
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 579–586, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Integration of Task and
Use-Case Meta-models

Rémi Bastide

IRIT – Université de Toulouse,
ISIS – CUFR J.F. Champollion, Castres, France

Remi.Bastide@irit.fr

Abstract. Although task modeling is a recommended practice in the Human-
Computer Interaction community, its acceptance in the Software Engineering
community is slow. One likely reason for this is the weak integration between
task models and other models commonly used in Software Engineering, notably
the set of models promoted by the mainstream UML method. To overcome this
problem, we propose to integrate the CTT model of user tasks into the UML, at
the meta-model level. CTT task models are used to provide an unambiguous
model of the behavior of UML use-cases. By so doing, we also bring the benefit
of hierarchical decomposition of use-cases (“extend” and “include” relation-
ships) to CTT. In our approach, CTT tasks also explicitly operate on a UML
domain model, by using OCL expressions over a UML object model to express
the pre- and post-conditions of tasks.

1 Introduction

In the current Software Engineering practice, use-cases are routinely used during the
early phases of software development, namely requirements gathering. Use-cases are
arguably the less formalized of all UML notations. Rather than a hindrance, this is
to be considered as an advantage: the main point of use-case modeling is to reach
a common understanding of the problem between the various stakeholders of the
system under development, and especially between the customer (who holds the
knowledge of the business domain) and the software development team (who has
the know-how of the software development process). Noted methodologists [2] argue
that writing good use-cases is essentially a literary piece of work, and that a natural
language description of use-cases is a good way to form consensus and mutual under-
standing between the stakeholders regarding what has to be done, regardless of how it
has to be done.

A delicate point comes with the need to relate an informal, natural language de-
scription of use cases to the increasingly formal notations used in the UML, for in-
stance class diagrams, behavioral models such as StateCharts, etc, eventually leading
to a satisfactory implementation. UML is notoriously vague and non-prescriptive with
regards to the precise way to describe the behavior of use-cases. Some authors stick to
a detailed natural language scenario, others prefer a partitioned narration, and others
use UML sequence diagrams to describe the information exchanges between the use-
case actor and the system under design. We contend that task models (in our case

580 R. Bastide

CTT models [8]) offer several advantages over the latter two, notably due to the rich-
ness of the temporal operators available. This is increasingly important, since modern
user interfaces (direct-manipulation, multi-modal...) depart from the old-fashioned
conversational, question-answer style, and are almost impossible to model with se-
quence diagrams.

It is also a routine practice to develop an analysis model of the business objects of
the system under design (the so-called “domain model”) early on in the development
process, in order to precisely identify the business objects, their structure and their
mutual relationships. This domain modeling is performed using UML class diagrams,
leaving out premature implementation-related considerations.

The main point of this paper is to promote CTT task models as the behavioral lan-
guage for use cases. To this end, we first introduce our view of the design process
which is expected. We then show how the metamodel of CTT can be tightly inte-
grated into the UML metamodel of use-case diagrams, so that the notion of extend
and include relationships become meaningful for CTT task models.

2 Design Process

For the sake of efficiency, formal modeling work has to be guided by strong methodo-
logical, process-oriented guidelines. A design process defines in which order the vari-
ous artifacts have to be produced during the software lifecycle, defines the expects
contents of these artifacts, and what information is needed as an input and produced
as an output of the various modeling and design activities.

The work presented here deals mainly with the initial phases of the process,
namely requirements engineering and preliminary design.

• The goal of the requirements engineering phase if to form a consensus between the
stakeholders (mainly the customer and the analysis team) regarding what the prob-
lem actually is, and what has to be developed in order to solve the problem. The
main outcome of this phase is a common understanding between the customer and
the development team of the problem domain: no work on the solution domain
should be performed at this phase.

• Work on the solution domain begins at the preliminary design phase: this is where
the first decisions on software architecture are made, and where the best practices
of interaction design (in particular iterative prototyping with increasing fidelity
level) should be used.

Of course, we do not recommend a strict separation between these two phases: it is
quite common that work performed at the preliminary design phase uncovers new un-
foreseen insights on the requirements, and that some iteration has to be performed be-
tween these two phases. Although iteration is frequent between these two phases, it
should always remain clear to the various actors whether they are working on the
problem domain (i.e. the requirements) or on the solution domain (i.e. the design).

Our claim is that task modeling is especially useful during the requirements engi-
neering phase, and that it complements nicely the domain models and use-case

 An Integration of Task and Use-Case Meta-models 581

models that are developed during this phase. At this stage, class models are used to
provide an analysis-level model of the domain (they formalize the vocabulary of the
business domain), while use-cases and use-case diagrams are used to provide a user-
oriented view of the system functionality. The natural language scenarios that are
associated with use-cases are essential in easing the construction of a common under-
standing of the problem between the stakeholders, since they are written in the vo-
cabulary of the business and can be understood and validated by the customer.

Our view that task models are essentially a requirement analysis tool contradicts
several authors, who recommend using task models at the design phase, for instance
to drive the generation of dialogue [6] or abstract interface models. In our approach,
requirement task models necessarily remain at a rather abstract level, since at this
stage the user interface is not (and should not be) yet under design. It follows that re-
quirement task models should not mention any user-interface specifics: rather, the
task models will drive the user-centered design of the UI that will follow in the subse-
quent phases, where the user interface specialist will strive to design an interface that
is best suited to the user task, while taking into account the limitations inherent to the
target platform for the interactive system. We do not believe that (except maybe in
very stereotyped situations, such as business form-filling applications) a satisfactory
user interface can be automatically generated from a task model. Rather, in our view,
the task model can be used as a test case for the user interface that will be designed
using user-centered techniques such as incremental low-fidelity prototyping.

To allow for the smooth integration of task models in the software design life-
cycle, we propose to integrate task models and use-cases at the meta-model level [5,
14], thus opening the way for efficient use of Model-Driven Engineering (MDE) tech-
niques such as model weaving and model transformation.

The process we advocate is inspired by the “essential use-cases” work proposed by
Constantine and Lockwood [4] and the work in [13]. In particular, since use-cases are
meant the be an input to interaction design, they should be devoid of any specific ref-
erence to user interface, otherwise it would be a premature commitment to a user in-
terface design, before this design has been presented and validated by users through
low-fidelity prototyping.

We propose that CTT task models should serve as the behavioral language for use-
cases. In this usage of task modeling, task models are meant to provide an abstract
view of the user’s activity, exploring their goals as well as the temporal and causal
structure of their interactions with the system. Task models are thus the formal coun-
terpart of the natural language, narrative descriptions of scenarios that is routinely as-
sociated with use-cases, and that are still quite useful: natural languages scenarios are
ideal to communicate and form consensus with the customer, and can be developed
and validated with the customer during brainstorming sessions. Task models, on the
other hand, are useful to communicate with the design team, since they convey a pre-
cise semantics of the dynamics of human-computer interaction that has to be sup-
ported by the software to be produced.

Fig. 1 illustrates our view of the early stages of the design process, highlighting the
strong bonds between use-cases, domain model and task models that are the main
outcomes of the requirements analysis phase.

582 R. Bastide

Requirements analysis

Use
cases

Task
model

Domain
model

Prototyping

Preliminary design

Interaction
design

Dialogue
models

Fig. 1. First stages of the design process

3 Related Work

The need to bridge the gap between the current practices of Software Engineering
(centered on UML diagrams) and user-centered design (including task analysis and
modeling) has been stressed by numerous authors. A remarkable variety of solutions
to this problem has been proposed. The very father of the CTT notation [12] has iden-
tified the main trends of work in this field:

• Representing CTT by an existing notation: Nobrega et al. [10], for in-
stance, provide semantics of the temporal operators of CTT in terms of
UML activity diagrams. Nunes et al. [9] use the extensions mechanisms
provided by the UML (profiles, stereotypes) to represent the concepts of
CTT in a UML framework.

• Developing automatic converters from UML to task models [6] (and back,
we should add). It can be contended that, in the HCI literature, one can
find proposals for generators from any kind of model to any other kind.

• Building a new UML for interactive systems “which can be obtained by
explicitly inserting CTT in the set of available notations” [10]. This is the
trend we follow in this paper, by integrating a metamodel of CTT inside
the metamodel of UML itself.

 An Integration of Task and Use-Case Meta-models 583

Although we share the goals expressed in [10], our technical proposal is quite dif-
ferent with the one presented there.

− In the first place, we work formally at the metamodel level, whereas only a rough
sketch of a solution was provided in [10]. We believe that explicit use of metamodels
brings several fundamental advantages, including the opportunity to use existing
MDE tools such as model transformation languages or model weavers to extend the
potential use of models. We have demonstrated this advantage in previous work [1],
by showing how the notions of human errors can be integrated in task diagrams
through the use of error patterns and automatic model transformations.

− Furthermore, it appears that our proposal is almost an “inside-out” reversal of the
approach in [10] : the authors proposed a path to transform a use-case diagram
(also called a use-case map) into a CTT task model, that could be further refined.
In the contrary, we propose to use CTT as a language to specify the behavior of
use-cases.

4 Alignment with the UML Use-Case Metamodel

The metamodel of UML use-cases is given in Fig. 2. This is actually the metamodel
of use-case maps (diagrams that show the relationships between the use cases for a
system), since UML is non-prescriptive as to what a use case actually is, i.e. as to
what the behavioral description of a use-case should be.

Fig. 2. The UML use-case metamodel (from [11])

584 R. Bastide

There has been some picky debate amongst specialists over this very metamodel
[15], several of its flaws have been pointed out, and better alternative metamodels
have been proposed. Although we mainly agree with these criticisms, we have chosen
to stick with the “official” metamodel, since our goal is to be as close as possible to
the standard. It should also be noticed that the ill-defined notion of use-case speciali-
zation relationship, formerly available in the UML, has been removed in the current
version of the standard.

Starting from this “official” metamodel of UML use-cases we want to cleanly inte-
grate a metamodel of CTT, in order to express that a CTT task model is used to
express the behavior of a use-case, and to show that “include” and “extend” relation-
ships can be expressed over a CTT model.

The metamodel of CTT illustrated in Fig. 3 improves on the one we previously
published in [1] in several ways:

− Our earlier metamodel used eCore [14] Ecore as the metamodeling language. The
one presented here uses UML class diagrams for the same purpose, which allows
us to cleanly express its relationships with other elements in the UML metamodel.
For instance, it expresses that the notion of Actor in CTT is identical with the same
notion in UML use cases. In turn, this enriches CTT with the features available for
UML actors (for instance, one can design a specialization hierarchy of actors with
increasing responsibilities)

− It explicitly aligns CTT with UML use cases, bringing their structuring features
(“include” and “extend” relationships) to CTT.

CttNode

+name : String
+allocation : TaskAllocation
+iteration : int
+type : String
+frequency : String
+description : String
+precondition : BooleanExpression
+postCondition : BooleanExpression

<<enumeration>>
Operator

ConcurrencyInfoExchange

EnablingWithInfoPassing

OrderIndependence

SuspendResume

Deactivation
Enabling

Choice

CttTransition

+operator : Operator

<<enumeration>>
TaskAllocation

Application
Interaction
Abstract

User

ExtensionPoint

Include

UseCase
Actor

CttTask

+name : String

Extend

+behaviorSpecifiedBy

0..1

+behaviorFor

1

+incoming
0..1+next1

+extensionPoint
1

*

+root
1

+extensionPoint
0..1

1

+subtasks
*

+performer

1

+outgoing

0..1

+base
1

+include 0..1

+base
1

*

+extension

1

+extend
*

*

+addition
1

Fig. 3. A metamodel of CTT integrated in the metamodel of UML

 An Integration of Task and Use-Case Meta-models 585

In Fig. 3, the classes with a white background are imported from the UML meta-
model, and should be related to the identical ones in Fig. 2. The classes with the filled
background are specific to CTT. Basically, a CTT task model (CttTask) is a tree of
nodes (CttNode) which can be related by transitions (CttTransition) that feature one
of the CTT temporal operators (Operator).

The use-case metamodel of Fig. 2 states that a use-case can have several “extend”
and “use” relationships (* cardinality). The cardinalities chosen in our metamodel of
CTT in Fig.3 should be carefully considered:

• Include relationship: a CttNode has 0..1 include relationships, meaning that any
CTT node can optionally include another CttTask (which in turn is a tree of
CttNodes). This models a classical hierarchical decomposition, which makes it
easy to reuse a task model in another one, by simply including it at the proper
node. It is natural to allow for a maximum of one inclusion, since otherwise the
temporal combination of the included CttTasks would be left undefined.

• Extend relationship: an extend relationship is ternary, relating a base to an exten-
sion through one extensionPoint. In our metamodel, a CttNode has an optional ex-
tensionPoint, meaning that it can be optionally extended. However, a CttNode can
have several extensions, discriminated by condition: BooleanExpres-
sion in metaclass Extend (cf. Fig. 2).

It is noteworthy that the metamodel in Fig. 3 conveys the same information as the
initial use-case metamodel, only more so. For instance, the set of Include relationships
for a given use-case (which are actually the relationships appearing on use case maps)
can be computed by exploiting the Include and Extend relationships of Fig. 3 recur-
sively using the hierarchical composition relationship between CTTNodes.

The metamodel in Fig.3 also relates to the domain model, albeit implicitly: the pre-
Conditions an postConditions elements in CttNode are meant to be Boolean expres-
sions expressed in OCL (Object Constraint Language) operating on a domain model
defined by a UML class diagram. As OCL itself is not part of the UML metamodel,
but defined in a separate, language-oriented specification the relationship between
task and domain model is not apparent, but is nonetheless fundamental.

5 Conclusion

We have presented our view of a design process where task and use-case modeling
are tightly integrated during the requirement engineering phase. CTT task models are
used to provide an unambiguous description of use-case behavior, complementing
natural language scenarios. An integration of CTT into the UML metamodel has also
been presented, which opens the way to automatic processing of requirement models,
to be use in subsequent phases of the design and implementation, for instance test se-
quence generation.

References

1. Bastide, R., Basnyat, S.: Error Patterns: Systematic Investigation of Deviations in Task
Models. In: Coninx, K., Luyten, K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS,
vol. 4385, pp. 109–121. Springer, Heidelberg (2007)

2. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional, Reading

586 R. Bastide

3. Constantine, L., Campos, P.: Canonsketch and tasksketch: innovative modeling tools for
usage-centered design. In: OOPSLA 2005: Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, pp.
162–163. ACM, New York (2005)

4. Constantine, L.L., Lockwood, L.A.D.: Constantine & lockwood, ltd. structure and style in
use cases for user interface design

5. Limbourg, Q., Pribeanu, C., Vanderdonckt, J.: Towards Uniformed Task Models in a
Model-Based Approach. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220, pp. 164–
182. Springer, Heidelberg (2001)

6. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.: Derivation of a dialog model from a
task model by activity chain extraction (2003)

7. Montero, F., López-Jaquero, V., Vanderdonckt, J., González, P., Lozano, M.D., Limbourg,
Q.: Solving the mapping problem in user interface design by seamless integration in
idealXML. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp.
13–15. Springer, Heidelberg (2006)

8. Mori, G., Paterno, F., Santoro, C.: Ctte: Support for developing and analyzing task models
for interactive system design. IEEE Trans. Software Eng. 28(8), 797–813 (2002)

9. Jardim Nunes, N., Falcão e Cunha, J.: Towards a UML profile for interaction design: The
wisdom approach. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939,
pp. 101–116. Springer, Heidelberg (2000)

10. Nóbrega, L., Jardim Nunes, N., Coelho, H.: Mapping ConcurTaskTrees into UML 2.0. In:
Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 237–248.
Springer, Heidelberg (2006)

11. Object Management Group: Unified Modeling Language (UML), version 2.0. Technical
report, OMG (2005),

 http://www.omg.org/technology/documents/formal/uml.htm
12. Paternó, F.: Towards a UML for interactive systems. In: Nigay, L., Little, M.R. (eds.)

EHCI 2001. LNCS, vol. 2254, pp. 7–18. Springer, Heidelberg (2001)
13. Rosson, M.B.: Integrating development of task and object models. Commun. ACM 42(1),

49–56 (1999)
14. Stahl, T., Volter, M.: Model-Driven Software Development. Wiley, Chichester (2006)
15. Williams, C., Kaplan, M., Klinger, T., Paradkar, A.M.: Toward engineered, useful use

cases. Journal of Object Technology 4(6), 45–57 (2005)

	An Integration of Task and Use-Case Meta-models
	Introduction
	Design Process
	Related Work
	Alignment with the UML Use-Case Metamodel
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

