, R., Noble, J.: Usage-Centered Design and Software Engineering: Mod-
els for Integration. In: Workshop Bridging the Gaps Between SE and HCI, Portland (2003)

9. Kujala, S.: Linking User Needs and Use Case-Driven Requirements Engineering. In: Hu-
man-Centered Software Engineering-Integrating Usability in the Development Process, pp.
113–125 (2005)

10. Paternó, F.: Towards a UML for interactive systems. In: Nigay, L., Little, M.R. (eds.)
EHCI 2001. LNCS, vol. 2254, pp. 7–18. Springer, Heidelberg (2001)

11. Biere, M., Bomsdorf, B., Szwillus, G.: Specification and Simulation of Task Models with
VTMB. In: Proc. of Computer-Human Interaction Conference, pp. 1–2 (1999)

12. Bomsdorf, B.: The WebTaskModel Approach to Web Process Modelling. In: Proc. of Task
Models and Diagrams for User Interface Design, Toulouse, France, pp. 240–253 (2007)

13. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (2000)

14. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston (2001)
15. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. ACM

Press (Addison-Wesley Pub), New York (1992)
16. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development, 3rd edn. Prentice Hall PTR, Englewood Cliffs (2004)
17. Merrick, P., Barrow, P.: The Rationale for OO Associations in Use Case Modelling. Jour-

nal of Object Technology 4(9), 123–142 (2005)
18. Dittmar, A., Forbrig, F., Stoiber, S., Stary, C.: Tool Support for Task Modelling - A Con-

structive Exploration. In: Proc. of DSV-IS, Hamburg, Germany, pp. 59–76 (2004)
19. Sebillotte, S., Scapin, D.L.: From users’ task knowledge to high level interface specifica-

tion. International Journal of Human-computer Interaction 6, 1–15 (1994)
20. Bomsdorf, B.: Modelling Interactive Web Applications: From Usage Modelling towards

Navigation Models. In: Proceedings of 6th International Workshop on Web-Oriented
Software Technologies – IWWOST 2007, Como, Italy, pp. 194–208 (2007)

21. Betermieux, S., Bomsdorf, B.: Finalizing dialog models at runtime. In: Baresi, L., Fraternali, P.,
Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 137–151. Springer, Heidelberg (2007)

22. Sinnig, D., Chalin, P., Khendek, F.: LTS Semantics for Use Case Models. In: Proceedings
of ACM - SAC 2009, Honolulu, HI (to appear, 2009)

	Model-Based Specification and Validation of User Interface Requirements
	Introduction
	Systematic and Integrated Development Process
	Functional Requirements Specification: Use Cases
	Refined UI Requirements Specification: Task Models
	Tool Supported Validation
	Mapping Use Cases to UC-FSM
	Task State Machine and UC-FSM Assignment
	WTM Simulation Tool and Example

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

