
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 277–286, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Webjig: An Automated User Data Collection System
for Website Usability Evaluation

Mikio Kiura, Masao Ohira, and Ken-ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5 Takayama, Ikoma, Nara, Japan

{mikio-k,masao,matumoto}@is.naist.jp

Abstract. In order to improve website usability, it is important for developers
to understand how users access websites. In this paper, we present Webjig,
which is a support system for website usability evaluation in order to resolve
the problems associated with the existing systems. Webjig can collect users’ in-
teraction data from static and dynamic websites. Moreover, by using Webjig,
developers can precisely identify users’ activities on websites. By performing
an experiment to evaluate the usefulness of Webjig, we have confirmed that de-
velopers could effectively improve website usability.

Keywords: Web usability, usability evaluation, analysis of user interactions,
dynamic websites.

1 Introduction

It has been found that there are various benefits associated with improving website
usability, and so, in recent times, there have been increasing interests on website us-
ability. For instance, in the case of an EC (electronic commerce) site, website usabil-
ity has an impact on conversion rates. In the case of a website used in workplaces,
website usability can also affect the work efficiency. In addition, the cost of user
support can be reduced by improving website usability. It also influences a company’s
image.

Developers must understand how users access a website in order to improve web-
site usability [1]. Usability testing is widely used for understanding users’ interactions
on a website [2]. In usability testing, users perform some specific tasks within a set
time under the supervision of usability engineers (or experts). The engineers observe
how the users follow certain steps to accomplish the tasks. Through usability testing,
developers can presume users’ intellectual process and observe their interaction; these
developers can identify problems, clarify design issues, or come up with new ideas.

Although usability testing is a prevalent approach for improving website usability,
it cannot be applied to every website. Usability testing requires stakeholders (e.g.,
users, developers, and experts) to spend large amounts of time and money. Develop-
ers cannot conduct usability testing easily [3]. So far, several systems [4, 5, 6, and 7]
for website usability evaluation have been proposed so that developers can understand
how users access a website over a network with low cost.

278 M. Kiura, M. Ohira, and K. Matsumoto

However, these systems are designed to collect data only from static websites. De-
velopers cannot figure out users’ interactions on a dynamic website (e.g., automati-
cally created webpages by CGI or server-side script, and webpages developed by
JavaScript in a Web browser). By using JavaScript, developers can implement an
interface that can switch the displayed contents by tabs, drop down menus, or drag-
and-drop methods without URL transitions. On a website using such interfaces, the
existing systems cannot obtain the previously displayed contents accessed by users
because these contents would change.

In this paper, we propose Webjig, which is a support system for website usability
evaluation for both dynamic and static websites; this system records users’ interac-
tions related to the contents that are displayed in users’ Web browser. Developers can
exactly understand users’ interactions on a website by using Webjig. Thus, they can
efficiently improve website usability.

2 Related Work

The traditional approach to resolving problems of website usability it to use the Web
server accesses logs [4]. Developers can know various kinds of information including
users’ IP address, accessed time, request data, and Web server’s response from the
Web server access log. The advantage of using the Web access sever log is that the
access log is automatically saved in a Web server and can be used by developers with
low cost. If developers can easily use the Web access log to improve website usabil-
ity, however, they cannot know users’ interactions such as mouse motions, mouse-
click positions, and mouse-click timings on a website [5].

Several systems have been proposed to automatically collect the data of users’ in-
teraction on a website (e.g., MouseTrack [6], UsaProxy [7]). The systems solved the
problem above, by identifying users’ mouse motions, mouse-click positions, and
mouse-click timings by embedding JavaScript codes into a webpage. The systems
helped developers understand users’ interactions on a website at a considerably low
cost.

Previous studies have suggested that there is a correlation between the point of
gaze and the position of mouse cursor. Chen et al. have reported that there is a strong
correlation between the point of gaze and the position of mouse cursor; further, the
developer can predict a point in the website where the user interested in and they may
chart a pattern of the user by users’ interaction [8]. In addition, Muller et al. reported
that 35% of users traced a sentence with a mouse cursor when they read the sentence
in a website. These results show that developers can detect the problems of website
usability by studying users’ interaction on it.

3 Webjig

In this paper, we introduce Webjig, which is a new system used to solve the problems
of the existing systems. Webjig can handle data from static and dynamic websites. By
analyzing DOM (Document Object Model) of HTML, Webjig can collect the data of
contents clicked by users, including timings, positions, and motions. This mechanism

Webjig: An Automated User Data Collection System for Website Usability Evaluation 279

allows usability engineers and developers to solve the problems associated with the
existing system, i.e., the existing system could not precisely identify users’ interac-
tions on a dynamic website.

We present the system architecture of Webjig in Fig.1. Webjig is a client/server
system. The client is implemented by using JavaScript, which executes in a Web
browser. The server is implemented by using PHP. The system consists of
Webjig::Fetch, Webjig::Analysis, and Webjig::DB.

Webjig::Fetch is a subsystem that automatically collects the data of users’ interac-
tions on a website. Webjig::Analysis is a subsystem that shows the information of
users’ interactions to developers. Webjig::DB is a subsystem that holds the data of
users’ interactions and provides API to access the data.

Fig. 1. System architecture of Webjig

3.1 Webjig::Fetch

Webjig::Fetch is a subsystem that automatically collects the data of users’ interactions
on the website. Table 1 shows the data collected and stored by Webjig. During the
time in which a user stays on a webpage, the data may be changed, except for the
name and version of the Web browser. The system monitors a change in the data at
intervals of dozens of milliseconds and sends the data to Webjig::DB at intervals of
few seconds and at the time when the user exits the webpage.

Table 1. Collected data usign Webjig

Data type
Timing of data

 collection
Timing of data
transmission

Name and version of Web browser Loaded Loaded
Inner size of Web browser Changed Intervals and exit
Position of scroll bar Changed Intervals and exit
Position of mouse cursor Changed Intervals and exit
Timing and type of mouse click Pressed Intervals and exit
Timing and type of key pressed Pressed Intervals and exit
Contents displayed in a Web browser Changed Intervals and exit

280 M. Kiura, M. Ohira, and K. Matsumoto

For collecting users’ interactions data, developers have to install Webjig::Fetch in a
webpage. what developers have to do is only to insert a line <script src=”URL of
Webjig::Fetch”></script> in the HTML source code of the webpage that targets the
usability evaluation using Webjig. Fig.2 is an example of Webjig installed in an
HTML source code. Webjig works even if the developer may insert the script tag at
the any place in the HTML source code. However, a mainstream Web browser inter-
prets the HTML source code from the top and displays the contents. Therefore, we
recommend inserting the script tag at the bottom of the HTML source code so that
Webjig does not disturb the original contents.

 <html>
 <head>
 <title>Sample Page<title>
 </head>
 <body>
 <p>Sample Content</p>
 <script src=”http://example.com/webjig.js” ></script>
 </body>
 </html>

Fig. 2. An example of HTML source code

3.2 Webjig::Analysis

Webjig::Analysis has various features for supporting website usability evaluation. For
instance, Webjig::Analysis can replay users’ interactions such as mouse motions,
mouse click, and keyboard input related to the displayed contents in a movie format
by using the collected data.

In Fig.3, we show a screenshot of Webjig::Analysis when it replays the users’ in-
teractions. The system consists of displayed contents in a Web browser and some
floating windows that control the system and show various kinds of information.
Developers can replay users’ interactions such as play, stop, forward, and rewind
anytime by using various control buttons, seek bar, or slider available on the control
window. In addition, the system can also generate a heat map, which shows where the
users often click, and presume the portions where the users read and do not read on a
webpage. By using these features, developers can examine the following questions.

• Are there any confusing graphics in links?
• Do users pay attention to the content that developers want them to read?
• Where do users look or not look?
• How do users access the website?
• What do user wrong operation on the way to the goal?
• How do users use a dynamic interface?
• Where do users pause when they input into forms?
• Where did the user view before exiting the website?
• and so forth.

Webjig: An Automated User Data Collection System for Website Usability Evaluation 281

Fig. 3. Screenshot of Webjig::Analysis

4 System Evaluation

4.1 Overview

We performed an experiment to evaluate the usefulness of Webjig. 54 graduate stu-
dents (39 males and 15 females, average age 20) participated in the experiment as
subjects. 54 subjects were divided into three groups. Each group worked on different
tasks described in the next subsection.

4.2 Experiment Procedure and Task

We executed the experiment according to the following procedures.

Step 1. We provided 24 uses (subject of Group A) five tasks. Each task required the
subjects to find a specified product from a dynamic menu implemented using
JavaScript. Webjig recorded users’ interactions during task execution.

Step 2. Based on the collected data in Step 1, three subjects who had a role of devel-
opers (Group B) analyzed the users’ interactions during task execution using

282 M. Kiura, M. Ohira, and K. Matsumoto

Webjig::Analysis. The developers planned for an improved structure of
menu.

Step 3. We provided 27 different users (subjects of Group C) tasks similar to Step 1.
The difference between Step 1 and Step 2 is that the subject of Group C used
the improved menu. Webjig recorded users’ interactions during task execu-
tion.

Step 4. Finally, comparing the task execution time of Step1 and Step3, we checked
the validity of the change in the structure of the menu.

Fig.4 is the dummy website for the experiment. Table 1 shows target products and
categories where the products exist.

Fig. 4. Screenshot of the dummy website for the experiment

Table 2. Target products and category for each task

Task Name Product Category
Task 1 Dry cell Audio & visual
Task 2 SD memory card Cameras
Task 3 A massage chair Health
Task 4 Electronic dictionary Office
Task 5 Fax House & appliance

4.3 Experiment Results

Developers can know where users look in the webpage by using Webjig. Table 3
shows what percentage of the subject of Group A firstly clicked on which categories.
The grayed rectangle in Table 3 means the correct category where a specified product

Webjig: An Automated User Data Collection System for Website Usability Evaluation 283

Table 3. Results of first category sellection

Category Task 1 Task 2 Task 3 Task 4 task5
Camera 29% 13% 0% 0% 0%
Computer 0% 46% 0% 13% 4%
Audio-video equipment 4% 33% 0% 0% 21%
House & appliance 54% 4% 71% 29% 29%
Game 4% 4% 0% 0% 0%
Office equipment 8% 0% 4% 58% 46%
Health 0% 0% 25% 0% 0%

exists for each task. For example, 54% of the subjects first clicked on the category of
house & appliance, thought dry cell belonged to the category of audio & visual. When
using existing systems, developers cannot know such the information.

Table 4 shows the changed structure of the menu which was planned by the devel-
opers based on the result of Table 3. The plan is made from an idea that if there was
the category more clicked by users than the current category, a target product should
be moved to a proper category.

In case of task 1 where subjects searched a dry cell, a dry cell belonged to the au-
dio & visual category, but many subjects first pay attention to the house & appliance
category. Therefore, the developers moved the dry cell to the category of house &
appliance. Further, in case of task 4 where subjects searched an electronic dictionary,
an electronic dictionary belonged to the category of office equipment, and the major-
ity of the subjects first paid attention to the office equipment category. Therefore, the
developers did not move it to any other category.

Table 4. Change plan for the menu of the categories

Task Name Product Original category Destination category
Task 1 Dry cell Audio & video House & appliance
Task 2 SD Memory Card Cameras Computers
Task 3 A massage chair Health House & appliance
Task 4 Electronic dictionary Office Office
Task 5 Fax House & appliance Office

We perform the experiment after changing the website, as shown in table 7. We

show the experiment result in Fig.5. From Fig.5, the task execution time has been
reduced in tasks 1, 2, and 3 by applying the changed plan.

Fig. 5 shows the results of the execution time for each task in Step1 and Step 31.
We can confirm that the execution time in Step 3 is shorter than that in Step 1, that is,
the improved menu structure based on the developers’ analysis using Wegjig was
effective.

1 Since the structure of the menu was changed in Task 4, we could not confirm the significant

difference between the results in Step1 and Step3.

284 M. Kiura, M. Ohira, and K. Matsumoto

Fig. 5. Result of the task execution time in Step1 and Step3

5 Discussion

By using Webjig, developers can obtain information which they would not have got
with the existing systems. For this reason, developers can detect problems in website
usability and create a plan for improving website usability by collecting data of users’
interactions, as performed in this experiment.

In the experiment where users choose the items from the menu, the developers can
determine the execution time for each task by using existing systems. Thus, they can
detect the problems of usability by comparing the execution time of each task and
pinpoint the task where the execution time is longer than that taken by another task. In
Fig.5, the execution time of tasks 1, 2, 3, and 5 is longer than that of task 4. For this
reason, a developer can hypothesize that there remains problems of website usability.
However, it is difficult to eliminate the problem if they cannot understand the cause of
the problem.

By using Webjig, a developer can efficiently detect the problem of website usability.
In case of task 1 (subjects find a dry cell), we show the experiment result in table 3; dry
cell belongs to audio-visual equipment, but many subjects pay attention to household
appliance. The developer hypothesized that “Many users think that a dry cell belongs to
a household appliance” and moved the dry cell from audio-visual equipment to house-
hold appliance. As a result, the execution time is reduced before changing the category.

According to Fig.5, the task execution time of the changed website is less than that
of the original website. In tasks 1, 2, and 3, we can observe significant improvement
in the execution time. However, in task 5, we did not observe any significant im-
provement in the execution time.

Webjig: An Automated User Data Collection System for Website Usability Evaluation 285

Table 5. Priority for the improvement

Task Name Correct category (A) Current Category (B) B/A
Task 1 4% 54% 13.5
Task 2 13% 46% 3.5
Task 3 25% 71% 2.8
Task 5 29% 46% 1.6

We explain the reason for this. In table 5, we compare the rate of users who pay at-

tention to the correct category with the rate of users who pay attention to the changed
category. In case of task 1, 4% of users pay attention to the correct category (a cate-
gory of audio & visual) when searching for dry cell and 54% of users pay attention to
the wrong category (a category of house & appliance) when searching for dry cell.
This has a difference of 13.5 times. Similarly, task 2 has a difference of 3.5 times,
task 3 has a difference of 2.8 times, and task 5 has a difference of 1.6 times. As a
result, we can say that if there is not a big difference in the rate of users who pay
attention to an original category and the rate of users who pay attention to a changed
category, we cannot confirm an effect in the change.

Therefore, developers have to examine whether the usability is improved by under-
standing users’ interactions and not by the reason that the task execution time was
longer than others. By using Webjig, a developer can exactly understand users’ inter-
actions and examine whether the usability is improved. However, it is difficult to
examine the improvement of website usability by using existing systems because
exact users’ interactions cannot be obtained.

However, developers cannot use the Webjig instead of user testing because they
can know the gaze point by using the eye tracking system and they can know the
intention of the user by interviewing him/her during user testing. But we saw that
there was the point that could be improved website usability by using Webjig. There-
fore, developers may efficiently improve website usability by combining user testing
and Webjig.

6 Conclusion and Future Work

In this paper, we proposed a Webjig support system for static and dynamic websites.
As a result of the experiment, we show that developers can improve website usability
effectively by using Webjig. In the future, we are going to think about the cost of
website usability evaluation between existing systems and Webjig and compare us-
ability testing with Webjig to determine the efficiency of website usability evaluation.

Acknowledgements

This study is supported by Information-technology Promotion Agency, Japan (IPA),
Exploratory IT Human Resources Project (MITOU Program) in the fiscal year 2008.

286 M. Kiura, M. Ohira, and K. Matsumoto

References

1. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability problems. In:
The INTERACT 1993 and CHI 1993 conference on Human factors in computing systems,
pp. 206–213 (1993)

2. Dumas, J.S., Redish, J.C.: A Practical Guide to Usability Testing. Ablex Publishing, Nor-
wood, New Jersey (1993)

3. Barnum, C.M.: Usability Testing and Research. Longman, London (2001)
4. Hong, J.I., Landay, J.A.: WebQuilt: a framework for capturing and visualizing the web ex-

perience. In: The 10th international conference on World Wide Web (WWW 2001), pp.
717–724 (2001)

5. Etgan, M., Cantoe, J.: What does getting WET (Web Event-logging Tool) mean for web
usability? In: 5th Conference on Human Factors and the Web, HFWEB 1999 (1999),
http://zing.ncsl.nist.gov/hfweb/proceedings/
etgen-cantor/index.html (accessed February 27, 2009)

6. Arroyo, E., Selker, T., Wei, W.: Usability tool for analysis of web designs using mouse
tracks. In: CHI 2006 extended abstracts on Human factors in computing systems, pp. 484–
489 (2006)

7. Atterer, R., Schmidt, A.: Tracking the interaction of users with AJAX applications for us-
ability testing. In: The SIGCHI conference on Human factors in computing systems (CHI
2007), pp. 1347–1350 (2007)

8. Chen, M.C., Anderson, J.R., Sohn, M.H.: What can a mouse cursor tell us more?: correla-
tion of eye/mouse movements on web browsing. In: CHI 2001 extended abstracts on Hu-
man factors in computing systems, pp. 281–282 (2001)

9. Mueller, F., Lockerd, A.: Cheese: tracking mouse movement activity on websites, a tool for
user modeling. In: CHI 2001 extended abstracts on Human factors in computing systems,
pp. 279–280 (2001)

	Webjig: An Automated User Data Collection System for Website Usability Evaluation
	Introduction
	Related Work
	Webjig
	Webjig::Fetch
	Webjig::Analysis

	System Evaluation
	Overview
	Experiment Procedure and Task
	Experiment Results

	Discussion
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

