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Abstract. We present a novel approach to parallel image segmentation
of volume images on shared memory computer systems with watershed
transformation by immersion. We use the domain decomposition method
to break the sequential algorithm in multiple threads for parallel com-
putation. The use of a chromatic ordering allows us to gain a correct
segmentation without an examination of adjacent domains or a final re-
labeling. We will briefly discuss our approach and display results and
speedup measurements of our implementation.

1 Introduction

The watershed transformation is a powerful region-based method for greyscale
image segmentation introduced by H. Digabel and C. Lantuéjoul [2]. The grey-
values of an image are considered as the altitude of a topological relief. The
segmentation is computed by a simulated immersion of this greyscale range.
Each local minimum induces a new basin which grows during the flooding by
iterative assigning adjacent pixels. If two basins clash the contact pixels are
marked as watershed lines.
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Fig. 1. Cell reconstruction sequence of a metal foam
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In 3d image processing the watershed transformation can be used for object
reconstruction. This is shown in figure 1 for the reconstruction of the cells of a
metal foam1 from a computer tomographic image. Due to the huge size of volume
datasets the watershed transformation is a very computation intense task and
the parallelization pays off.

The paper is organized as follows. Section 2 describes the sequential algorithm
we used as a base for our parallel implementation. Section 3 gives a detailed
description of our parallel approach and in section 4 we present some benchmarks
and discuss the results.

2 The Sequential Watershed Algorithm

2.1 Preliminary Definitions

This section outlines some basic definitions, detailed in [6], [4] and [3].
A graph G = (V, E) consists of a set V of vertices and a finite set E ⊆ V ×V

of pairs defining the connectivity. If there is a pair e = (p, q) ∈ E we call p and q
neighbors, or we say p and q are adjacent. The set of neighbors N(p) of a vertex
p is called the neighborhood of p.

A path π = (v0, v1, . . . , vl) on a graph G from vertex p to vertex q is a sequence
of vertices where v0 = p, vl = q and (vi, vi+1) ∈ E with i ∈ [0, . . . , l). The length
of a path is denoted with length(π) = l + 1.

The geodesic distance dG(p, q) is defined as the length of the shortest path
among two vertices p and q. The geodesic distance between a vertex p and a
subset of vertices Q is defined by dG(p, Q) = min

q∈Q
(dG(p, q)).

A digital grid is a special kind of graph. For volume images usually the do-
main is defined by a cubic grid D ⊆ Z

3, which is arranged as graph structure
G = (D, E). For E a subset of Z

3×Z
3 defining the connectivity is chosen. Usual

choices are the 6-Connectivity, where each vertex has edges to its horizontal,
vertical, front and back neighbors, or the 26-Connectivity, where a point is con-
nected to all its immediate neighbors. The vertices of a cubic digital grid are
called voxels.

A greyscale volume image is a digital grid where the vertices are valued by a
function g : D → [hmin..hmax] with D ⊆ Z

3 the domain of the image and hmin

and hmax the minimum and the maximum greyvalue.
A label volume image is a digital grid where the vertices are valued by a

function l : D → N with D ⊆ Z
3 the domain of the image.

2.2 Overview of the Algorithm

Vicent and Soille [7] gave an algorithmic definition of a watershed transforma-
tion by simulated immersion. The sequential procedure our parallel algorithm is
derived from is based on a modified version of their method.
1 Chrome-nickel foam provided by Recemat International (RCM-NC-2733).
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The input image is a greyvalue image g : D → [hmin..hmax], with D the
domain of the image and hmin and hmax are the minimum and maximum grey-
values respectively, and the output image l : D → N is a label image containing
the segmentation result.

The algorithm is performed in two parts. In the first part an ordered sequence
(Lhmin , . . . , Lhmax) of voxel lists is created, one list Lh for each greylevel h ∈
[hmin, . . . , hmax] of the input image g. The lists are filled with voxels p of the
image domain D so that Lh contains all voxels p ∈ D with g(p) = h. Moreover
each voxel is tagged with the special label λINIT , indicating that this voxel has
not been processed.

We have to use several particular labels to denote special states of a voxel. To
distinguish them easily from the labels of the basins their value is always below
the first basin label λ0.

To assign a label λ to a voxel p the label image at coord p is set to λ, l(p) = λ.
The second part of the sequence of lists is processed in iterative steps starting

at the lowest greylevel of the input image hmin. For each greylevel h new basins
are created respectively to local minimas of the current level h and get a distinct
label λi assigned. Further already existing basins, from former iteration steps,
are expanded if they have adjoining pixels of the greyvalue h.

The expansion of the basins at greylevel h is done before the initiation of new
basins by using a breadth-first algorithm [1]. Therefore each voxel of Lh is tagged
with the special label λMASK , to denote it belongs to the current greylevel and
has to be processed in this iteration step. This is also called masking level h.
The set Mh contains all voxels p of level h with l(p) = λMASK .

Each voxel p which has at least one immediate neighbor q that is already
assigned to a basin, so l(q) ≥ λ0 is appended to a FIFO queue QACTIV E .
Further p is tagged with the special label λQUEUE , indicating that it is in a
queue.

Starting from these pixels the adjacent basins are propagated into the set
of the of the masked pixels Mh. Each pixel of the active queue is processed
sequential as follows:

– If a pixel has only one adjacent basin, it is labeled with the same label as
the neighboring basin.

– If it is adjoining at least two different basins, it is labeled with the special
label for Watersheds λWATERSHED .

All neighboring pixels which are marked with the label λMASK are appended
to a FIFO queue QNOMINEE and are labeled with the label λQUEUE .

When the queue QACTIV E is empty the queue QNOMINEE becomes the new
QACTIV E and a new queue QNOMINEE is created. The propagation of the
basins stops when there are no more pixels in one of the queues.

For each pixel p ∈ QACTIV E the distance dG(p, q) to the next pixel q with a
lower greyvalue is the same. That condition also holds for QNOMINEE . Further
for all voxel q ∈ QNOMINEE it is true d(q) = d(p) + 1 for all p ∈ QACTIV E .

After the expansion the pixels of the current greylevel are scanned sequential
a second time. If a voxel is still tagged with the label λMASK a new basin is
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created starting at this voxel. Therefore the pixel is labeled with a new distinct
label and this label is propageted to all adjacent masked voxels, using a breadth-
first algorithm [1] as in the flooding process. The propagation stops when no
more pixels can be associated to the new basin. When there are still voxels with
l(p) = λMASK left, further basins are created in the same way until no more
voxels with λMASK label exist.

When all pixels of a greylevel are processed the algorithm continues with the
following greylevel until the maximum greylevel hmax has been processed.

Figure 3 shows a simplified example of a watershed transformation sequence
on a two dimensional image.

3 The Parallel Watershed Algorithm

For the parallel watershed transformation we apply the divide and conquer prin-
ciple. The image domain D is divided into several non-overlapping subdomains
S ⊆ D, usually into slices or blocks of a fixed size, on which the iterative steps of
the transformation are performed concurrently. For each subdomain S an own
ordered sequence of pixel lists (LS

hmin
, . . . , LS

hmax
) is created and initialized with

the voxels of S in the same way as for the sequential procedure. Further separate
FIFO queues QS

ACTIV E and QS
NOMINEE are created for each S.

As in the serial case, the sequences are processed in iterative steps starting
at the lowest greylevel of the image. For each greylevel the parallel algorithm
expands existing basins and creates new basins for each subdomain concurrently.
Due to the recursive nature of the algorithm we have to synchronize the per-
formance between the subdomains to get correct results. The masking step, in
which each voxel of the current greylevel is marked with the label λMASK and the
starting voxels for the label propagation are collected can be performed concur-
rently. The masking itself does not interact with any other subdomain. Further if
a voxel of an adjacent subdomain must be checked whether it is already labeled
there is also no problem with synchronization, because the relevant labels do not
change during this step.

When all subdomains are masked, the algorithm can continue with the ex-
pansion of already detected basins. The algorithm implies a sequence of labeling
events τp (read as labeling of pixel p), which is given by the greyvalue gradient
of the input image, the ordering of the voxel lists LS

h and the scanning order
of the used breadth-first algorithm. The order of labeling events was defined by
sequential appending of the pixels to the queues. It can be said that if q is ap-
pended to the queue after p then follows τp ≺ τq (to be read p is labeled before
q). Further for all p ∈ QS

ACTIV E , ∀S and for all q ∈ QS
NOMINEE , ∀S follows

τp ≺ τq. The label assigned to a voxel p during the expansion depends on the
labels of the already labeled voxels. The expansion relation can be formulated
as follows:

l(p) =

{
c if l(q) = c ∀q ∈ N≺(p)
λWATERSHED else

(1)
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where N≺(p) = {q ∈ N(p) : q ≺ p ∧ l(q) 	= λWATERSHED . If the sequence
changes, for e.g. when the scanorder of the breadth-first algorithm is changed,
the segmentation results also differ occasionally. Figure 2 shows an example for
such a case for a simple example in one dimension. The pixels 1 and 2 are marked
for labeling and are already appended to the queue QACTIV E . In figure 2(a) pixel
1 will be labeled before pixel 2 and in figure 2(a) pixel 2 will be labeled before
pixel 1.

As it can be seen the results of both sequences differ, because the labeling of
the second pixel was influenced by the result of the first labeling. Thus it appears
that we have to take care of the sequence of labeling events when performing a
parallel expansion.

(a) sequence a (b) sequence b

Fig. 2. Sequence dependend labeling

So if the concurrent performance does not follow the same sequence for each
execution the results may be unpredictable. Therefore we introduce a further
level of ordering of the labeling events.

Let S be the set of all subdomains of the image domain D. Further E : S →
P(S) = {X |X ⊆ S} defines the environment of a subdomain with

E(S) = {T |∃p ∈ S with ∃q ∈ N(p) ∧ q ∈ T } (2)

We define a coloring function Γ : S → C for the subdomains, with C an
ordered set of colors, so that for a subdomain S the condition

∀U, V ∈ E(S) ∪ S : Γ (U) 	= Γ (V ) (3)

holds.
Further we define a coloring for the pixels γ : D → C so that the condition

∀p ∈ S : γ(p) = Γ (S) (4)

holds.
The parallel expansion of the basins works as follows. For each color c ∈ C the

propagation is performed for all voxels in the QS
ACTIV E queues of all subdomains

S with Γ (S) = c. This is done in the sequence defined by the ordering of the
colors. For two subdomains U, V with Γ (U) < Γ (V ), U is processed before V .

Inside of a subdomain the propagation still performs sequential as depicted
in section 2.2, but subdomains S, T with Γ (S) = Γ (T ) can be performed con-
currently.
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Fig. 3. Watershed transformation sequence

All neighboring pixels which are marked with the label λMASK are appended
to the FIFO queue QS

NOMINEE of the subdomain they are element of and are
labeled with the label λQUEUE .

After all colors have been processed the QS
NOMINEE queues become the new

QS
ACTIV E queues and the propagation is continued until none of the queues of

any subdomain contains any more voxels.
Due to the color depended performance of the expansion, it never happens

that two voxels of adjacent subdomains are processed concurrently. So if voxel of
adjacent subdomain have to be checked this can be performed without additional
synchronization. Further for all pixels of any QS

ACTIV E queue follows:

∀p ∈ QS
ACTIV E , q ∈ QT

ACTIV E , S 	= T, γ(p) < γ(q) � p ≺ q (5)

So the results only depend on the domain decomposition of the image and the
order of the assigned colors.

When the expansion has finished in all subdomains, the creation of new basins
is performed. This can also be done concurrently in a similar way as by the
expansion step. For each subdomain S we create an own label counter nextlabelS

which is initialized with the value λWATERSHED +I(S), where I : S → [1..‖S‖]
is a function assigning a distinct identifier to each subdomain. When a minimum
is detected in a subdomain S, a new basin with the label nextlabelS is created
and the counter is increased by ‖S‖. The increasing by ‖S‖ avoids duplicate
labels in the subdomains.

Inside of a subdomain the propagation of a new label still performs sequen-
tial as depicted in section 2.2, but subdomains S, T with Γ (S) = Γ (T ) can be
performed concurrently, as in the expansion step. It may happen that a local
minimum spreads over several subdomains and gets different labels in each sub-
domain. To merge the different labels the propagation overrides all labels with a
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value lesser than their own. Therefore a pixel p is labeled with the highest label
of its neighborhood:

l(p) = max(l(q))
q∈N(p)

(6)

and this label is propageted to all adjacent voxels that are masked of have a
label lower than l(p). Due to the initial labeling of a new basin only affecting
the pixels of minima, this simple approach doesn’t interfere with other basins.
The propagation stops when all voxels of the basin have the same label.

When all voxel of a greylevel have been labeled with the correct label the
algorithm continues with the next greylevel until the maximum greylevel hmax

has been processed.

4 Results

To verify the efficiency of our algorithm we measured the speedup for datasets of
different sizes2, ranging from 1003 pixels to 10003 pixels with cubic subdomains
of a size of 323 pixels on a usual shared memory machine3. We have chosen
simulated data to be able to compare datasets of different sizes without clipping
scanned datasets and influencing the results. As it is shown in figure 4(b) our
algorithm scales well for image sizes above 2003 pixels. For images with 1003

and 2003 pixels there are not enough subdomains available for simultaneous
computation to utilize the machine.
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Fig. 4. Computation time and speedup or different image sizes

To prove the efficiency of our algorithm also for real volume datasets, we
measured the speedup and the timing for the watershed transformation of the
reconstruction pipeline mentioned in the introduction (see figure 1) for different

2 Simulated foam structures.
3 Dual Intel Xeon X5450@3.00GHz Quadcore.
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(a) rece-
mat2733

(b) rece-
mat4573

(c) ceramic
grain

(d) gas con-
crete

Fig. 5. Segmented datasets
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crete

Fig. 6. Distance maps
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Fig. 7. Computation time and speedup for different volume datasets

datasets. Figure 5 shows crosssections of the used datasets. In figure 5(a) and
figure 5(b) segmentations of two different chrome-nickel foam provided by Re-
cemat International are depicted, figure 5(c) shows a segmented ceramic grain
and figure 5(d) displays the pores of a gas concrete sample. The corresponding
distance maps are shown in figure 6.
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As it can be seen in figure 7 our algorithm scales the same way for real datasets
as for the simulated datasets.

We also measured the timing and speedup for different subdomain sizes rang-
ing from 103 to 1003 pixels for a sample of 10003 pixel. As it is shown in figure 8
there is an impact for very small block sizes. We assume that this results from the
large number of context switches in combination with very short computation
times for one subdomain.
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Fig. 8. Computation time for different subdomain sizes

We have presented an algorithm study in order to efficiently parallelize a
watershed segmentation algorithm. Our approach leads to a significant segmen-
tation speedup for volume datasets and produces deterministic results. It still
has the disadvantage that the segmentation depends on the domain decomposi-
tion. Our future work will research the impact of the domain decomposition on
the segmentation results.
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