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Abstract. Despite the abundance of analysis techniques to discover
control-flow errors in workflow designs, there is hardly any support for
data-flow verification. Most techniques simply abstract from data, while
data dependencies can be the source of all kinds of errors. This paper
focuses on the discovery of data-flow errors in workflows. We present an
analysis approach that uses so-called “anti-patterns” expressed in terms
of a temporal logic. Typical errors include accessing a data element that
is not yet available or updating a data element while it may be read
in a parallel branch. Since the anti-patterns are expressed in terms of
temporal logic, the well-known, stable, adaptable, and effective model-
checking techniques can be used to discover data-flow errors. Moreover,
our approach enables a seamless integration of control flow and data-flow
verification.

1 Introduction

A Process-Aware Information System (PAIS) is a software system that man-
ages and executes operational processes involving people, applications, and/or
information sources on the basis of process models [6]. Examples of PAISs are
workflow management systems, case-handling systems, enterprise information
systems, etc. Many of these systems are driven by explicit process models, i.e.,
based on a process model a system is configured that supports the modeled pro-
cess. In this paper, we primarily focus on the analysis of the models used to
configure workflow management systems [2I9TTI2T]. However, our approach is
also applicable to other PAISs.

In the last 15 years, many analysis techniques have been developed to analyse
workflow models [2]. Most of these techniques focus on verification, i.e., on the
discovery of design errors. Although many process representations have been
used or proposed, most researchers are using Petri nets as a basic model [IJ20].
The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. Most workflow
management systems provide a graphical language that is close to Petri nets,
or that has a token-based semantics making a (partial) mapping to Petri nets
relatively straightforward. Industrial languages like Business Process Modeling
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Notation (BPMN), extended Event-driven Process Chains (eEPCs) and UML
activity diagrams, are examples of languages that can be translated to Petri
nets.

Unfortunately, lion’s share of attention has only been devoted to control flow
while other perspectives such as data flow and resource allocation have been
completely ignored. Existing analysis techniques typically check for errors such
as deadlocks, livelocks, etc. while abstracting from data and resources. In most
cases the abstraction from resource information is unavoidable, as resources are
often external and dynamic in nature. The role of data in the workflow is how-
ever important: Routing choices in a workflow are typically based on data, which
makes the control flow data dependent. Moreover, the data flow can be erroneous
itself. Another limitation of the most of the existing workflow verification ap-
proaches is the way they communicate to the user: they are not configurable, and
it is not always clear what types of errors they capture (the details are typically
hidden in the verification algorithms).

To address some of the limitations of existing approaches, we propose a new
analysis framework based on (a) workflow nets with data, (b) temporal logic,
and (c¢) “anti-patterns”. A WorkFlow net with Data (WFD-net) is a special type
of a Petri net, with a clear start and end point and annotations related to the
handling of data (a task can read, write, or destroy a particular data element).
Assuming a WFD-net representation, we define several anti-patterns related to
the data flow. The term “anti-patterns” was coined in 1995 by Andrew Koenig
[12]. He stated that “An anti-pattern is just like pattern, except that instead of
solution it gives something that looks superficially like a solution, but isn’t one”
[12]. The goal of anti-patterns is to formally describe repeated mistakes such that
they can be recognized and repaired. In this paper, we use the temporal logic
CTL* (and its subclasses CTL and LTL) to formalize our anti-patterns. This
formalization can be used to discover the occurrence of such anti-patterns in
WPFD-nets by standard model-checking techniques [4]. Although not elaborated
on in this paper, the same techniques can be used to define correctness notions
related to the control flow and check these in an integral way.

An example of an anti-pattern is DAP 1: Missing data. This anti-pattern
describes the situation where some data element needs to be accessed, i.e. read
or destroyed, but either it has never been created or it has been deleted without
having been created again. This property can be expressed in both CTL and LTL.
Hence, given a WEFD-net it can be easily checked using standard model checkers.

The remainder of this paper is organized as follows. Section 2l presents related
work. Section [ introduces WFD-nets. This representation is used in Section [
to define a comprehensive set of data-flow anti-patterns. The formalization of
these anti-patterns is given in Section [l Section [@ concludes the paper.

2 Related Work

Since the mid-nineties, many researchers have been working on workflow ver-
ification techniques [I/16]. It is impossible to give a complete overview of the
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related work here (see [3] for references). Therefore, we only mention the work
directly relevant to this paper, namely verification approaches in which control
and data flow are both taken into account for verification.

The importance of data-flow verification in workflow processes was first men-
tioned in [I5]. There, several possible errors in the data flow are identified, like,
e.g., the missing and the redundant data error, but no means for checking these
errors is provided. Later, [I8] conceptualized the errors from [I5] using UML
diagrams, and gave supporting verification algorithms. This work was further
extended and generalized in [I9]. None of these approaches consider data re-
moval. The exact details of the erroneous scenarios are not always clear, being
hidden in the verification algorithms, and good diagnostics are missing. More-
over, the methods are not adaptive enough, as new properties cannot be easily
added to the checks.

In [8], a model called dual workflow nets is proposed, that can describe both
the data flow and the control flow. The notion of classical soundness from [I]
is extended to support the case when data flow can influence control flow. No
explicit data correctness properties are considered.

The ADEPTgex tool [I4] supports a limited set of checks for data-flow cor-
rectness. The focus is entirely on dynamic changes in workflow models.

The work closest to ours is [7]. There, model checking is used to verify business
workflows, from both the control- and data-flow perspective. The underlying
workflow language is UML diagrams as opposed to the Petri net approach taken
in this paper. Only a few data data correctness properties are identified and no
systematic classification is presented. Data can only be read or written, but not
destroyed. Finally, [7] only considers LTL model-checking while several of our
anti-patterns are not expressible in LTL.

In the field of software verification model checking have been successfully
used to discover program bugs that are caused by, e.g., non-initialized or dead
variables [I7]. In this, totally different, application domain, concurrency issues
are rarely treated and systematic classification of errors is missing.

3 Workflow Nets with Data

Workflow nets (WF-nets) are commonly used as a basic representation for work-
flow processes [I]. A WF-net is a Petri net with one unique source place and
one unique sink place such that all nodes are on a path from the source place
to the sink place. The transitions in a WF-net represent tasks. A WF-net is
instantiated for a particular case by putting a token on the source place. The
completion of this instance is denoted by a token on the sink place. WFD-nets
extend WF-nets with data elements and define four relationships between tasks
and these data elements. First, a task may read a particular data element. This
data element is thus expected to have a value before the task is executed. Sec-
ond, a task may write (to) a particular data element. This means that this data
element gets a new value. If it did not have a value yet, it is created; otherwise
it is overwritten. Third, a task may destroy a data element, leaving it with no
value. Finally, a task may use a particular data element in its guard (optional).
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Fig.1. A WFD-net

We only consider data elements that are case-related, i.e., that belong to an
individual process instance and cannot be shared among different cases and/or
different processes. The techniques of this paper, however, can be applied to
support complete data interplay, if all processes are modeled and combined into
one (huge) WFED-net. In addition, we assume workflows to start from an empty
data state; starting with some existing data can easily be modeled with an
artificial start task.

The following definition introduces Workflow nets with Data (WFD-nets).

Definition 1 (WFD-net). A tuple(P, T, F, D, Gp, Read, Write, Destroy, Guard)
is a Workflow net with data (a WFD-net) iff:

— (P, T,F) is a WF-net, with places P, transitions T and arcs F’;

— D is a set of data elements;

— Gp is a set of guards over D;

— Read : T — 27 is the reading data labeling function;

— Write : T — 2P is the writing data labeling function;

— Destroy : T — 2P is the destroying data labeling function; and

— Guard : T' — Gp is the guarding function, assigning guards to transitions. 0O

Note that a WFD-net is just an annotated WF-net; its formal semantics will be
given in Section Bl using the concept of unfolding to a WF-net.

Fig. I shows an example of a WFD-net. There are 10 data elements (a, ..., h,
u, and v), and these elements are linked to tasks in the process. Task tg, e.g.,
reads from data elements a and h, writes to u and v, and destroys d. Thus:
Read(ts) = {a, h}, Write(ts) = {u, v}, Destroy(ts) = {d}, and Guard(tg) = true
(i-e., no guard). If one ignores the read, write, destroy, and guard annotations,
Fig. Ml is a WF-net with source place start and sink place end. All cases start
with task ¢; and end with task tg. In-between, t5 and tg are executed in sequence
and this is done in parallel with the lower process fragment that starts with ¢3
and ends with t7. In-between t3 and t¢7 either ¢4 or t¢5 is executed. This choice
depends on the evaluation of pred(v); if this predicate evaluates to true, t4 is
selected, otherwise t5.

WFD-nets can be seen as an abstraction from notations deployed by popular
modeling tools. To illustrate this we show in Fig.[2lthe Protos model correspond-
ing to the WFD-net from Fig.[Il Protos (Pallas Athena) uses a Petri-net-based
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Fig. 2. A Protos model showing both the control flow and data flow

modeling notation and is a widely-used business process modeling tool. It is used
by more than 1500 organizations in more than 20 countries and is the leading
business process modeling tool in the Netherlands. Like most other tools it al-
lows for the modeling of both control flow and data flow. The left-hand side of
Fig. @ shows the control flow while the right-hand side shows the different data
elements. The colors (different shades of grey in this case) show the relationships
between t; and these data elements, and the bottom window of Fig. [2] shows the
nature of these relationships.

As illustrated by Fig. Bl the language used by Protos is close to Defini-
tion[Il Other popular notations such as the Business Process Modeling Notation
(BPMN), extended Event-driven Process Chains (eEPCs), UML activity dia-
grams, etc. also allow for the modeling of both control flow and data flow. In
fact, the basic idea to link data elements to tasks originates from IBM’s Busi-
ness Systems Planning (BSP) methodology developed in the early eighties. Here
a so-called CRUD matriz is used showing Create, Read, Update, and Delete re-
lationships between tasks and data elements. The Read relationship in a CRUD
matrix is similar to the Read function and the Delete relationship is similar to
the Destroy function in Definition [[l The Update relationship is similar to the
Write function, but may also refer to a combination of read and write. The Cre-
ate relationship can be seen as the first write action for a data element. In Protos
a variant of the CRUD matrix is used and the basic relations are Mandatory,
Created, Deleted, and Modified. Other tools use other variants. However, all
of these operations can be translated into the primitives given in Definition [l
Hence, the applicability of the results presented in the remainder extends to
other notations (BPMN, eEPCs, etc.) and variants of the CRUD matrix.

Soundness [1] is the mostly used correctness notion for workflows. The basic
idea is that the process cannot deadlock or livelock and it is always still possible
to terminate properly. However, the classical soundness notions do not consider
data. This is serious limitation. For example, the workflow design shown in Fig.[I]
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is sound but has some serious design flaws when considering the data annota-
tions. For example, data element b may be destroyed in task ¢4 while it is needed
in the following task t; for reading. To identify such problems we use so-called
data-flow anti-patterns.

4 Data-Flow Anti-Patterns

In this section we introduce data-flow anti-patterns and explain them using the
example WFD-net shown in Fig.[Il For the sake of readability, when saying “data
element d is read” in the descriptions of anti-patterns, we actually mean “data
element d is read or used for the evaluation of a guard”. Evaluating predicate pred
on data element v in Fig. [I] thus will be interpreted as reading v by transitions
t4 and t5.

DAP 1 (Missing Data). This anti-pattern describes the situation where some
data element needs to be accessed, i.e. read or destroyed, but either it has never
been created or it has been deleted without having been created again.

In Fig. [l data elements a and b are missing. Note that a needs to be read
immediately by the first task, although it has not been created yet. Data element
b is created by t3, but it can be destroyed by t4 before it reaches t; that needs
to read it.

Unlike some other anti-patterns we will present later, we do not introduce a
strong and a weak variant for missing data depending on the fact whether we
will certainly miss a data element, or we miss it only at some execution paths
that might be choosen. We require that data should be present independently of
the choices made in the workflow—the absence of data necessary for an action
indicates a flaw in the workflow.

DAP 2 (Strongly Redundant Data). A data element is strongly redundant
if there is a writing activity after which in all possible continuations of the ex-
ecution this data element is never read before it gets destroyed or the workflow
execution is completed.

In Fig. [l data elements ¢ and d are strongly redundant. Task ¢; creates ¢ but it
is never read in the workflow, while task to creates d and tg destroys d without
reading it.

DAP 3 (Weakly Redundant Data). A data element is weakly redundant if
there is some execution scenario in which it is written but never read afterwards,
i.e. before it is destroyed or the workflow execution is completed.

If a data element is strongly redundant (DAP ), it is also weakly redundant
(DAP [J), while the opposite does not hold in general. Consider data element e
in Fig. [[l It is created by ¢; and it is only read by t4. In case t5 and not t4 is
chosen, e remains unread, and hence it is weakly redundant. On the other hand,
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if t5 is chosen, e is read between its creation and destruction, and therefore e is
not strongly redundant.

Strongly redundant data indicates in most situations a real flaw in the work-
flow. Weakly redundant data can in principle refer not to a flaw but to a design
decision aimed e.g. at the uniformization/simplification of data requests (asking
all clients to provide data dy,...,ds, while di is of interest only for the clients
with a particular value of dy) or at the improvement of the performance (com-
puting some weakly redundant data element d in parallel to some other activity
whose result will make it clear whether d is needed afterwards or not; in case d
is needed, it is immediately available, and it is ignored otherwise).

DAP 4 (Strongly Lost Data). A data element is strongly lost if there is a
writing activity after which in all possible continuations of the execution this
element gets overwritten without having been read first.

In Fig. [l element f is strongly lost, since ¢; writes to f, t7 rewrites it, and f
cannot be read in between.

DAP 5 (Weakly Lost Data). A data element is weakly lost if there is an
execution sequence in which it is overwritten without been read first.

Strongly lost data (DAP M) implies weakly lost data (DAP [l but, in general,
not the other way around. In Fig.[I], g and h are weakly lost. Task t3 writes to g,
then g may be overwritten by t4, after which ¢ is read by ¢7. In case t5 is chosen
instead of t4, g is read by t; without having been overwritten. The example
of h shows a concurrency-related instance of this anti-pattern. In case of the
execution sequence titotgtstatrts, to writes to h, tg reads it, t7 writes again and
tg reads h. If tg is scheduled to be executed later, and the execution sequence is
titatstatrtsts, to writes to h, then t7 rewrites it, and only then A is read. Note
that in the latter case both tg and tg use the value of h produced by t7.

Strongly lost data normally indicates a real flaw in the workflow, while weakly
lost data may be a design decision, but may also be a flaw. Examples where
weakly lost data may be an instance of a normal behavior are, e.g., reading some
client’s data (address, telephone number, etc.), which might remain possible
along the whole workflow. The fact that they are updated (overwritten) without
ever having been read is then a normal scenario.

DAP 6 (Inconsistent Data). Data is inconsistent if a task is using this data
while some other task (or another instance of the same task) is writing to this
data or is destroying it in parallel.

In Fig. [0 u is inconsistent since t5 and tg may write to u in parallel and it is
not clear which version of w will be used by ¢7 and tg. Data element v is also
inconsistent, as tg might change its value before or after the predicate pred is
evaluated. Inconsistent data normally indicates a real flaw in the workflow.
The following anti-patterns are related to data removal. They should be seen
more as efficiency drawbacks rather than strict correctness problems. These anti-
patterns are especially important for scientific workflows, where data is often
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large and its unnecessary storage should be avoided, while automatic garbage
collection is rare.

DAP 7 (Never destroyed). A data element is never destroyed if there is a
scenario in which it is created but not destroyed afterwards.

For example, a is never destroyed after its creation by ¢, which indicates the
possibility of leaving garbage by the workflow.

DAP 8 (Twice Destroyed). A data element is twice destroyed if there is a
scenario in which it is destroyed twice in a row without having been created in
between.

This anti-pattern is similar to the strongly lost data error but concerns data
deletion. It can be seen as a special instance of DAP [I1

DAP 9 (Not Deleted on Time). A data element is not deleted on time when
there is a task that reads it without destroying it, and after this task the data
element is never read again in the workflow, independently of the choices made.

For example, t7 is the last (and the only) task reading g, but g is deleted later,
by ts. Thus g is not deleted on time.

5 Formalization and Implementation

After introducing the anti-patterns in an informal manner, we now show that
these patterns can be formalized and supported by standard model checking
tools. We first introduce CTL" and its subclasses LTL and CTL. Then we provide
a translation of WFD-nets to Kripke structures to facilitate the verification of the
desired temporal properties, and we provide formalizations for the anti-patterns
formulated in Section @ Finally, we discuss how the approach can be supported
by existing tools.

5.1 Temporal Logic CTL"

CTL* [4] is a powerful (state-based) temporal logic combining linear time and
branching time modalities. It is typically defined on Kripke structures, so we
introduce this model first.

Definition 2. A Kripke structure is a tuple (S, A, L, —) where S is a finite set
of states, A is a non-empty set of atomic propositions, £ : S — 24 is a (state)
labeling function, and — C S x S is a transition relation. O

If (s,8") € —, then there is a step from s to ', then also written as s — s’. For
a state s, L(s) is the set of atomic propositions that hold in s.

A path from s is an infinite sequence of states sg, s1, S2,... such that s = s,
and either s — sgq1 for all k € N, or there exists an n > 0, such that s — sg41
forall0 < k <n, s, / ,and s = si41 for all k > n. For a path 7 = s¢, s1, sa, . ..
and some k > 0, 7% denotes the path sk, Sk+1, Sk+2, - - -

We now define the syntax of CTL".
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Definition 3. The classes & of CTL* state formulas and ¥ of CTL* path for-
mulas are generated by the following grammar:

¢pu=al ¢ | pNO| EY
Y= ¢ | W | YAY| X¢| pUY

with a €A, ¢ € @, and ) € U. O
Validity of CTL* formulas is defined as follows.

Definition 4. We define when a CTL* state formula ¢ is valid in a state s
(notation: s = ¢) and when a CTL* path formula 1 is valid on a path 7 (notation:
7 = ) by simultaneous induction as follows:

—sEaiffac L(s);

— sk 0 iff s I 6

—sEM NG s ¢ and s | ¢o;

— s = E¢ iff there exists a path 7 from s such that w = 9;

— 7 |= ¢ iff s is the first state of m and s = ¢;

- 7T E T EY;

—mEY Ay iff T E 1 and T |E e

— 1= XY iff tt E; and

— 7 = Y U iff there exists a j > 0 such that 7 = o', and ©F |= ¢ for all
0<k<j. 0

A formula X says that i holds nezt, i.e. in the second state of a considered
path. A formula ¢ U 1)’ says that, along a given path, ¢ holds (at least) until
¥’ holds. We standardly write Fip for T U4 (“In the future ¥” or “¢» will hold
eventually”), Gy for —=F—) (“Globally ¢” or “4b holds always along a path”),
and Aty for =E—)p (“4p holds along all paths”). The combinators AG and EF can
then be interpreted as “in all states” and “in some state” respectively.

The complexity of checking CTL* formulas is linear in the size of the model
but exponential in the size of the formula. We define two most popular (syntac-
tic) restrictions of CTL* that allow for more optimal verification. A CTL" state
formula of the form A, where 1 is a path formula containing no state formulas,
is a linear temporal logic (LTL) formula. A CTL" state formula in which every
sub-formula of the type v U 1)’ is prefixed by an A or E quantifier, is a com-
putational tree logic (CTL) formula. The complexity of LTL model checking is
the same as of CTL*, but the advantage is that LTL formulas can be checked
on-the-fly [4]. The complexity of CTL model checking is linear in both the size of
the model and the size of the formula, and thus lower than for CTL* [4]. As we
will see later, all our correctness properties belong to either the LTL or the CTL
subset (or both)The reason we work with CTL" is to have a common framework,
and to be allowed to (temporarily) jump outside of the restricted domain when
rewriting one formula to another.
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5.2 Unfolding of WFD-Net

Since we use a state-based logic, the states of a Kripke structure representing
the behavior of a WFD-net, should include information necessary for the for-
malization of our anti-patterns, namely what happens with the data when some
transition is executed. This information is lost if we just build the reachability
graph of a WEFD-net—e.g. we can see that two transitions writing to a data
element d can be enabled at the same time, but we cannot see whether they can
be executed at the same time.

Preprocessing. To include the information about the data operations into the
states, we use a preprocessing step that converts a WFD-net into a WF-net,
while keeping the original structure intact. This step consists of the following
smaller steps:

1. We split every transition t into its start ¢s and its end ¢, connected by a
place p;. A token on p; means that transition ¢ is being executed.

2. To capture the restrictions on the behavior due to guards, we add a “guard
layer” to our net: For every predicate pred appearing in some guard we
introduce places pred,,,. and predg,.. A token on pred,, . indicates that the
predicate is evaluated to true for the current set of data values. A token on
prede, . means that pred evaluates to false.

3. For every transition ¢t with a guard pred in the WFD-net, we add an arc from
pred,,, to ts and an arc back from ¢, to pred,,,. to our preprocessed net. This
self-loop makes sure that ¢ is executed only when its guard is evaluated to
true. For the guard —pred we add the arcs to the place preds,, instead of
predtrue'

4. A change of the value of a data element d that appears in a predicate pred
may potentially change the evaluation of pred. We reflect that by assuming
that every transition ¢ writing to d might change the value of pred (or not).
Therefore, we split t. into three transitions: two to represent possible changes
of the predicate value (from true to false and from false to true), and one
leaving the predicate value unchangedE

Please note that in case the transition changes data items related to k predi-
cates, it will be in general split into 3% transitions.

Fig. Blillustrates the preprocessing for transition ¢ with a guard pred1(c) writ-
ing to data element b. We assume that b is used in some predicate pred2(b), guard-
ing some other transition(s) of the workflow. Places pred1(c)trye, pred1(c)faise (not
shown in the figure), pred2(b)iue and pred2(b)sise are added to represent the
values of the predicates. The transition is split into the start transition t5, con-
trolled by place pred1(c)irye, and transitions te—irye— faise, changing the value of
the predicate pred2 from true to false, tc_ faise—true, changing the value of the
predicate from false to true, and t. leaving the value unchanged.

! In this paper we assume that predicates do not depend on each other; our method,
however, can be easily extended to support dependencies.
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Fig. 3. Decomposition of a transition in a WFD-net

We make an arbitrary choice assuming that all pred,,,. places initially have
a token and predy,;,, places not. We can afford making an arbitrary choice since
the errors related to the use of undefined data for the valuation of guards is
captured by DAP [Il and will be signaled as an error, in case it takes place.

Building the Kripke structure. The Kripke structure is in fact an extended reach-
ability graph of the preprocessed net. The states of the Kripke structure are
states (markings) of the reachability graph and the transition relation is the
reachability relation. We define the set of atomic propositions A= {p>i|p €
P,i € N} to express properties of markings (p > ¢ means that place p holds
at least ¢ tokens). The labels of states map the markings to the sets of atomic
propositions as follows: for some p € P and ¢ € N, (p > ¢) € L(m) iff m(p) > .

For the sake of readability, we introduce some abbreviations. We write p = i
forp > iA—(p > i+ 1). To directly formulate that some transition t is executing,
we write exec(t) instead of p; > 1. That the workflow is in its final state is denoted
term, defined by (end = 1A A ¢ p\ (ena} (P = 0)). To represent the fact that a data
element d € D is being read by some transition, either as its input or for evaluat-
ing a guard, we write r(d), abbreviating thus ;. jcread()udata(Guard(r)) €€<(t)-
The constructs w(d) and d(d) are defined similarly.

We will use a convention that the order of operations within a transition is
fixed as first read, then write and after that destroy, which e.g. implies that
transition tg in Fig. [l first reads f and only after that destroys it, i.e. here there
is no attempt to read a destroyed data element.

Example. We use a simplistic example to show that the addition of the guard
layer reduces the number of false positives and false negatives, compared to the
analysis on the net without it. Consider the WFD-net from Fig. @l If guards are
ignored while generating the behavior, d’ will be reported missing in t4. This is
a false negative, as t4 can never be enabled—ts can only be chosen when pred(d)
is false, and the value of the predicate remains the same when it is evaluated at
t4. On the other hand, a soundness check on the net with the guard layer will
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pred(d)]
[not pred(d)]
s
[not pred(d)]
w:d s
: [pred(d)]
start T P4 5 p2 = end
ty

Fig. 4. Data can influence reachability

correctly report that transition t4 is dead, while the check on the control flow
would result in a false positive, saying that the net is sound.

5.3 Formalization of Anti-patterns

We explain the formalization process for some of the anti-patterns in detail, and
we merely provide the corresponding CTL* formulas for the rest.

DAP[: Missing Data. A data element d is missing if there is an execution path
along which no writing to d happens until reading d or destroying d takes place.
This can be expressed by E[-w(d) U (r(d) V d(d))]. A data element d is also
missing if d first get destroyed and then no writing takes place until d is read
of destroyed, which can be captured by EF[d(d) A (—w(d) U (r(d) Vv d(d)))]. The
disjunction of these two expressions results in the formalization given in Table[Il

DAPI[Z: Strongly Redundant Data. A data element is strongly redundant if there
is a path leading to a writing to d (i.e. EF[w(d) A ...]) such that in all possible
continuations of this path no reading takes place until the workflow terminates
or d get destroyed (AX[-r(d) U (term V (d(d) A—r(d)))]). We need X here because
we want to impose —r(d) restriction starting from the next state only, not from
the state where the writing in question takes place—reading there would precede
the writing, according to our convention. This convention is also the reason for
including —r(d) in the conjunction d(d) A —r(d).

The formalization of DAP[J Weakly Redundant Data differs from its strong
counterpart by one letter only: the A requirement is removed, since it is sufficient
to have one path showing the undesired behavior. The principle of formulating
DAP ] is the same as for DAP[Z the principle of formulating DAP [3, DAP[7
and DAP[§is the same as for DAP[3

DAPIG: Inconsistent Data. A data element d is inconsistent if some transition
t that changes d and some transition ¢’ that uses d can be executed at the
same time, captured by \/,cp.qcchange(t) EFl(€x€c(t) AV 4y qeuse(rr) €xec(t’))], or
if two or more instances of transition ¢ changing d can be executed in parallel,
captured by V/,er.qechange(r) EF[Pt = 2]. Here change(t) stands for the set {d |
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Table 1. Formalization of anti-patterns for a data element d

Anti-pattern Formalization

DAP I E[(-w(d) U (r(d) v d(d))) v

Missing Data Fld(d) A (-w(d) U (r(d) Vv d(d)))]]

];‘7:1:9 edundant Daga EFM(d) A AX [2r(d) U (term v (d(d) A ~r(d))]
]3/?(111:15]& e Dasa EFW(d) A X[r(d) U (term V (d(d) A ~r(d)))]
DAP[4

Suromaly Lost Data EFfw(d) A AX [~(r(d) V d(d)) U (w(d) A ~r(d))]]
DAP

st Data EFI(@) AX[(1d) V 4() U (w(d) A ~r(a)]
DAP VtGT:dEChange(t)

Inconsistent Data EF[(exec(t) A Vi sr.acuseery €xeC(t’)) Ve > 2]
DAP[T

Nover destroged EFfw(d) A X[~(d(d) v w(d)) U term]]

DAPE

Twice Destroyed EF[d(d) A X[~w(d) U (d(d) A ~w(d))]]

DAP Vi de (Read(t)Udata(Guard(¢)))\ Destroy ()
Not Deleted on Time AG[exec(t) = exec(t) U G(—r(d))]

d € Write(t) U Destroy(¢)}, and use(t) stands for the set {d | d € Read(t) U
data(Guard(t)) U Write(t) U Destroy ()}

DAPI[3: Not Deleted on Time. To conclude that a data element d is not deleted
on time, we need a transition that reads d without destroying it (i.e. t € T with
d € (Read(t) U data(Guard(t))) \ Destroy(¢)), such that the execution of this
transition is never followed by reading d. This means that for all paths whenever
t is executed (AG[exec(t) = ...]), d is never read again after the execution of ¢ is
finished (captured by exec(t)UG(=r(d))). An additional explanation needed here
is that there can be several consecutive states for which exec(t) is true, which
means that there are events happening in parallel branches while ¢ continues its
execution. The resulting formula is given in Table[d]

All the formulas except for the last one (DAP [@)) are (or can be rewritten
to) CTL formulas. Negations of formulas for DAPs 1, 3, 5, 6, 7 and 8 can be
rewritten to LTL. DAP @ is a set of LTL formulas itself.

5.4 Tool Support

As explained in the previous section, all anti-patterns we identified (or their
negations) can be expressed in one of the two most commonly used temporal
logics, CTL or LTL. Therefore, to check for data correctness we do not need to
build our own tool but can choose from a number of Petri-net model-checkers
available (e.g. [I0/I3l5]). The Model-Checking Kit [10] allows for both CTL and
LTL model-checking, and supports a variety of Petri-net modeling languages as
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input. Maria [I3] is an LTL model-checker, and CPN Tools [5] is a powerful
framework for modeling and analysis of Colored Petri nets with the CTL model-
checking facility. We used CPN Tools in our verification experiments, and we
were able to easily state all the CTL anti-patterns, and to check them within a
fraction of a second.

6 Conclusion

This paper provides a systematic classification of possible flaws related to the
data flow in business workflows. We formulated these flaws as data-flow anti-
patterns. To avoid ambiguities inherent to formulations in a natural language,
we formalized the anti-patterns in the temporal logic CTL*. All anti-patterns
belong to one of the two (or both) most popular subsets of CTL*: CTL and LTL.
This opens a way to easy tool support for our approach, since there are many
model-checkers for both CTL and LTL.

Our approach is a first step towards a unifying framework for the integral
analysis of workflows taking into account both control and data flow. As we
showed in the example related to Fig. [ (Subsection B.2)), by including data flow
along with control flow into consideration when checking classical properties of
workflow like soundness, we can reduce the number of false positives and false
negatives caused by (unavoidable) abstraction of data values.

In the future we will try to identify more anti-patterns. We will also build an
integrated tool-chain that starts with the check for boundedness, then performs
the preprocessing transformations and Kripke structure generation, proceeds in
looking for anti-patterns’ instances by using an existing model-checker, e.g. [10],
and finally generating a verification report for the workflow designer.
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