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Abstract. A conceptual schema specifies the relevant information about the 
domain and how this information changes as a result of the execution of 
operations. The purpose of reasoning on a conceptual schema is to check 
whether the conceptual schema is correctly specified. This task is not fully 
formalizable, so it is desirable to provide the designer with tools that assist him 
or her in the validation process. To this end, we present a method to translate a 
conceptual schema with operations into logic, and then propose a set of 
validation tests that allow assessing the (un)correctness of the schema. These 
tests are formulated in such a way that a generic reasoning method can be used 
to check them. To show the feasibility of our approach, we use an 
implementation of an existing reasoning method. 
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1   Introduction 

The correctness of an information system is largely determined during requirements 
specification and conceptual modeling, since errors introduced at these stages are 
usually more expensive to correct than those made during design or implementation. 
Thus, it is desirable to detect and correct errors as early as possible in the software 
development process. Moreover, this is one of the key problems to solve for achieving 
the goal of automating information systems building [15]. 

The correctness of a conceptual schema can be seen from two different points of 
view. From an internal point of view, correctness can be determined by reasoning on 
the definition of the schema itself, without taking the user requirements into account. 
This is equivalent to answering to the question Is the conceptual schema right?. There 
are some typical properties that can be automatically tested to determine this kind of 
correctness like schema satisfiability, operation executability, etc. 

On the other hand, from an external point of view, correctness refers to the 
accuracy of the conceptual schema regarding the user requirements [1] and it can be 
established by answering to the question Are we building the right conceptual 
schema?. Testing whether a schema is correct in this sense may not be completely 
automated since it necessarily requires the user intervention. Nevertheless, it is 
desirable to provide the designer with a set of tools that assist him during the 
validation process. 

A conceptual schema consists of a structural part, which defines the relevant static 
aspects of the domain, and a behavioral part, which specifies how the information 
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represented in the structural part changes as a result of the execution of system 
operations [11]. System operations specify the response of the system to the 
occurrence of some event in the domain, viewing the system as a black box and, thus, 
they are not assigned to classes. They define the only changes that can be performed 
on the IB.  

Figs. 1 and 2 show a possibly incorrect conceptual schema of a (simplified) on-line 
auction site that we will use as a running example. 

A test that the designer can perform to validate the internal correctness of the 
structural schema is to check whether it is satisfiable, that is, if it accepts at least one 
instance satisfying all the constraints. In our example, the following instantiation: 
"Mick is a registered user who owns a book, and bids 200$ for a bicycle, owned by 
Angie, who had set a starting price of 180$" satisfies all the graphical and textual 
constraints, which demonstrates that the structural schema is satisfiable.  

However, the fact that the structural part is satisfiable does not necessarily imply 
that the whole conceptual schema also is. That is, when we take into account that the 
only changes admitted are those specified in the behavioral schema, it may happen 
that the properties fulfilled by the structural schema alone are no longer satisfied. 

  

Fig. 1. The structural schema of an on-line auction site 

 

Fig. 2. A partial behavioral schema corresponding to the structural schema of Figure 1 

Op: registerUser(id: String, email: String, ccard: String)
Pre:  
Post: Registerd.allInstances()-> exists(u | u.oclIsNew() and  

u.id = id and u.email = email and u.credit-card = ccard) 
 

Op: unregisterUser(u: User, reason:String) 
Pre: u.oclIsTypeOf(Registered) 
Post: u.oclIsTypeOf(Unregistered) and u.reason = reason 

and not u.oclIsTypeOf(Registered) 
 

Op: placeBid(p: Product, u: User, value: Float) 

Pre: u.oclIsTypeOf(Registered) 

Post: Bid.allInstances()-> exists(b | b.oclIsNew() and b.user = u 
and b.product = p and b.amount = value)  

 
Op: offerProduct(u: User, id: String, desc: String, sp: Float) 
Pre: u.oclIsTypeOf(Registered) 
Post: Product.allInstances()->exists(p| p.oclIsNew() and p.id=id and 

p.description=desc and p.starting-price=sp and p.owner=u) 

Integrity constraints: 

- Users and Products are identified 
by their id 

- The amount of a bid must be 
greater than the starting price of the 
product 



 Reasoning on UML Conceptual Schemas with Operations 49 

In our example, although it is possible to find instances of User satisfying all the 
constraints as we have just seen, there is no operation that successfully populates this 
class. The operation registerUser seems to have this purpose but it never succeeds 
since it does not associate the new user with a Product by means of Offered by, which 
violates the cardinality constraint of the role offered-prod. As a consequence, since 
the only operation that creates a product (i.e. offerProduct) requires an existing user, 
there can not be any instance of Product either. Then, we have that this schema can 
never be populated using the operations defined and, although the structural part of 
the schema is semantically correct, the whole conceptual schema is not. 

The main contribution of this work is to propose an approach to help to validate a 
conceptual schema with a behavioral part. To do this, we provide a method to 
translate a UML schema, with its behavioral part consisting of operations specified in 
OCL, into a set of logic formulas. The result of this translation is such that ensures 
that the only changes allowed are those specified in the behavioral schema, and can be 
validated using any existing reasoning method capable to deal with negation of 
derived predicates. To our knowledge, ours is the first approach that validates jointly 
the structural and behavioral parts of a UML/OCL conceptual schema. 

We provide the designer with several validation tests which allow checking the 
correctness of a schema from the internal and external points of view mentioned 
above. Some of the tests are automatic and are directly generated from the conceptual 
schema while others are user-defined and give the designer the freedom to ask 
whichever questions he wants regarding situations that hold (do not hold) in the 
domain to ensure that they are (not) accepted by the schema. In both cases, the 
designer intervention is required to fix any problem detected by the tests. 

We also show the feasibility of our approach by using an implementation of an 
existing reasoning method, which has had to be extended for our purposes.  

Basic concepts are introduced in section 2. Section 3 presents our method to 
translate a schema with operations into logic. Section 4 presents our approach to 
validation. Section 5 shows its feasibility by means of an implementation. Section 6 
reviews related work. Finally, we present our conclusions in section 7.  

2   Basic Concepts 

The structural schema consists of a taxonomy of entity types together with their 
attributes, a taxonomy of associations among entity types, and a set of integrity 
constraints over the state of the domain, which define conditions that each instantiation 
of the schema, i.e. each state of the information base (IB), must satisfy. Those 
constraints may have a graphical representation or can be defined by means of a 
particular general-purpose language. 

In UML, a structural schema is represented by means of a class diagram, with its 
graphical constraints, together with a set of user-defined constraints, which can be 
specified in any language (Figure 1). As proposed in [21], we will assume these 
constraints are specified in OCL. 

The content of the IB changes due to the execution of operations. The behavioral 
schema contains a set of system operations and the definition of their effect on the IB. 
System operations specify the response of the system to the occurrence of some event in 
the domain, viewing the system as a black box and, thus, they are not assigned to classes 
[11]. These operations define the only changes that can be performed on the IB. 
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An operation is defined by means of an operation contract, with a precondition, 
which expresses a condition that must be satisfied when the call to the operation is 
done, and a postcondition, which expresses a condition that the new state of the IB 
must satisfy. The execution of an operation results in a set of one or more structural 
events to be applied to the IB. Structural events are elementary changes on the content 
of the IB, that is, insertions or deletions of instances. We assume a strict interpretation 
of operation contracts [17] which prevents the application of an operation if any 
constraint is violated by the state satisfying the postcondition. 

The operation contracts of the behavioral schema of our running example are shown 
in Figure 2. Each contract describes the changes that occur in the IB when the operation 
is invoked. Since we assume a strict interpretation, there is no need to include 
preconditions to guarantee the satisfaction of integrity constraints. However, if those 
preconditions were added, they would also be correctly handled by our method. 

As we will see in Section 3, we translate a UML and OCL schema such as the one of 
the example into a set of first-order logic formulas in order to use a reasoning method to 
determine several properties on it. The OCL considered consists of all the OCL 
operations that result in a boolean value, including select and size, which can also be 
handled by our method despite returning a collection and an integer. The logic 
formalization of the schema consists of a set of rules and conditions defined as follows.  

A term is either a variable or a constant. If p is a n-ary predicate and T1, …, Tn are 
terms, then p(T1, …, Tn) or p(T̄)   is an atom. An ordinary literal is either an atom or a 
negated atom, i.e. ¬ p(T̄) . A built-in literal has the form of A1θ A2, where A1 and A2 
are terms. Operator θ is either <, ≤, >, ≥, = or ≠. 

A normal clause has the form: A ← L1 ∧ ... ∧ Lm with m ≥ 0, where A is an atom and 
each Li is a literal, either ordinary or built-in. All the variables in A, as well as in each Li, 
are assumed to be universally quantified over the whole formula. A is the head and L1 ∧ 
… ∧ Lm is the body of the clause. A fact is a normal clause of the form p(ā), where p(ā) 
is a ground atom. A deductive rule is a normal clause of the form:  p(T̄)  ← L1 ∧ … ∧ Lm 
with m ≥ 1, where p is the derived predicate defined by the deductive rule. A condition 
is a formula of the (denial) form: ← L1 ∧ … ∧ Lm with m ≥ 1. 

Finally, a schema S is a tuple (DR, IC) where DR is a finite set of deductive rules 
and IC is a finite set of conditions. All these formulas are required to be safe, that is, 
every variable occurring in their head or in negative or built-in literals must also occur 
in an ordinary positive literal of the same body. An instance of a schema S is a tuple 
(E,S) where E is a set of facts about base predicates. DR(E) denotes the whole set of 
ground facts about base and derived predicates that are inferred from an instance 
(E,S), and corresponds to the fixpoint model of DR ∪ E.  

3   Translation of the Conceptual Schema into Logic 

Validation tests that consider the structural schema alone are aimed at checking that 
an instantiation fulfilling a certain property and satisfying the integrity constraints can 
exist. In this case, classes, attributes and associations can be translated into base 
predicates that can be instantiated as desired, as long as integrity constraints are 
satisfied, in order to find a state of the IB that proves a certain property [16]. 

However, when considering also the behavioral schema, the population of classes 
and associations is only determined by the events that have occurred. In other words, 
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the state of the IB at a certain time t is just the result of all the operations that have 
been executed before t, since the instances of classes and associations cannot be 
created or deleted as desired. For instance, according to our schema in Fig. 1 and the 
operations defined, Angie may only be an instance of Registered at a time t if the 
operation registerUser has created it at some time before t and the operation 
unregisterUser has not removed it between its creation and t. 

For this reason, it must be guaranteed that the population of classes and associations 
at a certain time depends on the operations executed up to that moment. To do this, we 
propose that operations are the basic predicates of our logic formalization, since their 
instances are directly created by the user. Classes and associations will be represented 
by means of derived predicates instead of basic ones, and their derivation rules will 
ensure that their instances are precisely given by the operations executed. 

This approach clearly differs from our previous work [16, 18], where we proposed 
to formalize classes, attributes and associations as base predicates. Note, however, 
that a formalization of this kind does not ensure that instances of classes and 
associations result from the execution of operations. 

3.1   Deriving Instances from Operations 

Classes and associations are represented by means of derived predicates whose 
derivation rules ensure that their instances are given by the occurrence of operations, 
which are the base predicates of our formalization of the schema. Then, an instance of 
a predicate p representing a class or association exists at time t if it has been added by 
an operation at some time t2 before t, and has not been deleted by any operation 
between t2 and t. Formally, the general derivation rule is:  

p([P,]P1,...,Pn,T) ← addP([P,]P1,...,Pn,T2) ∧ ¬deletedP(Pi,...Pj,T2,T) ∧ T2≤T ∧ time(T) 
deletedP(Pi,...,Pj,T1,T2) ← delP(Pi,..,Pj,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

where P is the OID (Object Identifier), which is included if p is a class. Pi,...,Pj are the 
terms of p that suffice to identify an instance of p according to the constraints defined 
in the schema. In particular, if p is a class (or association class), P=Pi=Pj. The 
predicate time indicates which are the time variables that appear in the derived 
predicate we are defining. As well as those representing operations, time is a base 
predicate since its instances cannot be deduced from the rest of the schema. Predicates 
addP and delP are also derived predicates that hold if some operation has created or 
deleted an instance of p at time T, respectively. They are formalized as follows. 

Let op-addPi be an operation of the behavioral schema, with parameters 
Par1,...,Parn and precondition prei such that its postcondition specifies the creation of 
an instance of a class or association p. For each such operation we define the 
following rule:  

addP([P,]Pari,...,Park,T) ← op-addPi([P,]Par1,...,Parm,T) ∧ prei(Tpre) ∧ Tpre=T-1 ∧ time(T) 

where Pari,..,Park are those parameters of the operation that indicate the information 
required by the predicate p, and T is the time in which the operation occurs. The 
literal prei(Tpre) is the translation of the precondition of the operation, following the 
same rules used to translate OCL integrity constraints [16]. Note that, since the 
precondition must hold just before the occurrence of the operation, the time of all its 
facts is T-1. 
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Similarly, for each operation op-delPi(Par1,...,Parn,T) with precondition prei that 
deletes an instance of p we define the derivation rule: 

delP(Pari,...Parj,T) ← op-delPi(Par1,...,Parn,T) ∧ prei(Tpre) ∧ Tpre=T-1 ∧ time(T) 

where Pari,...,Parj are those parameters of the operation that identify the instance to 
be deleted. Thus, if p is a class or association class, delP will have a single term in 
addition to T, which corresponds to the OID of the deleted instance. 

To completely define the above derivation rules for each predicate representing an 
element of the structural schema, we need to know which OCL operations of the 
behavioral schema are responsible for creating or deleting its instances. For our 
purpose, we assume that operations create instances with the information given by the 
parameters or delete instances that are given as parameters. A single operation can 
create and/or delete several instances. We are not interested in query operations since 
they do not affect the correctness of the schema. 

Several OCL expressions can be used to specify that an instance exists or not at 
postcondition time. For the sake of simplicity, we consider a single way to specify 
each of these conditions, since other OCL expressions with equivalent meaning can 
be easily rewritten in terms of the ones we consider. Under this assumption, we define 
the rules to identify the creation and deletion of instances in OCL postconditions:  

R1. An instance c(I,A1,...,An,T) of a class C is added by an operation if its 
postcondition includes the OCL expression: C.allInstances()->exists(i| 
i.oclIsNew() and i.attri=ai) or the expression: i.oclIsTypeOf(C) 
and i.attri=ai, where each attri is a single-valued attribute of C.  

R2. An instance c(I,P1,...,Pn,A1,...,Am,T) of an association class C is added by an 
operation if its postcondition includes the expression: C.allInstances()-> 
exists(i| i.oclIsNew() and i.part1=p1 and...and i.partn=pn  
and i.attr1=a1 and...and i.attrm=am) or the expression: 
i.oclIsTypeOf(C) and i.part1=p1 and ... and i.partn=pn  and 
i.attr1=a1 and...and i.attrm=am, where each parti is a participant that 
defines the association class, and each attrj is a single-valued attribute of C. 

R3. An instance r(C1,C2,T)  of a binary association R between objects C1 and C2, with 
roles role-c1 and role-c2 in r is added by an operation if its postcondition contains 
the OCL expression: ci.role-cj = cj, if the multiplicity of role-cj is at most 1  
or the expression: ci.role-cj-> includes(cj), if the multiplicity of role-cj is 
greater than 1. This rule also applies to multi-valued attributes. Creation or 
deletion of instances of n-ary associations with n>2 cannot be expressed in OCL 
unless they are association classes, which are considered in the previous rule. 

R4. An instance c(I,A1,...,An,T) of a class C is deleted by an operation if its 
postcondition includes the expression: Cgen.allInstances()->excludes(i) 
or the expression: not i.oclIsTypeOf(Cgen), where Cgen is either the class C 
or a superclass of C. 

R5. An instance c(I,P1,...,Pn,A1,...,Am,T) of an association class is deleted by an 
operation if its postcondition includes: C.allInstances()-> excludes(i), 
or: not i.oclIsTypeOf(C), or if any of its participants (P1,...,Pn) is deleted. 

R6. An instance r(C1,C2,T) of a binary association R between objects C1 and C2, with 
roles role-c1 and role-c2 in r is deleted by an operation if its postcondition includes: 
ci.role-cj ->excludes(cj)or if any of its participants (C1 or C2) is deleted. 
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For instance, according to the previous translation rules, the class Registered of our 
example will be represented by means of the clauses:  

registered(U,Id,Email,Ccard,T) ← addRegistered(U,Id,Email,Ccard,T2)  
∧ ¬deletedRegistered(U,T2,T) ∧ T2≤T ∧ time(T) 

deletedRegistered(U,T1,T2) ← delRegistered(U,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

where U corresponds to the unique OID required by every instance of a class. In turn, 
addRegistered and delRegistered are derived predicates whose definition depends on 
the operations of the behavioral schema that insert and delete instances of the class 
Registered. The operation registerUser creates an instance of 
registered(U,Id,Email,C-card,T) according to R1, since its postcondition includes the 
expression Registered.allInstances()->exists(u| u.oclIsNew()and 

u.e-mail=e-mail and u.id=id and u.credit-card=ccard).. Since the 
other operations do not create instances of Registered, there is a single derivation rule 
for addRegistered: 

addRegistered(U,Id,Email,Ccard,T) ← registerUser(U,Id,Email,Ccard,T) ∧ time(T) 

We also need to find which operations are responsible for deleting instances of 
Registered in order to specify the derivation rule of delRegistered. The operation 
unregisterUser is the only one that deletes instances of Registered according to R4, 
since it includes the OCL expression not u.oclIsTypeOf(Registered). Its 
postcondition also includes the creation of an unregistered user, but this will be taken 
into account when specifying the derivation rules of addUnregistered for predicate 
unregistered. This time the precondition is not empty, and requires that u is an 
instance of Registered, so the derivation rule in this case is: 

delRegistered(U,T) ←unregisterUser(U,T) ∧ registered(U,Id,E,Cc,Tpre) ∧ Tpre=T-1 ∧ time(T) 

Since a modification can be regarded as a deletion followed by an insertion, no 
specific derived predicates are needed to deal with them. 

3.2   Constraints Generated 

Since we assume that events cannot happen simultaneously, we need to define 
constraints to guarantee that two operations cannot occur at the same time. 
Constraints are expressed as formulas in denial form, which represent conditions that 
cannot hold in any state of the IB. Therefore, for each operation o with parameters 
P1,...,Pn we define the following constraint for each parameter Pi: 

← o(P11,...,Pn1,T) ∧ o(P12,...,Pn2,T) ∧ Pi1 <> Pi2 

And for each pair o, o2 of operations we define the constraint: 

←o(P1,...,Pn,T) ∧ o2(Q1,...,Qm,T) 

In our example, unregisterUser(U,Reason,T) requires the constraints: 

 ←unregisterUser(U,R,T) ∧ unregisterUser(U2,R2,T) ∧ U <> U2 
 ←unregisterUser(U,R,T) ∧ unregisterUser(U2,R2,T) ∧ R <> R2 

and, for each other operation of the schema, a constraint like: 

 ←unregisterUser(U,R,T) ∧ registerUser(Id,Email,Ccard,T) 
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Moreover, the constraints of the UML structural schema are also translated into 
this kind of formulas. The set of constraints needed is exactly the one resulting from 
the translation of the structural schema [16], but now they are defined in terms of 
derived predicates instead of basic ones. 

4   Our Approach to Validation 

Our approach to validation is aimed at providing the designer with different kinds of 
tests that allow him to assess the correctness of the conceptual schema being defined. 
All of them take into account both the structural and the behavioral parts of the 
conceptual schema. 

We express all tests in terms of checking the satisfiability of a derived predicate. 
So, for each validation test to be performed, a derived predicate (with its 
corresponding derivation rule) that formalizes the desired test is defined. With this 
input, together with the translated schema itself, any satisfiability checking method 
that is able to deal with negation of derived predicates can be used to validate the 
schema. We illustrate our approach using the translation of our example obtained as 
explained in Section 3. 

4.1   Is the Conceptual Schema Right? 

The tests devoted to check the internal correctness of the schema can be automatically 
defined, i.e. they can be performed without the designer intervention. Some of them 
correspond to well known reasoning tasks (such as schema satisfiability) while others 
refer to additional properties that can be automatically drawn from the conceptual 
schema and which are an original contribution of this paper. 

4.1.1   Checking Strong Satisfiability 
A schema is strongly satisfiable if there is at least one fully populated state of the IB 
satisfying all the constraints [12]. In the presence of operations, this means checking 
whether they allow creating at least a complete valid instantiation. 

To perform this test, we need to define a derived predicate such that it is true when 
the schema is strongly satisfiable, i.e. if it is possible to have an instance of all classes 
and associations of the schema. In our example:  

sat ← registered(U,Uid,Email,Ccard,T) ∧ unregistered(U2,Uid2,Email2,Reason,T) ∧  
product(P,Pid,Descr,St-pr,T) ∧ bid(B,Prod,Bidder,Amt,T) ∧ offeredBy(P2,Owner,T) 

As we discussed in the introduction, the schema of our example is not strongly 
satisfiable when the behavior of the operations is taken into account. To avoid this 
mistake, we may replace the original operation registerUser by the following one 
responsible for creating both an instance of Registered and an instance of a Product 
that will be offered by the new user when he is registered:  

Op: registerUser(id: String, email: String, ccard: String, pid: 
String, descr: String, st-price: Float) 

Pre:  
Post: Registered.allInstances()->exists(u|u.oclIsNew() and u.e-mail 

= email and u.c-card=ccard and u.offered-prod->exists(p | 
p.oclIsNew() and p.id=pid and p.description=descr and 
p.starting-price=st-price)) 
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Now, if we check satisfiability of the predicate sat, the answer is that the schema is 
strongly satisfiable. The following sample instantiation shows that all classes can be 
populated at time 4. It only includes instances of base predicates, since the derived 
ones can be obtained from them. Since our base predicates correspond to the 
operations, the sample instantiations obtained give a sequence of operation calls that 
leads to a state that is valid according to the schema: 

{registerUser(john,john@upc.edu,111, p1, pen,10,1), unregisterUser(john,2), 
  registerUser(mary,mary@upc.edu,222,p2,pen,20,3), placeBid(mary,p1,25,4)} 

That is, we need to register a new user John at time 1 and then unregister him to 
have an instance of Unregistered. After that, we create another user Mary to have an 
instance of Registered. Finally, to populate the class Bid, Mary bids for the pen p1.  

4.1.2   Automatically Generated Tests 
Following the ideas suggested by model-based testing approaches [20], there are some 
tests that can be automatically drawn from the concrete schema to be validated. As 
usual, they will help the designer to detect potentially undesirable situations admitted by 
the schema. Note, however, that we can already determine these situations at the 
conceptual schema level while, in general, model-based testing requires an 
implementation of the software system to execute the tests. The definition of an 
exhaustive list of such kind of tests is out of the scope of this paper. 

For instance, in our example, although a product may have no owner according to the 
cardinality constraint 0..1 of owner, it will always have exactly one owner in practice 
with the given operations. This means that there is probably something that the designer 
overlooked when specifying the behavioral schema like an operation to allow users 
withdrawing offered products or that the cardinality constraint should be just 1. 

The derivation rule that formalizes this situation, which can be automatically 
generated from the information provided by the conceptual schema, is the following: 

unownedProd ←product(P,Id,Descr,St-price,,T) ∧ ¬hasOwner(P,T) 
hasOwner(P,T) ←offeredBy(P,Owner,T) 

The absence of a sequence of operations satisfiying unownedProd shows that the 
conceptual schema does not admit products without owner and, therefore, that the 
cardinality constraint of owner is not properly defined. We assume that the designer 
decides to define the cardinality constraint of owner to exactly 1 to fix this situation. 

The general form of the previous test is as follows. If the predicate minCardAssoc 
is not satisfiable, it means that there is a potentially undesirable situation:  

minCardAssoc ← classJ(Pj,...,T) ∧  ¬hasAssoc(Pj,T) 
hasAssoc(P,T) ← assoc([A], P1,...,Pi,...,Pn,T)    

for each j<>i representing a participant of Assoc, where Pi is the participant with 
minimum cardinality 0. 

4.1.3   Testing Properties of the Operations 
When dealing with operations additional validation tests can be performed, namely 
applicability and executability of each operation [4]. An operation is applicable if 
there is a state where its precondition holds. An operation is executable if it can be 
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executed at least once, i.e. if there is a state where its postcondition holds, together 
with the integrity constraints, and such that its precondition was also true in the 
previous state. 

To illustrate these properties, let us consider an additional operation 
removeProduct to delete products: 

Op: removeProduct(p: Product) 
Pre: p.owner->isEmpty() 
Post: Product.allInstances()->excludes(p) 

As can be seen, the precondition of this operation requires that the product being 
removed has no owner, which is not possible according to the cardinality constraint 1 
of owner, just redefined in the previous section. This means that this operation is not 
applicable and the designer should avoid this situation by, for example, modifying the 
precondition. 

The formalization for an operation O with precondition pre(t) is:  

applicable_O ← pre(T) 

If this applicable_O is not satisfiable, the operation is not applicable. 
Although an operation is applicable, it may never be successfully executed because 

it always leaves the IB in an inconsistent state. For instance, let us consider an 
additional operation removeUser that deletes the specified user as long as he or she 
has not bidden for any product: 

Op: removeUser(u: User) 
Pre: u.bid->isEmpty() 
Post: User.allInstances()->excludes(u) 

This operation is applicable, since its precondition can be satisfied, but the 
postcondition removes a user, which is necessarily the owner of some product 
according to the cardinality constraint 1..* of offered-prod. Since this operation does 
not remove the products offered by the user, the resulting state of the IB will always 
violate the cardinality constraint 1 of owner for all products offered by u. This means 
that the execution of this operation will always be rejected because it is impossible to 
satisfy its postcondition and the integrity constraints at the same time. 

To check executability, an additional rule has to be added to the translation of the 
schema to record the execution of the operation. In this case, if executed_O is 
satisfiable, then O is executable: 

executed_O ← o(P1,...,Pn,t) ∧  pre(T-1) 

4.2   Is It the Right Conceptual Schema? 

Once the internal correctness of the schema is ensured by the previous tests, the 
designer will need to check its external correctness, i.e. whether it satisfies the 
requirements of the domain. 

Our approach allows testing whether a certain desirable state that the designer may 
envisage is acceptable or not according to the current schema. The designer may 
define such a state either by means of a set of instances that classes and associations 
should contain at least; or by a derived predicate that defines it declaratively. Once a 
test is executed, the designer should compare the obtained results to those expected 
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according to the requirements and apply modifications to the conceptual schema if 
necessary. 

For instance, an interesting question could be “May a user place a bid on a 
product he is offering?.” To test this situation, the designer should define the rule:  

bidderAndOwner ← bid(B,Prod,Usr,Amt,T) ∧  offeredBy(Prod,Usr,T) 

In this case, bidderAndOwner is satisfiable, as shown by the sample instantiation: 

{registerUser(john, john@upc.edu, 111, prod1, pen, 10, 1), placeBid(john, prod1, 15, 3) } 

This result might indicate that the conceptual schema should restrict a user to place 
a bid on the products he owns either by defining an additional constraint in the 
structural schema or by strengthening the precondition of the operation placeBid. 

As mentioned above, the designer may also specify additional tests by giving 
several instances of classes and associations and check whether there is at least a state 
that contains them (probably in addition to other instances). As an example, the 
designer could wonder whether a certain user, e.g. joan, may place two bids for the 
same product, e.g. book1. This situation may be tested by determining whether there 
is a state that contains the instances {bid(1,book1,joan,9,1), bid(5,book1,joan,25,7)}, 
obtaining a negative answer in this case since, according to the semantics of 
associations, two instances of Bid cannot be defined by the same instances of User 
and Product .Since a user should be able to rebid for a product, this schema is not 
correct and should be modified by changing the definition of Bid. 

By studying the results of the previous tests, and with his knowledge about the 
requirements of the system to be built, the designer will be able to decide if the 
schema is correct, and perform the required changes if not.  

Checking the external correctness of a schema can also be partially automated by 
generating additional tests that check other kinds of properties. For instance, given a 
recursive association Assoc, it may be interesting to check whether an instance of the 
related class can be associated to itself. If the predicate assocHasCycles is satisfiable, 
then a constraint to guarantee that the association is acyclic or irreflexive, as it is 
usual in practice, may be missing:  

assocHasCycles ← assoc(X,X,T) 

5   Implementing Our Approach within an Existing Method 

We have studied the feasibility of our approach by using an existing reasoning 
procedure, the CQC-Method [8], to perform the tests. To do this, we have extended a 
Prolog implementation of this method to incorporate a correct treatment of the time 
component of our atoms. We have executed this new implementation on our example 
to perform all validation tests that we have explained throughout the paper. We have 
also needed to implement the translation of the UML/OCL schema into logic. 

The CQC Method is a semidecision procedure for finite satisfiability and 
unsatisfiability. This means that it always terminates if there is a finite example or if 
the tested property does not hold. However, it may not terminate in the presence of 
solutions with infinite elements. Termination may be assured by defining the 
maximum number of elements that the example may contain.  
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Roughly, the CQC Method is aimed at constructing a state that fulfills a goal and 
satisfies all the constraints in the schema. The goal to attain is formulated depending 
on the specific reasoning task to perform. In this way, the method requires two main 
inputs besides the conceptual schema definition itself. The  goal to attain, which must 
be achieved on the state that the method will try to construct; and the set of 
constraints to enforce, which must not be violated by the constructed state.  

Then, to check if a certain property holds in a schema, this property has to be 
expressed in terms of an initial goal to attain (G0) and the set of integrity constraints to 
enforce (F0), and then ask the CQC Method to attempt to construct a sample IB to prove 
that the initial goal G0 is satisfied without violating any integrity constraint in F0.  

This means that, to perform our validation tests, we need to provide the CQC 
Method with the formalization of our schema, i.e. the derived predicates that represent 
classes and associations, the set of constraints of the schema as F0 and the derived 
predicate formalizing the validation test to perform as G0. 

5.1   Variable Instantiation Patterns 

The CQC Method performs its constraint-satisfiability checking tests by trying to 
build a sample state satisfying a certain condition. For the sake of efficiency the 
method tests only those variable instantiations that are relevant, without losing 
completeness. The method uses different Variable Instantiation Patterns (VIPs) for 
this purpose according to the syntactic properties of the schema considered in each 
test. The key point is that the VIPs guarantee that if the variables in the goal are 
instantiated using the constants they provide and the method does not find any 
solution, then no solution exists.  

The VIP in which we are interested is the discrete order VIP. In this case, the set of 
constants is ordered and each distinct variable is bound to a constant according to 
either a former or a new location in the total linear order of constants maintained. The 
value of new variables is not always static (i.e. a specific numeric value), it can be a 
relative position within the linear ordering of constants. These are called virtual 
constants. For instance, in the ordering of constants {1, d, 6}, d is a virtual constant 
such that 1<d<6. Then, its possible absolute values are 2 to 5. It may happen that the 
goal succeeds or fails without the need for further instantiations, and in this case d 
will never be bound to a concrete value. 

To correctly instantiate the variables representing occurrence times that we have 
introduced in our translation of the conceptual schema, it has been necessary to add a 
temporal VIP. This new VIP has some similarities with the discrete order VIP, since 
they both deal with discrete values, order comparisons and negation, but it extends it to 
be able to bind a constant, either virtual or static, with its immediate successor. This is 
needed because our derivation rules require that preconditions hold exactly in the time 
immediately previous to the postcondition, not at any time before the postcondition. 
Then, we use a separate set of constants, with its own ordering, to deal with variables 
representing event times and we instantiate them with our temporal VIP. 

For instance, assume we are attempting to derive an Unregistered user which must 
hold at time d, being d a virtual constant and {1, d, 5} our set of temporal constants. 
According to the precondition of unregisterUser, the user must be registered at d-1. 
Thus, since 1<d<5, the time variable of the corresponding instance of Registered must 
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be instantiated either with 1 or with a virtual constant f, f=d-1. So, the relevant sets of 
constants are {[1, d], 5} and {1,[f, d],5}, where constants between brackets are tied so 
that no new constant can be ever placed between them. 

The temporal VIP is formalized as follows. A variable instantiation step performs a 
transition from (T  ∅ KTi) to (∅ θ KTi+1) that instantiates the temporal variable T 
according to one of the VIP-rules, where θ is a ground substitution of T and KTi is the 
set of temporal constants. Let di denote virtual constants, ci denote static constants and 
ki denote either static or virtual constants, and let Gc be the current goal. The temporal 
VIP consists of the VIP-rules of the discrete order VIP, extended by the following 
rules, that apply when instantiating a temporal constant T such that T = ki -1, ki∈KTi:  

Tmp1. θ = T /cprev and KTi+1=KTi, where cprev=csuc-1, {csuc,cprev}⊆KTi, {T=csuc-
1}∈Gc 

Tmp2. θ = T /k and KTi+1 = KTi, where {k, ksuc} ⊆ KTi, {T =ksuc-1}∈Gc, there is no 
constant kprev such that k<kprev<ksuc and k is tied to ksuc in KTi+1. 

Tmp3. θ = T /cnew and KTi+1 = KTi ∪ {cnew}, where cnew=csuc-1, cnew∉KTi, csuc∈KTi, 
{T =csuc-1}∈Gc, there is no dprev tied to csuc in KTi, and there is no cprev ∈ KTi 

such that cprev < csuc and |{di | di ∈ KTi  and cprev < di < csuc}| < |csuc - cprev| -1. 

Tmp4. θ =  T /dnew and KTi+1 = KTi ∪ {dnew}, where dnew∉KTi, dsuc∈KTi, {T =dsuc-
1}∈Gc, there is no dprev tied to dsuc in KTi, dnew is tied to dsuc in KTi+1 and there 
are no ci, cj ∈ KTi  such that ci < dsuc < cj, there is no cm with ci < cm < cj and 
|{di | di ∈ KTi  and ci < di < cj}| < |cj – ci| -1. 

6   Related Work 

In this section we focus on those approaches that deal with UML schemas with a 
behavioral part. Thus, we leave out from our comparison to previous work those 
approaches that only deal with the structural schema [10, 12, 16], since satisfiability 
of the structural part does not necessarily imply that the whole conceptual schema is 
also satisfiable; as well as the first proposals to deal with behavior, in the context of 
deductive conceptual schemas [4, 5].  

Due to its relevance, and despite not dealing with UML schemas, we believe it is 
worth including the Alloy language and analyzer [14] in this comparison. Alloy 
provides interesting validation capabilities for expressive schemas by searching for 
examples of the tests specified by the designer. The preconditions and postconditions 
of the operations can be checked manually, before and after each execution.  

One of the first approaches to check satisfiability of UML schemas with operations 
is [6]. General constraints are handled, but they must be expressed in Z instead of 
OCL, which is the language recommended by the UML to formalize constraints and 
operations. Besides checking satisfiability of the structural schema, operations to 
insert, delete and update the instances of each class or association are automatically 
generated. 

An approach to reason on UML/OCL schemas is HOL-OCL [2]. The method uses 
a theorem prover to determine some properties, such as equivalence of two integrity 
constraints, or applicability and executability of operations.  
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Another interesting tool to validate UML/OCL conceptual schemas is USE [9], 
which allows to test if a given instantiation is accepted by the schema taking into 
account the OCL constraints. Preconditions and postconditions can also be validated, 
but the execution of the operation has to be simulated manually.  

Recently, and also for UML/OCL schemas, [3] reports a set of properties regarding 
the correctness of operations such as applicability or executability.  

All the previous approaches have an important common drawback. None of them 
takes into account the definition of operations when determining whether a state is 
accepted or not by the schema. This means that a state may be reported as valid when, 
in fact, it is impossible to construct using the operations defined. This also damages 
the results obtained when testing the applicability of operations, since the state that 
satisfies a precondition may not be obtained by means of the operations defined. In 
fact, all these approaches would give an incorrect answer to 5 out of the 6 properties 
tested in this paper. 

One of the approaches that does not share this drawback is [7], which combines 
state and event-based descriptions of a system to enable the automatic verification of 
dynamic properties regarding the system behavior. It may handle UML class 
diagrams but assumes that the system behavior is specified in the B and CSP 
languages, instead of OCL, and it is mainly aimed at testing properties related to the 
correct sequencing of the operations specified in the conceptual schema. 

The other approach that takes the operations into account when determining 
whether a state is accepted or not by the schema belongs to the Rodin project. It 
combines UML-B [19] and ProB [13], the former to represent the schema and 
translate it into the B language, and the latter to validate it by animation. However, 
UML-B only accepts a subset of the UML that is suitable for translation into B, and 
constraints and operations must be directly expressed in B by the designer. 
Additionally, ProB requires that the search space is made finite by enumerating the 
values to be used in the animation. Since the fact that a property does not hold for 
those values does not mean that it can never hold, completeness is not guaranteed. 

Finally, all of the approaches are able to check either the internal correctness [3, 6, 
13] or the external correctness of the schema [2, 9, 14], but not both as we do. 

7   Conclusions and Further Work  

We have proposed a new approach to validate a UML conceptual schema, with 
textual OCL constraints and operations. To our knowledge, ours is the first approach 
that validates jointly the structural and behavioral parts of a UML/OCL schema. 

Our approach allows determining automatically whether the conceptual schema is 
correctly defined, through tests about the accomplishment of desirable properties; and 
provides also a help to the designer to check that the schema defined is the right 
conceptual schema in the sense that it correctly specifies the requirements. 

This is achieved by translating the UML conceptual schema, including its behavioral 
part, into a logic representation which incorporates the effect of operations in terms of 
the instances of classes and associations that are created or deleted. In this way, we 
ensure that the only changes allowed are those defined in the behavioral schema. With 
this logic representation, we can formalize each validation test in terms of checking the 
satisfiability of a derived predicate. Then, any satisfiability checking method able to 
deal with negation of derived predicates can be used to validate the schema. 
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We have also shown the feasibility of our approach by using and extending an 
implementation of an existing reasoning procedure, called CQC-Method [8], and 
applying it to our running example. 

There are some interesting directions for further work, like applying the decidability 
results of our previous work [18] to schemas with a behavioral part, extending our 
approach to validate conceptual schemas with derived UML information or 
investigating the applicability of this approach to large conceptual schemas. 
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