
Process Algebra-Based Query Workflows

Thomas Hornung1, Wolfgang May2, and Georg Lausen1

1 Institut für Informatik, Universität Freiburg
{hornungt,lausen}@informatik.uni-freiburg.de

2 Institut für Informatik, Universität Göttingen
may@informatik.uni-goettingen.de

Abstract. In this paper we combine ideas from workflow processing
and database query answering. Tailoring process algebras like Milner’s
Calculus of Communicating Systems (CCS) to relational dataflow makes
them a natural candidate for specifying data-oriented workflows in a
declarative way. In addition to the classical evaluation of relational op-
erator trees, the combination with the CCS control structures provides
(guarded) alternatives and test-based iterations using recursive process
fragment definitions. For the actual atomic constituents of the process,
language concepts from the relational world, like queries, but also the
use of abstract datatypes, e.g., graphs, can be embedded.

We illustrate the advantages of the approach by an application sce-
nario with remote, heterogeneous sources and Web Services that return
their results asynchronously. The presented approach has been imple-
mented in a prototype.

1 Introduction

Most of the information that is needed for daily tasks is available on the Web. The
main problem is often not to get the information, but to process it efficiently and
appropriately in an automatic way. Efficiency does not necessarily mean millions
of data items, but often a relatively small number of items, scattered over mul-
tiple data sources, and to organize the process of combining, evaluating, making
decisions, interacting. Consider for example travel planning: not only the nearest
airport to a certain destination has to be found, but depending on the airlines,
different airports must be considered, and availability of the flights has to be
checked. Then, transportation from/to the airports, possibly provided by local
railway companies, has to be arranged. Even employees of travel agencies usually
process such enquiries manually, which requires a lot of time and is potentially
incomplete and suboptimal. Although the manual process follows a small num-
ber of common patterns (e.g., searching for paths in a transitive relationship
distributed over several sources, like flight schedules and train schedules, with
heuristics for bridging long distances vs. shorter distances, making prereserva-
tions, doing backtracking) it is hard to automatize it since the sources are not
integrated, and the underlying formalism has to cover both procedural tasks and
data manipulation tasks. Often it is easier to design the process how to solve

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 440–454, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

{hornungt,lausen}@informatik.uni-freiburg.de
may@informatik.uni-goettingen.de

Process Algebra-Based Query Workflows 441

such a problem than stating a single query. Furthermore, most of the data is not
immediately available for querying via e.g. query languages like SQL or XQuery,
but kept in the Deep Web, which consists of dynamically generated result pages,
which can only be queried interactively via Web forms.

This technical environment together with the intrinsic complexity of the tasks
requires for flexible data workflows using a generic data model and an extensible
set of functional modules, including the ability to interact actively with remote
services. Important basic functionality includes appropriate mechanisms to deal
with information acquisition and target-driven information processing on a high
level, like using design patterns for acting on graph-structured domains.

In the following, we present and discuss an approach that attempts to sat-
isfy the above requirements. The core aspects are the intertwined description of
the control flow of the process (by a process algebra, e.g., CCS [14]) and the
handling of the dataflow (based on the relational model), and the use of het-
erogeneous atomic constituents like queries and actions in the workflow: CCS
is extended to relational dataflow, called RelCCS, and realized as a language
in the MARS (Modular Active Rules for the Semantic Web) framework [13] for
embedding heterogeneous component languages. RelCCS is complementary to
the original rule-based MARS paradigm, and employs the functionality of the
MARS framework as an infrastructure.

The focus is not on performance, but on the qualitative ability to express and
execute complex workflows and decision processes in a reasonable time – i.e., to
replace hours of interactive human Web search by an unsupervised automated
process that also may take hours but finally results in one or more proposals,
including the optimal one.

The process design/programming in the RelCCS language is not expected to
be done by casual users, but by skilled process designers in cooperation with
domain experts – analogously to application database design.

Application Scenario. Consider the scenario to find either the cheapest or short-
est (in terms of total time spent travelling) route to a given location (e.g., for
a conference travel) or a combination of both. Human, manual search usually
employs some kind of intuitive search strategy. Roughly, the strategy is to try
to cover as much distance as possible by plane (assuming the distance is above
a certain threshold), and then bridge the remaining distance by train or bus; if
this fails, do backtracking. One usually starts with considering a known set of
airports near the hometown. This shows that human problem solving, although
always considering one possibility (=tuple) at a time, is inherently based on a
set-oriented model.

With the means of the presented approach, such tasks can be formulated as
data workflows. The backtracking is here replaced by breadth-first search, where
the search space is explored stepwise and pruned based on intermediate results.

The actual process can thus be described as (i) determining a set of local
airports, e.g., the ten nearest airport to a place, (ii) computing all connections
from the starting point to each of these airports, (iii, in parallel) trying to find
connections from each of the airports to the destination, and joining the results

442 T. Hornung, W. May, and G. Lausen

from (ii) and (iii); always under consideration of arrival and departure times and
required time for changing. While for train connections, sources usually are able
to return transitive connections, flight portals only return transitive connections
over the flights of the same airline. Thus, here an actual graph exploration and
search is to be applied.1

The expected answer is the set of k best alternatives (wrt. a weighted function
of price and duration), where each solution contains the actual connection data
(flight and train numbers, departure/arrival times). Furthermore, it should in
general be possible to extend the process specification in such a way that the
best available one is actually booked automatically.

Structure of the paper. Section 2 introduces the RelCCS language. In Section 3,
we illustrate the use of the approach by implementing the above example work-
flow. Related work is discussed in Section 4 before we draw a short conclusion.

2 RelCCS: The Relational Dataflow Process Language

RelCCS is a variant tailored to relational dataflow of the well-known Calculus
of Communicating Systems (CCS) process algebra [14]. It has been designed as
a part of the MARS (Modular Active Rules for the Semantic Web) framework
[13] whose central metaphor is a model and an architecture for active rules
and processes that use heterogeneous event, query, and action languages. This
distinctive feature of MARS proves useful in the present paper, too: it allows to
embed sublanguages for queries and even supplementary generic data structures
via APIs expressed as actions and queries into the workflows to be specified.

Here we present MARS only as far as it is necessary to get the ideas that
are relevant for the realization of RelCCS. The MARS meta-model distinguishes
rules (not relevant in this paper), events (that may also occur in CCS workflows
as described in this paper), queries, tests, and actions/processes (cf. Section 2.1);
the dataflow is based on sets of tuples of variable bindings (like in Datalog; cf.
Section 2.2). The MARS meta-language concept relies on an XML markup for
nested expressions of different languages throughout whole MARS.

2.1 The Process Model: Processes and Their Constituents

The CCS Process Algebra. Processes can formally be described by process alge-
bras; the most prominent ones are CCS – Calculus of Communicating Systems
1 Experiences with conference travels showed that real travel agencies are often chal-

lenged with finding the potential nearest airports to rather unknown destinations
(e.g., St.Malo/France), and are rather weak in finding non-direct flight connections
using different airlines (e.g., Lufthansa + AirFrance) or via non-expected interme-
diate airports (via Stansted to reach Dinard/France), or surprising connections (fly
to Jersey Island and take the ferry to St.Malo) – actually, ferries are contained in
the railway portals, so it is not necessary to find out about individual ferry lines.
The latter shows also that it would not be advantageous to try to save time by
predefining the set of destination airports by the user, but to use a fully algorithmic
search that is not biased in any way.

Process Algebra-Based Query Workflows 443

[14] and CSP – Communicating Sequential Processes [10]; we chose CCS as the
base to develop RelCCS. A CCS algebra with a carrier set A (its atomic con-
stituents) is defined as follows (we consider here the asynchronous variant of
CCS that allows for implicit delays), using a set of process variables:

With a ∈ A, X a process variable, P and Q process expressions, X := P
is a process definition, a, X , a.P (prefixing; sequential composition), (P, Q)
(sequential composition), P |Q (concurrent composition), and P1+P2 (alternative
composition; generally written as

∑
i∈I Pi for a set I of indexes) are process

expressions. The semantics is defined in [14] by transition rules that immediately
induce an implementation strategy. By carrying out an action, a process changes
into another process:

a.P a→ P ,
P a→ P ′

(P, Q) a→ (P ′, Q)
,

Pi
a→ P

∑
i∈I Pi

a→ P
(for i ∈ I) ,

P a→ P ′

P |Q a→ P ′|Q
,

Q a→ Q′

P |Q a→ P |Q′ ,
X := P P a→ P ′

X a→ P ′ .

Note that prefixing a.Q is actually a special case of sequence (P, Q) where P is
atomic. While in CCS, the state of a process is encoded in its behavior (via the
possible actions), we generalize the definition to processes with an explicit state
described by sets of tuples of variable bindings in Sections 2.2 and 2.3.

Atomic Constituents. While in the basic formalism of CCS, all atomic con-
stituents are considered to be actions, in our approach, atomic constituents are
event specifications, queries, tests, and atomic actions:

– atomic actions: these are actually executed as actions, e.g., by Web Services;
– event specifications as atomic constituents: executing an event specification

means to wait for an occurrence of the specified event, incorporate the results
in the state of the process, and then continue;

– executing a query means to evaluate the query, incorporate the results in
the state of the process, and continue the process;

– executing a test means to evaluate it, and incorporate the results in the state
of the process, and continue appropriately.

The approach is parametric in the languages used for expressing the constituents.
Users write their processes in RelCCS, embedding atomic constituents in sub-
languages of their choice. While the semantics of RelCCS provides the global
semantics, the constituents are handled by specific services that implement the
respective languages.

2.2 State, Communication, and Data Flow via Variable Bindings

The state of a process, and the dataflow through the process and to/from the
processors of the constituents is provided by logical variables in the style of
deductive rules, production rules etc.: The state of the computation of a process

444 T. Hornung, W. May, and G. Lausen

is represented by a set of tuples of variable bindings, i.e., every tuple is of the
form t = {v1/x1, . . . , vn/xn} with v1, . . . , vn variables and x1, . . . , xn elements
of the underlying domain (which is in our case the set of strings, numbers, and
XML literals). Thus, for given active variables v1, . . . , vm, such a state can be
seen as a relation whose attributes are the names of the variables. We denote a
process expression P to be executed in a current state R by P [R].

By that, the approach does only minimally constrain the embedded languages.
For instance, all paradigms of query languages, following a functional style (such
as XPath/XQuery), a logic style (such as Datalog or SPARQL [17]), or both (F-
Logic [11]) can be used. The semantics of the event part (that is actually a
“query” against an event stream that is evaluated incrementally) is –from that
aspect– very similar, and the action part takes a set of tuples of variable bindings
as input.

2.3 Syntax and Semantics of RelCCS

RelCCS combines the constructs of CCS with relational data flow. Syntactically,
it uses mnemonic names (which are also used in its XML markup) instead of the
CCS symbol operators.

Let P denote the set of process expressions, let V denote the set of variable
names. For a given finite set Var ⊆ V, Tuples(Var) denotes the set of possible
tuples over Var. As usual, 2Tuples(Var) denotes the set of sets of tuples over Var.
A given set R of tuples of variable bindings is thus an element R ∈ 2Tuples(Var).

The mapping [[]] : P × 2Tuples(Var) → 2Tuples(Var) specifies the formal
semantics by mapping a process expression P ∈ P and a set R of tuples of
variable bindings to the set [[P [R]]] of tuples of variable bindings that result from
execution of a process P for an initial state R. The definition of this denotational
semantics [[P [R]]] by structural induction over P is given below.

Example 1. Consider a simple query q whose answers are all pairs (c, b) such
that c is a country and b is a city in c with more than one million inhabitants:

[[q({{c/”Germany”}, {c/”Austria”}, {c/”Switzerland”}, {c/”Joe”}})]] =
{{c/”Germany”, b/”Berlin”}, {c/”Germany”, b/”Hamburg”},
{c/”Germany”, b/”Munich”}, {c/”Austria”, b/”Vienna”}}

There is no resulting tuple for “Switzerland”, because there are no cities with
more than one million inhabitants in Switzerland, and there is no resulting tuple
for “Joe” since “Joe” is not a country at all. On the other hand, answer tuples
to q like {c/”France”, b/”Paris”} do not belong to the result because their value
for c does not match any value of c of the initial tuples.

Note that [[]] is just the declarative semantics that does neither depend on,
nor prescribe the operational details of actual evaluation: q[R] may be answered
by computing R �� σ[population > 1000000](City) for a suitable database relation
City, or iteratively a Deep Web query q′ can be stated for every country, yielding
e.g. q′(“Germany”) = {“Berlin”, “Hamburg”, “Munich”} and generating the result
set incrementally from the answers.

Process Algebra-Based Query Workflows 445

The situation is similar to the definition of the formal semantics of the rela-
tional algebra, and actual query optimization and evaluation.

Atomic Constituents. For atomic constituents p, [[p[R]]] extends R (Queries,
Events), restricts R (Tests), or (Actions) just uses R and leaves it unchanged:

– Actions: executing Action(a)[R] means to execute a for each tuple in R with-
out changing the state R. [[Action(a)[R]]] := R, plus external side effects of a.

– Query(q)[R]: R is used to provide the input parameters to the query q. A
query q can be seen as a predicate q0 (its characteristic predicate, which
contains all input/output mappings) over variables qv = {qv1, . . . , qvn}, from
which some variables qιn = {qin1, . . . , qink} ⊆ {qv1, . . . , qvn} act as input
variables, the others qout = {qout1, . . . , qoutm} = qv \ qιn act as output
variables. Given a tuple t ∈ R, the input tuple for q is tq := π[qιn](t)2

and [[Query(q)[tq]]] := {t′ ∈ q0 : tq ⊆ t′}. With this, let [[Query(q)[t]]] :=
{t} �� [[Query(q)[tq]]], and analogously, [[Query(q)[R]]] :=

⋃
t∈R[[Query(q)[t]]] =

R �� q0.
– Test(c)[R]: the tuples r ∈ R that satisfy the test survive: [[Test(c)[R]]] =

σ[c](R), like SQL’s SELECT * FROM R WHERE c.
Optionally, the test can be parameterized with a quantifier(exists|notExists|all)
where the whole set R of tuples is taken and if one, none, or all tuples t ∈ R
satisfy the test, the result is R, otherwise ∅. E.g., [[Test[exists](x = 3)[R]]] =
R if for some tuple t in R, the value of the variable x is 3, otherwise
[[Test[exists](x = 3)[R]]] = ∅.

– Event(ev)[R] is analogous to queries: for each tuple of R, events matching
the given event specification are caught and the variable bindings are appro-
priately extended. For the present application for query answering, events
actually play a minor role; they can be used for designing complex workflows
manually. Here we just give the semantics for the sake of completeness:
Given an event occurrence ev0 that matches the event specification ev for a
certain tuple t ∈ R resulting in a set of tuples ev0(t), [[Event(ev)[R]]] contains
R �� ev0(t) (the actual semantics of “matching” depends on the embedded
event specification language). Thus, at a given timepoint τ , [[Event(ev)[R]]] =
R �� {ev0(t) : ev0 occurred between “starting” ev[R] and τ}.

Operators. For every evaluation P [R], the set R of initial tuples is modified by
executing the process P , resulting in a new relation [[P [R]]] as “outcome” that
is returned to the superior process.

– Prefixing, Sequence: execute Seq(P, Q)[R] by executing P [R], yielding R′,
and then execute Q[R′]. This “common” interpretation of sequence builds
actually upon the inner join: [[Seq(P, Q)[R]]] := [[Q[[[P [R]]]]]]. More explicitly,
[[Seq(P, Q)[R]]] = [[P [R]]] �� [[Q[[[P [R]]]]]] (analogously, [[Seq(P1, . . . , Pn)[R]]] is
defined inductively).

2 As usual, π, σ, ρ denote relational projection, selection, and renaming.

446 T. Hornung, W. May, and G. Lausen

As a more general idea, tailored to (more accidentally sequential) evaluation
of queries, instead of ��, also left/right/full outer joins make sense, and even a
modified form of relational difference as negation: For that, we parameterize
Seq as Seq[join] (default), Seq[(left|right|full)-outer-join], and Seq[minus].
E.g., the semantics of Seq[minus](P1, . . . , Pn) is defined as follows: Assume
Ri := [[Seq[minus](P1, . . . , Pi)[R]]] after step i (for i = 0: R0 := R) and S :=
[[Pi+1[Ri]]] of step i+1, let [[Seq[minus](P1, . . . , Pi+1)[R]]] := Ri \ (Ri �< S).
For example, the query q1(A, B, X)∧¬∃C, Y : q2(B, C, Y) can be evaluated
as Seq[minus](Query(q1(A, B, X)), Query(q2(B, C, Y))) .

– Alternative(P1, . . . , Pn)[R] and Union(P1, . . . , Pn)[R]: each branch is started
with R.

For the (full) union, the result tuples of an alternative or union are the
union R1 ∪ . . .∪Rn of the results of its branches, [[Union(P1, . . . , Pn)[R]]] =
[[P1[R]]] ∪ . . . ∪ [[Pn[R]]].
For the alternative, the following operational restriction holds: All branches
have to be guarded, i.e., before the first action is executed, a test must
be executed (optionally preceded by queries to obtain additional informa-
tion). For instance, in Alternative(Seq(Test(c), P1), Seq(Test(¬c), P2)), all tu-
ples that satisfy c will actually run through the first branch, and the others
run through the second branch.

If the guards of the branches are exclusive, the alternative is equivalent
to the union. If the guards are non-exclusive, the actual outcome is nonde-
terministic: for each tuple t, the quicker branch will preempt the others, and
exclusively contribute [[Pi[t]]] to the result.

– Concurrent(P1, . . . , Pn)[R]: each branch is started with R. The result is
[[Concurrent(P1, . . . , Pn)[R]]] := [[P1[R]]] �� . . . �� [[Pn[R]]], i.e., each tuple
runs through all branches (possibly being extended with further variables),
and the results are joined. Note that if a tuple is removed in some branch,
it will not occur at all in the result.

Like for sequences, the operator is also parameterized: in addition to ��,
left/right/full outer join and relational difference are also allowed.

Complete vs. Partial Answers. An intuitive and simple model is that the whole
set of tuples proceeds synchronously through the process, like the view on re-
lational algebra when taught in courses. The actual execution also covers asyn-
chronous remote services and even partial answers, where services return tuples
that can be computed quickly, and later send back further tuples.

2.4 Recursive Processes in RelCCS

Recursive processes extend the expressiveness from that of relational algebra
(trees) to that of recursive Datalog, which e.g. allows to compute transitive
closure. Recursive processes are defined by (i) giving and naming a process def-
inition, and (ii) then using this definition somewhere in the process/tree.

Since logical variables can be bound only once, variables that are bound to
different values in each iteration must be considered to be local to the current

Process Algebra-Based Query Workflows 447

iteration. They can be bound either when starting the process, or in some step
inside the process. Only the final result is then bound to the actual logical
variable. For a process expression P ∈ P , pname[local: lv1, . . . , lvn] := P defines
pname to be P where the variables lv1, . . . , lvn are local. Syntactically, the use
of process definitions is of the form (e.g. in a sequence)

Seq(. . . , UseDefinition(pname[lvk1 ← v�1 , . . . , lvkm ← v�m]), . . .)

with the following semantics: let Var denote the set of active variables used in the
surrounding context. The definition of pname is invoked based on the current
tuples, where each tuple is extended or modified by initializing the local variables
lvk1 , . . . , lvkm (ki ∈ {1, . . . , n}) with the values of the variables v�1 , . . . , v�m ∈
Var. Formally,

[[UseDefinition(pname[lvk1 ← v�1 , . . . , lvkm ← v�m])[R]]] :=
[[P [{t ∈ Tuples(Var ∪ {lvk1 , . . . , lvkm}) | exists t′ ∈ R s.t.

ρ[v�1 ← lvk1 , . . . , v�m ← lvkm](π[{lvk1 , . . . , lvkm}](t)) = π[vl1 , . . . , vlm](t′)
and π[Var \ {lv1, . . . , lvn}](t) = π[Var \ {lv1, . . . , lvn}](t′)}]]]

which is a subset of Tuples(Var ∪ {lv1, . . . , lvn}). Note that recursive processes
call themselves inside their definition; in this case, {lvk1 , . . . , lvkm} ⊆ Var.

2.5 Data-Oriented RelCCS Operators

While the above operators extend the classical CCS operators that focus on the
control flow with relational state, additional operators integrate unary relational
operators: projection, duplicate elimination, and top-k.

Projection and Duplicate Elimination. In relational algebra, projection is a very
useful operator to reduce intermediate results when some variables are no longer
needed. For RelCCS, Projection(v1, . . . , vn) with a specification which variables
to keep does the analogue during execution of a process. Distinct removes dupli-
cate tuples, and is usually applied after a projection.

The RelCCS Top-K Operator. The top-k operator is known as a useful extension
for many applications. It allows to “take the best k answers” and continue. For
instance, when a set of potentially relevant airports are known, only the nearest
10 to the starting place should be considered for continuing the process. Here we
adapt the top-k functionality to asynchronous processing of RelCCS workflows:
Applied to a set of tuples over variables v1, . . . , vn,

TopK(k, m, t, mapfct, datatype, order, cont) acts as follows:

– wait until either m tuples are present, or t time units have passed,
– then, for each tuple, compute mapfct(v1, . . . , vn) (expressed as an embedded

query) which yields a value of datatype. Order them according to order (which
can be either asc or desc) and take the top k, and return them.

– if cont is true, then for every tuple coming in later, check if it is amongst the
best k up to now. If yes, return it, otherwise discard it.

448 T. Hornung, W. May, and G. Lausen

2.6 Embedding Algorithmic Webservices

The design of the MARS framework allows to use Web Services that communi-
cate via the atomic metaphors of MARS: actions, tests, queries, and optionally
events. Such auxiliary Web Services can for instance provide the functionality of
abstract datatypes that embed algorithmic aspects in form of external support
in the declarative specification of RelCCS workflows.

A recurring motive when designing query workflows is the computation of
(parts of) transitive closures in graphs, as in our travel scenario. For this, a
GDT –Graph DataType– Service provides a configurable API to graphs. Edges
and paths in an application usually have properties where the properties of the
paths are defined inductively via its edges. For the present paper, we take a GDT
instance as given that provides the following actions and queries:

– a query gid← newGraph() with the side effect of initializing an empty graph,
– an action addEdge(gid, from, to, [p1 ← v1, . . . , pn ← vn]), that adds the

respective edge with values of vi for parameters pi, and computes new paths
accordingly,

– an accessor (query) v ← getNewVertices(gid) that returns all vertices that
have been added since the preceding call of getNewVertices(gid).

– an action reportPaths(start, dest, [v1 ← p1, . . . , vm ← pm]) that returns
all paths that connect start with dest with their parameters pi bound to
variables vi.

2.7 Technical Realization

RelCCS has been implemented as a language service within the MARS frame-
work. RelCCS processes are given as XML documents (or as RDF graphs), bor-
rowing the main principles from MARS’ ECA-ML markup language [13]. The
language markup has the usual form of a tree structure over the CCS composers
in the ccs: namespace. Every expression (i.e., the CCS process, its CCS subpro-
cesses, the event specification, test, queries, and the atomic actions) is an XML
(sub)tree whose namespace (i.e., the URI associated with the prefix) indicates
the language.

The services are implemented in Java, using a common set of basic classes that
handle e.g. the variable bindings. For larger numbers of tuples, an SQL database
is used as backend [12]. The actual data exchange is done in an XML format for
results and variable bindings. Determining an appropriate service and organizing
the communication is performed by a Languages and Services Registry (LSR)
and a Generic Request Handler (GRH) [6].

3 Application Scenario: Travel Planning

The RelCCS process for sample travel planning scenario can now be given: If
the overall distance is less than 400km, only train connections are searched for.
Otherwise, train connections (for less than 800km) and flights are investigated.

Process Algebra-Based Query Workflows 449

For the latter, train connections to potential airports are searched, and the
remaining distance is bridged by connecting flights and, if necessary, a final
train connection.

Recall that the whole connection graph is not accessible like a database, but
must be explored by Web queries. The design of the process is thus significantly
different from straightforward bottom-up evaluation of transitive closure queries
in Datalog. The relevant fragment of the connection graph is built stepwise online
during the workflow, using the GDT service as described above. The strategy
is based on reachability by breadth first search for shortest paths. Edges (i.e.,
connections) and their properties (as slotted name-value pairs; i.e., departure
and arrival time and price) are obtained from Web queries, and added to the
graph. Note that each single connection can be useful in several combinations.

The process uses variables start and dest (destination), date (which are ini-
tialized when calling the process), ap (relevant near airports), dist (distance to
airport), i, j (intermediate places), rd (remaining distance), dt and at (depar-
ture and arrival time), pr (price), and gid (graph id). We use the prefixes ccs
and gdt to indicate the respective languages. We abstract from the concrete
data sources, which are for this example actually wrapped Deep Web sources,
e.g. http://www.bahn.de for (not only German) Railways, and flights/airline
portals:

ccs:Seq(ccs:Query(rd← distance(start, dest)), # process input: (start, dest)
ccs:Query(gid← gdt:newGraph()),
ccs:Union(

ccs:Seq(ccs:Test(rd < 800), # consider to go by train
ccs:Query((dt, at, pr)← getTrainConnection(start, dest, date)),
ccs:Action(gdt:addEdge(gid, start, dest,

[deptTimeLocal← dt, arrTimeLocal← at, price← pr]))),
ccs:Seq(ccs:Test(rd ≥ 400), # consider also to use flights

ccs:Query(ap← getAirports()),
ccs:Query(dist← distance(start, ap)),
ccs:TopK(10,100,null,dist,xsd:decimal,asc,false), # consider 10 nearest airports
ccs:Query((dt, at, pr)← getTrainConnection(start, ap, date)),
ccs:Action(gdt:addEdge(gid, start, ap,

[deptTimeLocal← dt, arrTimeLocal← at, price← pr])),
ccs:Projection(start, dest, date), ccs:Distinct,
ccs:UseDefinition(runGraph[]))),

gdt:reportPaths(start, dest, [pathId← pid, price← price])),

ccs:Definition(runGraph[local:i, rd, dt, at, pr]) :=
additional global vars gid, dest, date are known
ccs:Seq(

ccs:Query(i← gdt:getNewVertices(gid)), # consider all newly reached places
ccs:Query(rd← distance(i, dest)),
ccs:Union(

ccs:Seq(ccs:Test(i = dest)), # no recursive call in this case → return
ccs:Seq(ccs:Test(rd < 400 ∧ i �= dest) # reach destination by train

http://www.bahn.de

450 T. Hornung, W. May, and G. Lausen

ccs:Query((dt, at, pr)← getTrainConnection(i, dest, date)),
ccs:Action(gdt:addEdge(gid, i, dest,

[deptTimeLocal← dt, arrTimeLocal← at, price← pr])),
ccs:Projection(start, dest, date), ccs:Distinct,
ccs:UseDefinition(runGraph[])),

ccs:Seq(ccs:Test(rd ≥ 200), # try to get even nearer by flight
ccs:Query((j, dt, at, pr)← getFlights(i, date)),
ccs:Action(gdt:addEdge(gid, i, j,

[deptTimeLocal← dt, arrTimeLocal← at, price← pr]))
ccs:Projection(start, dest, date), ccs:Distinct,
ccs:UseDefinition(runGraph[]))))

postcondition: reached, either by train or train+flight+, or train+flight++train

The workflow proceeds stepwise, set-oriented:

Example 2. Consider to start the workflow with the single tuple

{start/“Heidelberg”, dest/“St.Malo”, date/“1.1.2009”} .

The query for the remaining distance extends the tuple to

{start/“Heidelberg”, dest/“St.Malo”, date/“1.1.2009”, rd/784} .

It then starts two branches, one for a train-only travel (since rd < 800), and one
that includes consideration of flight connections (since rd > 400); the results of
both will be returned at the end. We follow the second one:

It will first state a query for all known airports, which results in a set of
(thousands of) tuples, where each is extended in the subsequent step with distance
between start and the respective airport, i.e.,

{{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, rd/784, ap/“FRA”, dist/85},
{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, rd/784, ap/“STG”, dist/95},

:
{start/“Heidelb.”, dest/“St.Malo”, date/“. . . ”, rd/784, ap/“JFK”, dist/6230}, . . . }

The next topK step keeps the ten nearest ones, amongst them FRA and STG
(and not JFK). For these, the next step looks up (multiple) train connections to
each of them, binding price etc., and for each tuple, the connection is put into
the graph, and the tuples are projected back down to start, dest, date, and du-
plicates are removed (so only the single tuple {start/“Heidelb.”, dest/“St.Malo”,
date/“1.1.2009”} remains). Then, the process definition for runGraph is invoked.
In its first step, the new vertices, which are the 10 nearest airports, are retrieved
from the graph and bound to the variable i (intermediate):

{{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, i/“FRA”},
{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, i/“STG”}, . . . }

The following iterative process is then concerned with extending the graph in
parallel (i.e., set-oriented for all tuples) breadth-first search until connections to
dest (i.e., when i = dest) are found.

Process Algebra-Based Query Workflows 451

Figure 1 illustrates a fragment of the contents of the GDT. The sample also
illustrates that (i) some paths are not needed to be inserted as already better ones
are known [*] and, on the other hand, “longer” (in the number of steps) paths
can be better wrt. the user’s criteria (price, duration; [**]).

id head tail label start end dept arr price

p1 e1 null HD→FRA HD FRA 7:30 8:10 29.00
p2 e2 null HD→STG HD STG 7:50 8:50 39.00
p3 e13 p1 HD→FRA→CDG HD CDG 7:30 11:20 229.00
p4 e14 p1 HD→FRA→LON HD LON 7:30 11:50 129.00
p5 e15 p2 HD→STG→CDG HD CDG 7:50 13:30 289.00
p71 e23 p3 HD→FRA→CDG→StM HD StM 7:30 +1:08:30 345.00
p85 e25 p3 HD→FRA→CDG→RNS HD RNS 7:30 15:20 459.00
p86 e25 p5 HD→STG→CDG→RNS HD RNS 7:50 17:50 519.00 [*]
p93 e29 p4 HD→FRA→LON→DNR HD DNR 7:30 16:50 159.00
p103 e25 p85 HD→FRA→CDG→RNS→StM HD StM 7:30 18:20 487.00
p123 e39 p93 HD→FRA→LON→DNR→StM HD StM 7:30 17:50 175.00 [**]

: : : : : : : : :

Fig. 1. Sample contents of the GDT data structure

The termination condition, i.e., that when all “open” paths are more expensive
than the best k known paths to the destination is enforced by the insertion policy
of the graph. This guarantees that the k preferable paths will be reported, and that
the workflow terminates. Recall that such completeness is not guaranteed by the
heuristic methods applied by current travel agencies to prune the search space,
since this may result in the fact that “unexpected” connections –like reaching
St.Malo via Stansted or Jersey– are excluded.

4 Related Work

Two already traditional areas that are related to our work are (i) query plans
for relational algebra expressions that work on the operator level, and also on
the choice of actual algorithms for, e.g., joins, and (ii) conjunctive queries over
homogeneous or heterogeneous sources, including HTML and XML Web sources,
for querying issues according to the yet classical wrapper-mediator architecture
that provide integrated views on data, but without considering process-oriented
aspects of data-oriented workflows. Since in these areas, the control flow does
not play a central role, we do not further discuss them.

Dataflow and Data Exchange: Comparison to Tuple Spaces. A frequently asked
question is the relationship between the dataflow model in MARS and RelCCS,
and Tuple Spaces [7] (in the following abbreviated as “TS”) and its variants. TS
are a middleware approach for cooperation and coordination between distributed
processors, in the TS context usually called agents. A TS is an unstructured
collection of tuples without fixed schema that allows for associative access: insert,

452 T. Hornung, W. May, and G. Lausen

read, read with delete; updates are accomplished by removing and inserting. IBM
TSpaces [19] support four further types of Queries: MatchQuery, IndexQuery,
AndQuery, and OrQuery, that all result in sets of tuples.

Similarities between RelCCS and TS are thus in the support for data exchange
between autonomous, distributed processors. Also, in both approaches, the data
is decoupled from the programs. In TS, data can explicitly exist without being
assigned to a certain agent. Communication is anonymous from the point of view
of the processors – they get and put tuples from/to the TS.

TS are in many aspects similar to relational databases, but they are used
differently. We shortly analyze the main aspects wrt. MARS and RelCCS:

– TS: Use as communication bus, not permanent storage. This characteristic
is shared with MARS and RelCCS.

– TS: Unstructured set of tuples. MARS: sets of tuples that belong together.
– TS: Associative access operations. Not needed by MARS and RelCCS.
– TS: Generally, no predefined schema. In MARS and RelCCS, for each state,

all tuples have the same schema, which changes during the processing.

So, MARS and RelCCS do not need some of the features of TS. On the other
hand, a core requirement of MARS is not covered by TS: Tuples in MARS are
grouped into sets of tuples (the above relations over the active variable names)
and usually assigned to a (single) current processor, and exchanged between
processors in a directed and controlled way. Moreover, the RelCCS operators
require to apply relational operations on the sets of tuples. Functionally, the
definition of sets of tuples belonging together could be emulated in TS by an
additional column c0 of the tuples. Nevertheless, TS do not efficiently support
operations on such sets of tuples, like e.g. joining the result relation R of a
query with the previous tuples, joins of branches of concurrent subprocesses,
projection, duplicate elimimation, and top-k. For MARS and RelCCS, using a
relational database as “communication bus” is preferable since the operations
can easily be mapped to relational operations on database tables [12]. Note
that there is also a realization without any middleware (except plain internet
communication) using data exchange by XML (i.e., sets of tuples serialized as
XML) and operations performed on an internal (Java) data structure.

Workflow and Dataflow. Several approaches have been presented that combine
dataflow with control flow: The focus of Petri Net-based approaches is to express
workflows completely in a uniform graphical formalism, with a concise formal
semantics to be able to apply formal analysis and verification techniques. Ex-
tensions of Petri Nets with nested relational structures are investigated in [15]
(NR/T -nets) and [9] (Workflow Nets/Dataflow Nets). The language YAWL [1],
which has been designed based on an exhaustive analysis of workflow patterns
[2] and has its roots in Petri Nets, also treats dataflow as a first class citizen.

Petri nets are, like RelCCS, process-oriented. While RelCCS is based on a
set of operators, in Petri Nets, the control flow patterns such as concurrent
execution and recursion have also to be encoded within the Petri Net formalism.
Additionally, abstract data types, such as the GDT, must also be encoded.

Process Algebra-Based Query Workflows 453

Many current approaches to workflow languages, such as BPEL [5] also pro-
vide an XML markup. In contrast to RelCCS in the MARS framework, where
the XML markup carries important language information for enabling the pro-
cessing of embedded language fragments, these languages use XML just as a
serialization format. Dataflow in BPEL is described by BPEL variables, which
can, using appropriate database products like e.g. IBM WebSphere, reference
database tables, and thus be made set-valued. Also datatypes like GDT can
be embedded into BPEL processes. In [18], optimization strategies of such ap-
proaches are discussed.

In Transaction Logic T R [4] and Concurrent Transaction Logic CT R [16] the
description of a workflow consists of rules that make use of temporal connec-
tives instead of just the Datalog conjunction. The semantics of T R is inherently
set-valued. Such rules can be formulated over embedded literals/atoms (called
elementary transitions) that are not part of Transaction Logic, but are con-
tributed externally. This is similar to the embedding of the use of the GDT data
type in RelCCS.

Furthermore, systems for data-oriented workflows in general can be applied for
query answering tasks. Such systems usually have a set-oriented dataflow. The
Lixto Suite [8] is an integrated system for implementing data-oriented workflows
with a focus on data acquisition and integration. Its process model is less explicit,
and the workflows are solely built upon Lixto’s own modules. Kepler [3] is an
extensible system for design and execution of scientific workflows whose goal is
to capture, formalize, and reuse workflows. It supports a concept of individual,
reusable workflow steps.

Although these approaches can encode the same behavior, the advantage of
RelCCS is that it provides both the primitives for control structures and data flow
on the same level of the language. A further feature of the language is provided by
its embedding in the MARS meta model: RelCCS fragments can be used e.g. as
action part in MARS’ ECA rules, and fragments in other languages for specifying
complex events, queries and atomic actions can be embedded in RelCCS processes
without having to revert to Web Services as intermediate wrappers.

5 Conclusion

In this paper, we presented the RelCCS approach for specifying and executing
data-oriented workflows and discussed its use for solving tedious, repetitive, al-
though complex tasks related to answering queries based on Web data. For such
tasks, it is often simpler to design the process how to solve the problem, than
stating a single query. We also illustrated how complementing module-like data
structures can be embedded to support the algorithmic issues of such processes,
and gave an impression what processes in this framework look like. Apart from
the use for query answering as described above, RelCCS can also be applied for
specifying data-oriented workflows in general.

RelCCS is implemented in a prototype which can be found with sample pro-
cesses and further documentation at http://www.semwebtech.org/mars/frontend/
→ run CCS Process.

454 T. Hornung, W. May, and G. Lausen

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Inf. Syst. 30(4), 245–275 (2005)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

3. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler:
An extensible system for design and execution of scientific workflows. In: SSDBM
2004, pp. 423–424 (2004)

4. Bonner, A.J., Kifer, M.: An overview of Transaction Logic. Theoretical Computer
Science 133(2), 205–265 (1994)

5. Business Process Execution Language (BPEL),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

6. Fritzen, O., May, W., Schenk, F.: Markup and Component Interoperability for
Active Rules. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp.
197–204. Springer, Heidelberg (2008)

7. Gelernter, D.: Generative communication in Linda. ACM TOPLAS 7(1), 80–112
(1985)

8. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data
extraction project - back and forth between theory and practice. In: ACM PODS,
pp. 1–12 (2004)

9. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., den Bussche, J.V.: DFL:
A Dataflow Language Based On Petri Nets and Nested Relational Calculus. Inf.
Syst. 33(3), 261–284 (2008)

10. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

11. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42(4), 741–843 (1995)

12. May, W.: A Database-Based Service for Handling Logical Variable Bindings.
Databases as a Service, Technical Report, Univ. Münster, Germany (2009)

13. May, W., Alferes, J.J., Amador, R.: Active rules in the Semantic Web: Dealing
with language heterogeneity. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML
2005. LNCS, vol. 3791, pp. 30–44. Springer, Heidelberg (2005)

14. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science,
267–310 (1983)

15. Oberweis, A., Sander, P.: Information system behavior specification by high-level
Petri Nets. ACM TOIS 14(4), 380–420 (1996)

16. Roman, D., Kifer, M.: Reasoning about the Behavior of Semantic Web Services
with Concurrent Transaction Logic. In: VLDB, pp. 627–638 (2007)

17. SPARQL Query Language for RDF (2006),
http://www.w3.org/TR/rdf-sparql-query/

18. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft,
T.: An Approach to Optimize Data Processing in Business Processes. In: VLDB,
pp. 615–626 (2007)

19. Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T Spaces. IBM Systems
Journal 37(3), 454–474 (1998)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/rdf-sparql-query/

	Process Algebra-Based Query Workflows
	Introduction
	RelCCS: The Relational Dataflow Process Language
	The Process Model: Processes and Their Constituents
	State, Communication, and Data Flow via Variable Bindings
	Syntax and Semantics of RelCCS
	Recursive Processes in RelCCS
	Data-Oriented RelCCS Operators
	Embedding Algorithmic Webservices
	Technical Realization

	Application Scenario: Travel Planning
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

