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Abstract. In this paper we propose an integrated system for face detec-
tion and face recognition based on improved versions of state-of-the-art
statistical learning techniques such as Boosting and LDA. Both the de-
tection and the recognition processes are performed on facial features
(e.g., the eyes, the nose, the mouth, etc) in order to improve the recogni-
tion accuracy and to exploit their statistical independence in the training
phase. Experimental results on real images show the superiority of our
proposed techniques with respect to the existing ones in both the detec-
tion and the recognition phase.

1 Introduction

Face recognition is one of the most studied problems in computer vision, espe-
cially w.r.t. security application. Important issues in accurate and robust face
recognition is good detection of face patterns and the handling of occlusions.
Detecting a face in an image can be solved by applying algorithms developed
for pattern recognition tasks. In particular, the goal is to adopt training algo-
rithms like Neural Networks [I4], Support Vector Machines [I] etc. that can learn
the features that mostly characterize the class of patterns to detect. Within
appearance-based method, in the last years boosting algorithms [I5/T0] have
been widely adopted to solve the face detection problem. Although they seemed
to have reached a good trade-off between computational complexity and detec-
tion efficiency, there are still some considerations that leave room for further
improvements in both performance and accuracy. Shapire in [I3] proposed the
theoretical definition of boosting. A set of weak hypotheses hq, ..., hr is selected
and linearly combined to build a more robust strong classifier of the form:

T
H(x) = sign (Z atht(m)> (1)
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On such an idea, the Adabost algorithm [8] proposes an efficient iterative pro-
cedure to select at each step the best weak hypothesis from an over complete
set of features (e.g. Haar features). Such a result is obtained by maintaining a
distribution of weights D over a set of input samples S = {x;, y;} such that the
error ¢; introduced by selecting the ¢t — th weak classifier is minimum. The error
is defined as:

&= Priwp, (he(m:) Zyi) = > Dy(i) (2)

2, €Sthe () 2y

where x; is the sample pattern and y; its class. Hence, the error introduced by
selecting the hypothesis h; is given by the sum of the current weights associated
to those patterns that are misclassified by h;. To maintain a coherent distribu-
tion Dy, that for every step t guarantees the selection of such an optimal weak
classifier, the update step is as follows:

exp (—yi Y, hi(zi))
Ht Zy

where Z; is a normalization factor that allows to maintain D as a distribu-
tion [13]. From this first formulation, new evolutions of AdaBoost have been
proposed. RealBoost [9] introduced real values for weak classifiers rather then
discrete ones, its development in a cascade of classifiers [16] aims to reduce the
computational time for negative samples, while FloatBoost [I0] introduces a
backtracking mechanism for the rejection of not robust weak classifiers.

Though, all these developments suffer of a high false positive detection rate.
The cause can be associated to the high asymmetry of the problem. The num-
ber of face patterns into an image is much lower than the number of non-face
patterns. To balance the significance of the patterns depending on the belong-
ing classes can be managed only by balancing the cardinality of the positives
and negatives training data sets. For such a reason, the training data sets are
usually composed of a larger number of negative samples than positives ones.
Without this kind of control the so determined classifiers would classify positives
and negatives sample in an equal way. Obviously, since we are more interested
in detecting face patterns rather than non-face ones we need a mechanism that
introduces a degree of asymmetry into the training process regardless the com-
position of the training set. Viola a Jones in [I5], to reproduce the asymmetry of
the face detection problem into the training mechanism, introduced a different
weighting mechanism for the two classes by modifying the distribution update
step. The new updating rule is the following:

Dyyi(i) = (3)

exp (uslog vk ) exp (3 X, hu(a:))
Ht Z

where k is a user defined parameter that gives a different weight to the samples de-
pending on the belonging class. If £ > 1(< 1) the positive samples are considered

(4)

Dyi1(i) =
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more (less) important, if & = 1 the algorithm is again the original AdaBoost. Ex-
perimentally, the authors noticed that, when determining the asymmetry param-
eter only at the beginning of the process, the selection of the first classifier absorbs
the entire effect of the initial asymmetric weights. The asymmetry is immediately
lost and the remaining rounds are entirely symmetric.

For such a reason, in this paper we propose a new learning strategy that
tunes the parameter k£ in order to maintain active the asymmetry for the entire
training process. We do that both at strong classifier learning level and at cascade
definition. The resulting optimized boosting technique is exploited to train face
detectors and to train other classifiers that working on face patterns can detect
sub-face patterns (e.g. eyes, nose, mouth, etc.). This important features are used
to achieve both a face alignment process (e.g. bringing the eyes axis horizontal)
and the block extraction for recognition purposes.

Concerning the face recognition point of view, the existing approaches can be
classified in three general categories [19]: feature-based , holistic and hybrid tech-
niques (mixed holistic and feature-based methods). Feature based approaches
extract and compares prefixed feature values from some locations on the face.
The main drawback of these techniques is their dependence on an exact local-
ization of facial features. In [3], experimental results show the superiority of
holistic approaches with respect to feature based ones. On the other hand, holis-
tic approaches consider as input the whole sub-window selected by a previous
face detection step. To compress the original space for a reliable estimation of
the statistical distribution, statistical ”feature extraction techniques” such as
Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA)
[5] are usually adopted. Good results have been obtained using Linear Discrimi-
nant Analysis (LDA)(e.g., see [I8]). The LDA compression technique consists in
finding a subspace T of RM which maximizes the distances between the points
obtained projecting the face clusters into T (where each face class corresponds
to a single person). For further details, we refer to [5].

As a consequence of the limited training samples, it is usually hard to reli-
ably learn a correct statistical distribution of the clusters in T', especially when
important variability factors are present (e.g., lighting condition changes etc.).
In other words, the high variance of the class pattern compared with the lim-
ited number of training samples is likely to produce an overfitting phenomenon.
Moreover, the necessity of having the whole pattern as input makes it difficult
to handle occluded faces. Indeed, face recognition with partial occlusions is an
open problem [19] and it is usually not dealt with by holistic approaches.

In this paper we propose a ”block-based” holistic technique. Facial feature
detection is used to roughly estimate the position of the main facial features
such as the eyes, the mouth, the nose, etc. From these positions the face pattern
is split in blocks each then separately projected into a dedicated LDA space. At
run time a face is partitioned in corresponding blocks and the final recognition is
given by the combination of the results separately obtained from each (visible)
block.
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2 Multi-part Face Detection

To improve the detection rate of a boosting algorithm we considered the Asym-
boost technique [15] that assigns different weights to the two classes:

exp(yi log Vk) exp(—yi Y-, he(x:))
I, 2t

In particular, the idea we propose, instead of considering static the parameter
k, aims to tune it on the basis of the current false positives and negatives rate.

Dy11(i) = (5)

2.1 Balancing False Positives Rate

A common way to obtain a cascade classifier with a predetermined False Posi-
tives (FP) rate F'P.yscade 1S to train the cascade’s strong classifiers by equally
spreading the FP rate among all the classifiers. This holds to the following equa-
tion:
FP.oscade = H F-Psci (6)
i=1,...,N

where FP;. is the FP rate that each strong classifier of the cascade has to
perform.

However, this method is not enough to allow the strong classifier to automat-
ically control the false positive desired rate in consequence of the history of the
false positives rates. In other words, if the previous level obtained a false positive
rate that is under the predicted threshold, it is reasonable to suppose that the
new strong classifier can consider to have a new ”‘smoothed”’ FP threshold. For
this reason, during the training of the classifier at level ¢ we replaced F P;., with
a dynamic threshold, defined as

FP*t,_ 1
Pr =R () ")
It is worth noticing how the false positive rate reachable by the classifier is
updated at each level to obtain always a reachable rate at the end of the training
process. In particular, we can see how such a value increases if at the previous
step we added a weak classifier that has reduced it (FP}!~t < FP!; ') while
decreases otherwise.

2.2 Asymmetry Control

As for the false positives rate, we can reduce the total number of false negatives
by introducing a constant constraint that at each level forces the training al-
gorithm to keep the false negatives ratio as low as possible (preferable 0). This
can be achieved by balancing the asymmetry during the single strong classifier
training process. The false positives-false negatives rates represent a trade-off
that can be exploited to adopt a tuning strategy in the asymmetry for the two
rates.
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Supposing that the false negative value at the level i is quite far from the
desired threshold F'Ng,; at each step ¢ of the training we can assign a different
value to k; ¢, forcing the false negative ratio to decrease when k; ¢ is high (greater
than one). If we suppose that the magnitude of k;; directly depends on the
variation of false positives obtained at step ¢ — 1 with respect to the desired
value for such a step, we can introduce a tuning equation that increases the
weight to positive samples when the false achieved positives rate is low and

decreases it otherwise. Hence, for each each step ¢t = 1,...,T, k;; is computed
as
FP-' — FP/!
b =1t ppg )

This equation returns a value of k£ that is bigger than 1 when the false positive
rate obtained at the previous step has been lower than the desired one.

The Boosting technique described above have been applied both for search-
ing the whole face and for searching some facial features. Specifically, once the
face has been located in a new image (producing a candidate window D), we
search in D for those candidate sub-windows representing the eyes, the mouth
and the nose producing the subwindows Dj., Dye, Dy, D,. These are used to
completely partition the face pattern and produce subwindows for the forehead,
the cheekbones, etc. In the next section we explain how these blocks are used
for the face recognition task.

3 Block-Based Face Recognition

At training time each face image (XU, j = 1,..., 2) of the training set is split
in h independent blocks Bi(j) (i = 1,...,h; currently h = 9: see Figure [ (a)),
each block corresponding to a specific facial feature. For instance, suppose that
subwindow D,, (X (j)), delimiting the mouth area found in X ) is composed of
the set of pixels {p1,p2,...po}. We first normalize this window by scaling it in
order to fit a window of fixed size, used for all the mouth patterns and we obtain
D! (XYY = {q,...qm,, }, where M,, is the cardinality of the standard mouth
window. Block B,,, associated with D/ is given by the concatenation of the
(either gray-level or color) values of all the pixels in D/ :

BY = (@), -(gm, )" (9)

Using {Bi(j)} (j = 1,...,z) we obtain the eigenvectors corresponding to the
LDA transformation associated with the i-th block:
W; = (wi, ..., wi )T (10)

Each block ng ) of each face of the gallery can then be projected by means of
W, into a subspace T; with K; dimensions (being K; << M;):

BY = i+ wic?, (11)
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(a) (b)

Fig. 1. Examples of missed block tests for occlusion simulation

where p; is the mean value of the i-th block and C’i(j ) is the vector of coefficients
corresponding to the projection values of BZ(] ) in T;. We can now represent each
original face X () of the gallery by means of the concatenation of the vectors
eV,

R(XW)y=(CP oCH o..0C)T (12)

R(X) is a point in a feature space Q having K; + ... + K}, dimensions. Note
that, due to the assumed independence of block B; from block Bj (i # j), we
can use the same image samples to separately compute both W; and W;. The
number of necessary training samples is now dependent from the dimension of
the largest block K = max;—1_. n{K;}, being K < K; + ... + K}. Splitting the
pattern in subpatterns offers us the possibility to deal with lower dimensional
feature spaces and then using less training samples. The result is a system more
robust to overfitting problems.

At testing time first of all we want to exclude from the recognition process
those blocks which are not completely visible (e.g., due to occlusions). One of the
problems of holistic techniques, in fact, is the necessity to consider the pattern
as a whole, even when only a part of the object to be classified is visible. For this
reason, at testing time we use a skin detector in order to estimate the percent-
age of skin in each face block and we discard from the subsequent recognition
process those blocks with insufficient skin pixels. Given a test image X and a
set of v visible facial blocks B;, (I =1,...,v) of X we project each B;, into the
corresponding subspace Tj,, obtaining:

Z=(Cso0..00;)7. (13)

Z represents the wvisible patterns and is a point in the subspace U of Q). The
dimensionality of U is K;, + ... + K;, and U is obtained projecting @) into the
dimensions corresponding to the visible blocks B;, (I = 1,...,v). Finally, we use
k-Nearest Neighbor (k-NN) to search in U for the points closest to Z which
indicate the gallery faces most similar to X that will be ranked and presented
to the user.

It is worth noticing that the projection of @ into U is trivial and efficient
to compute, since at testing time (when using k-NN) we only have to exclude,



Improved Statistical Techniques for Multi-part Face Detection 337
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Fig. 2. False positives (FP) and negatives (FN) obtained while testing small strong
classifiers. The continuous, dotted and dashed lines represent performance obtained
using respectively AdaBoost, AsymBoost (k=1.1) and the proposed strategy. With
the same number of features, the false negatives (a) decrease faster when we apply
asymmetry. Even more if we tune the asymmetry. This means our solution has a higher
detection rate by using a lower number of features while keeping the false positives low
(b). In (c), the lower number of features necessary by the proposed solution (dashed
line) to achieve a good detection rate yields to a reduction of about 50% in computation
time with respect to Adaboost (continuous line).

in computing the Euclidean distance between Z and an element R(X ) of the
system’s database, those coefficients corresponding to the non visible blocks.

4 Experimental Results

Face Detection. The first set of experiments is aimed to compare four small
single strong classifiers trained by using the presented algorithm with ones ob-
tained by using standard boosting techniques. The input set consisted on 6500
positive (face) samples and 6500 negative (non—face) samples, collected from dif-
ferent sources and scaled in a standard format 27 x 27 pixels. In Fig. 2l the false
negatives and false positive rates of three considered algorithms are plotted. The
compared algorithms are AdaBoost, AsymBoost and the proposed one. Analyz-
ing these plots we can conclude that with the same number of weak classifiers
the tuning strategy that we propose achieves a faster reduction of false negatives,
while keeping low false positives.

For the second experiment, two cascades of twelve levels have been trained.
At each round, while the face set remains the same, a bagging process is applied
to negative samples to ensure a better training of the cascade [2]. A first im-
provement consists in a considerable reduction of the false negatives produced
by the proposed solution with respect to AsymBoost. In addition, as showed
for single strong classifiers, also for cascades the number of features required by
the proposed solution to achieve the same detection rate of AsymBoost is much
lower. This means building a cascade with lighter strong classifiers yielding to
a faster computation. As matter of fact testing both asymmetric algorithm to a
benchmark test set (see Fig. 7 the global evaluation costs for the proposed
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solution are much lower with respect to the original AsymBoost. In particular,
we have a reduction that is of about 50%.

Face Recognition. We have performed two batteries of experiments: the first
with all the patterns visible (using all the facial blocks as input, i.e., with v = h)
and the second with only a subset of the blocks. In the first type of experiments
we aim to show that sub-block based LDA outperforms traditional LDA in rec-
ognizing non-occluded faces. In the second type of experiments we want to show
that the proposed system is effective even with partial information, being able
to correctly recognize faces with only few visible blocks.

Both types of experiments have been performed using two different datasets:
the gray-scale images of the ORL [I2] and (a random subset of) the colour
images of the Essex [6] database. Concerning the ORL dataset, for training we
have randomly chosen 5 images for each of the 40 individuals this database
is composed of and we used the remaining 200 images for testing. Concerning
Essex, we have randomly chosen 40 individuals of the dataset, using 5 images
each for training and other 582 images of the same individuals for testing.

In the first type of experiments we have used both LDA and PCA techniques in
order to provide a comparison between the two most common feature extraction
techniques in both block-based and holistic recognition processes. Figure[3]shows
the results concerning the top 10 corrected individuals in both the ORL and
the Essex dataset. In the (easier) Essex dataset, both holistic and block-based
LDA and PCA recognition techniques perform very well, with more than 98% of

ORL Essex
100 100

%5 e 99,8

. P 7
Ny o /.
80 /Pi._/

99 —

Correct (%)
Correct (%)

// —+— PCA 28,8 /— —4 PCA L
" i S I [ / / =& ||
—z— SUB-PCA ' —— 5UB-PCA
nrE il 984
s SUb-LDA T e SUB-LDA [
5] 98,2 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 85 6 7 8 9 10
Top k rank Top Kk rank

Fig. 3. Comparison between standard and sub-pattern based PCA and LDA with the
ORL and the Essex datasets

Table 1. Test results obtained with missed blocks

Occlusion ORL (%) Essex (%)
A 71.35 93.47
B1 74.59 98.28
B2 68.11 98.45
C1 69.19 97.42
C2 62.70 96.91
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correct individuals retrieved in the very first position. Traditional LDA and PCA
as well as their corresponding block based versions (indicated as ”sub-LDA” and
"sub-PCA” respectively) have comparable results (being the difference among
the four tested methods less than 1%). Conversely, in the hardier ORL dataset,
sub-PCA and sub-LDA clearly outperform holistic approaches, with a difference
in accuracy of about 5 — 10%. We think that this result is due to the fact that
the lower dimensionality of each block with respect to the whole face window
permits the system to more accurately learn the pattern distribution (at training
time) with few training data (see Section B]).

Table [Tl shows the results obtained using only subsets of the blocks. In details,
we have tested the following block combinations (see Figure [l (b)):

— A: The whole face except the forehead,
— B: The whole face except the eyes-nose zone,
— (' The whole face except the lower part.

Table [ refers to sub-LDA technique only and to top I ranking (percentage
of correct individuals retrieved in the very first position). As it is evident from
the table, even with very incomplete data (e.g., the C2 test), block based LDA
performs surprisingly well.

5 Conclusions

In this paper we have presented some improvements in state-of-the-art statisti-
cal learning techniques for face detection and recognition and we have shown an
integrated system performing both tasks. Concerning the detection phase, we
propose a method to balance the asymmetry of boosting techniques during the
learning phase. In this way the detection performances show a faster detection
and a lower FN rate. Moreover, in the recognition step, we propose to com-
bine the results of separate classifications, each one obtained using a particular
anatomically significant portion of the face. The resulting system is more robust
to overfitting and can better deal with possible face occlusions.
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istry of University and Scientific Research within the framework of the project
“Ambient Intelligence: event analysis, sensor reconfiguration and multimodal
interfaces” (2006-2008).
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