
P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 110–124, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Using UML as a Domain-Specific Modeling Language:  
A Proposal for Automatic Generation of UML Profiles 

Giovanni Giachetti, Beatriz Marín, and Oscar Pastor 

Centro de Investigación en Métodos de Producción de Software 
Universidad Politécnica de Valencia 

Camino de Vera s/n 
46022 Valencia, Spain 

{ggiachetti,bmarin,opastor}@pros.upv.es 

Abstract. Nowadays, there are several MDD approaches that have defined 
Domain-Specific Modeling Languages (DSML) that are oriented to represent-
ing their particular semantics. However, since UML is the standard language for 
software modeling, many of these MDD approaches are trying to integrate their 
semantics into UML in order to use UML as DSML. The use of UML profiles 
is a recommended strategy to perform this integration allowing, among other 
benefits, the use of the existent UML modeling tools. However, in the literature 
related to UML profile construction; it is not possible to find a standardized 
UML profile generation process. Therefore, a process that integrates a DSML 
into UML through the automatic generation of a UML profile is presented in 
this paper. This process facilitates the correct use of UML in a MDD context 
and provides a solution to take advantage of the benefits of UML and DSMLs. 

Keywords: UML Profile, UML, MDD, DSML. 

1   Introduction 

An appropriate modeling language is one of the most important elements for Model-
Driven Development (MDD) approaches [22]. To obtain modeling languages that are 
adequate, different MDD approaches have defined their own Domain-Specific Model-
ing Languages (DSML) in order to represent their particular modeling needs. Two of 
the benefits that the use of DSMLs provide to MDD approaches are: (1) a correct  
and precise representation of the conceptual constructs related to the application do-
main, and (2) simplification of the implementation of tools oriented to improving the 
modeling tasks, development, and maintenance of generated software solutions. 

However, since UML is seen as the standard language for software modeling pur-
poses, many MDD approaches are integrating their modeling needs into UML in 
order to use UML as DSML. To perform this integration, the use of the extension 
mechanism defined in the UML specification, called UML profile, is the most suitable 
strategy. Therefore, the MDD approaches could achieve a larger market (greater 
number of potential users), take advantage of the existent UML technologies, and 
reduce the learning curve [2][12][23]. In addition, UML can be used as a mechanism 
to interchange ideas and theories among different research communities. 



 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 111 

Currently, there are many definitions of UML profiles that are associated to MDD 
approaches [14]. Generally speaking, these profile definitions are manually elaborated 
in a straightforward way and without a standardized process because a standard that 
specifies how the UML extensions must be defined does not currently exist [6]. For 
this reason, many of the existent UML profiles are invalid or of poor quality [23]. In 
addition, the manual definition of a UML profile is an error-prone and time-
consuming task [24]. These two risk factors (time and error) must be avoided,  
especially in a MDD industrial context, where time costs money and mistakes in im-
plementation directly impact on customer satisfaction.  

To avoid the risks described above, some works related to UML profile elaboration 
have defined proposals to achieve a semi-automated profile generation [12][24]. For 
the generation of the UML profile, these proposals use as input the metamodel that 
describes the conceptual constructs related to the DSML of an MDD approach (the 
DSML Metamodel). However, none of these proposals provide a sound solution for 
the automatic generation of a complete UML profile. This is because, in real MDD 
solutions, structural differences between the DSML metamodel and the UML Meta-
model, which prevent the automated identification of the extensions that must be 
performed in UML, may be found.  

This paper introduces a solution for a completely automated UML profile genera-
tion using as input the DSML Metamodel related to a MDD approach. This solution is 
part of an integration process that has been designed to introduce the modeling needs 
of MDD approaches into UML. In this process, the proposal presented in [8] is used 
to obtain a correct input for the generation of the UML profile.  

Thus, this paper shows how the required UML extensions can be automatically 
identified and details the transformation rules to obtain the UML Profile that imple-
ments these extensions. This paper also shows the application of the integration proc-
ess in an industrial MDD approach called OO-Method [19][20] in order to exemplify 
how this process can be used to integrate UML and DSML models in a unique MDD 
solution. 

The rest of the paper is organized as follows: Section 2 shows the background re-
lated to UML profile generation. Section 3 introduces the proposed process. Section 4 
details the automatic UML profile generation. Section 5 presents the application of 
the process. Finally, Section 6 presents our conclusions and further work. 

2   Background 

The UML profile extension mechanism is defined in the UML Infrastructure [16]. It 
defines the mechanisms used to adapt existing metamodels to specific platforms, 
domains, business objects, or software process modeling. In this work, the UML  
profiles are used to integrate the modeling needs of MDD approaches in UML [17]. 
Further details about UML Profiles and UML extensions can be consulted in 
[2][7][16]. 

In the literature related to the definition of UML profiles, two main working sche-
mas can be observed: 1) the definition of the UML profile from scratch; and 2) the 
definition of the UML profile starting from the DSML Metamodel [23], which is the 
metamodel that describes the conceptual constructs required by a MDD approach. For 



112 G. Giachetti, B. Marín, and O. Pastor 

the process presented in this paper, the second working schema has been selected 
since it provides a methodological solution that has more automation possibilities. 

One of the first proposals related to this working schema is the work presented by 
Fuentes-Fernández et al. in [7], who propose some basic guidelines for the UML 
profile definition. In [23], Selic proposes a systematic approach that takes into ac-
count the new UML profile extension features. In addition, this systematic approach 
establishes some guidelines to ensure a correct DSML metamodel specification and 
defines some criteria to obtain a UML profile by means of a mapping that identifies 
the equivalences between the DSML metamodel and the UML metamodel.  

Nowadays, there are very few works related to the automation of the definition of a 
UML profile. One of these works is the Lagarde et al. approach [12], which can be 
partially automated through the identification of a set of specific design patterns. 
However, this approach requires the manual definition of an initial UML profile 
skeleton. Another interesting work is presented by Wimmer et al. [24]. This work 
proposes a semi-automatic approach that introduces a specific language to define the 
mapping between the DSML metamodel and the UML metamodel. This mapping 
allows an automated UML profile generation. However, this approach does not sup-
port all the possible mapping alternatives, for instance, the mapping M:M (many 
elements of the DSML metamodel mapped to many elements of the UML meta-
model). As a consequence, the effective application in real MDD approaches is not 
possible.  

In general, the analyzed works are only centered on representing those modeling 
elements of the DSML that do not exist in UML using the generated UML Profile. 
However, this focus is not enough to generate a correct UML profile because there are 
other elements that must be considered for a correct UML profile definition. These 
other elements are: 1) the representation of the differences that exist between ele-
ments of the DSML, and corresponding elements that already exist in UML, and 2) 
the definition of rules oriented to validate the correct use of the UML profile in order 
to produce correct conceptual models. 

Even when these additional considerations are omitted, none of the works men-
tioned above provide a sound transformation process to automatically generate a 
complete UML profile solution. The main limitation of these approaches comes from 
the structural differences between the DSML metamodel and the UML metamodel. If 
these structural differences are solved, then the UML Profile generation can be auto-
mated. In Giachetti et al.[10], we propose a solution to solve these structural prob-
lems. This solution consists of the transformation of the DSML metamodel into a new 
metamodel. This new metamodel provides an adequate input to automate the integra-
tion of the abstract syntax that is represented in a DSML metamodel into the UML 
Metamodel. The automatic UML profile generation that is presented in the next  
section of this paper is based on this solution.  

3   A Process to Integrate a DSML into UML 

This section presents the process that has been defined to integrate the modeling 
needs related to a specific MDD approach into UML by means of an automatically 
generated UML profile. These modeling needs are represented by the DSML  



 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 113 

metamodel of the MDD approach. To elaborate this process, different works have 
been considered. Some of these works are: definition of profiles using DSML meta-
models [7][12][23][24], correct use of metamodels in software engineering [11], 
UML profile implementations [14], interchange between UML and DSMLs [1][9], 
and new UML profile features introduced in UML [16].  

The proposed process can be used in those MDD approaches where the conceptual 
constructs can be considered as a subset or extension of the UML constructs. This 
constraint comes from the limitation of the UML profile to change the reference 
metamodel and guarantees that the MDD approaches that use the proposed process 
are UML-Compliant. The process is composed of three steps (see Figure 1): 

• Step 1: Definition of the Integration Metamodel from the DSML metamodel taking 
into account the UML Metamodel defined in the UML Superstructure [17]. 

• Step 2: Comparison between the Integration Metamodel and the UML Metamodel. 
This comparison identifies the extensions that must be defined in UML by using 
the equivalences identified in the Step 1.  

• Step 3: Transformation of the Integration Metamodel according to a set of trans-
formation rules in order to obtain the final UML profile. 

Automatic UML Profile Generation

STEP 1
Integration Metamodel

Definition

Integration Metamodel
+

Mapping Information
Integration Metamodel

+
Mapping Information

+
Identified Extensions

DSML
Domain 
Model

STEP 2
Metamodels 
Comparison

STEP 3
Integration Metamodel 

Transformation

UML 
Profile

 

Fig. 1. Integration Process Schema 

The second and third steps of the integration process correspond to the Automatic 
UML Profile Generation. In this process, the original DSML metamodel is redefined 
to obtain the input required for the UML profile generation. This input is called the 
Integration Metamodel, and its main characteristics are described below.  

3.1   Definition of the Integration Metamodel 

The Integration Metamodel is a special DSML metamodel that has been defined to 
automate the integration of a DSML into UML. This metamodel is defined from the 
DSML metamodel, and it represents the same abstract syntax of the original meta-
model. The main difference between the Integration Metamodel and the DSML 
metamodel is its structure since it is defined to obtain a mapping with the UML 
metamodel, which allows the automatic identification of the required UML exten-
sions. This mapping information is included inside the Integration Metamodel defini-
tion. The UML metamodel selected for the definition of the Integration Metamodel is 
the metamodel presented in the UML Superstructure [17].  

The Integration Metamodel is manually defined according to the systematic ap-
proach presented in [10]. In that work, the structural problems that can exist in a 



114 G. Giachetti, B. Marín, and O. Pastor 

DSML metamodel as well as the benefits of the Integration Metamodel are discussed. 
Summarizing, the Integration Metamodel has the following features:  

• It is defined according to the EMOF modeling capabilities, which are defined in 
the MOF (Meta Object Facility) specification [15]. By using EMOF, the resultant 
metamodel properties do not have features that are not supported by UML profiles. 
Moreover, EMOF has a standardized XMI definition [18]. Thus, the UML profile 
generation can be automated by means of transformation rules that are imple-
mented over the XMI definition of the Integration Metamodel. The EMOF defini-
tion also allows the implementation of specific model editors with tools such as 
Eclipse GMF [4].  

• It is mapped to the UML Metamodel taking into account: Classes, Properties (At-
tributes and Associations), Enumerations, Enumeration Literals, and Data Types. 
The mapped elements are considered as equivalent elements, and the non-mapped 
elements are considered as new elements in the Integration Metamodel. This map-
ping complies with the following rules: 
− All the classes from the Integration Metamodel are mapped. This assures that 

the conceptual constructs of the DSML can be represented from the conceptual 
constructs of UML.  

− The mapping is defined between elements of the same type (classes with 
classes, attributes with attributes, and so on). 

− An element from the Integration Metamodel is only mapped to one element of 
the UML Metamodel. This rule also considers the possibility of have X:1 map-
pings (X ≥ 0); for instance, many classes of the Integration Metamodel can be 
mapped to one class of UML. In this example, the mapping rule is also accom-
plished because each class of the Integration Metamodel is only mapped to one 
UML class. It is important to note that the many-to-many mappings that may 
exist between the original DSML metamodel and the UML Metamodel are 
transformed into X:1 mappings during the generation of the Integration Meta-
model.  

− If the properties (attributes and associations) of a class from the Integration 
Metamodel are mapped to properties of a UML class, then the class that owns 
the properties is mapped to this UML class (or a generalization of it).  

4   Automatic Generation of the UML Profile 

This section presents how a correct UML profile can be automatically generated from 
an Integration Metamodel. This automatic generation is comprised by two steps: 1) 
the comparison of metamodels to obtain the required UML extensions; and 2) The 
transformation of the Integration Metamodel into the corresponding UML profile. 
These steps are presented below. 

4.1   Comparison of Metamodels 

The identification of the required UML extensions is performed through a comparison 
between the Integration Metamodel and the UML Metamodel. To perform this com-
parison, the mapping information defined in the Integration Metamodel is used. 



 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 115 

The comparison between the Integration Metamodel and the UML Metamodel 
considers: 

• The identification of new elements, which are the elements from the Integration 
Metamodel that are not equivalent to UML elements. These elements can be  
attributes, associations, enumerations, literal values, and data types. 

• The identification of differences in type or cardinality of equivalent properties 
(attributes and associations).  

Figure 2 shows an example of an Integration Metamodel that will be used to help 
understand how the UML extensions are identified. The metamodel presented in this 
figure represents a binary association between classes. In this metamodel, the attrib-
utes of the class DMAssociationEnd represent the cardinality related to each associa-
tion end, and the attributes of the classes DMClass and DMAssocation represent  
generic attributes related to these classes. 

lower : integer
upper : unat

DMAssociationEnd

lower : integer
upper : unat

MultiplicityElement

memberEnd[2..*]

type [0..1]

Integration Metamodel UML Metamodel

DMAssociation

newAttr2 : string

memberEnd [2..2]

type [1..1]
Association

Property

Type

TypedElement

DMClass
newAttr1 : string

Class
attr1 : integer

 

Fig. 2. Integration Metamodel related to a binary association between classes 

Table 1 shows the comparison result obtained from the Integration Metamodel pre-
sented in Figure 2. In this table, the column Integration Metamodel shows the new 
elements identified, or equivalent elements that differ in relation to the related UML 
elements. The Difference column shows what the differences are by indicating (when 
necessary) the values for the Integration Metamodel element (I.M.) and the UML 
element (UML). 

Table 1. Metamodel comparison for the Integration Metamodel presented in Figure 2 

Integration Metamodel Difference 

DMClass.newAttr1 Different type: I.M. = string; UML = integer 

DMAssociation.memberEnd Different upper bound: I.M. = 2; UML = * 

DMAssociation.newAttr2 New attribute 

DMAssociationEnd.type Different lower bound: I.M = 1; UML  = 0 

Different type: I.M. = DMClass; UML = Type 
 



116 G. Giachetti, B. Marín, and O. Pastor 

The mapping information defined in the Integration Metamodel allows the identifi-
cation of type differences. For instance, in the case of DMAssociationEnd.type and 
Property.type, the type is different because DMClass is not equivalent to Type.  

The cardinality differences are identified by analyzing the lower and upper bound 
of the equivalent properties and the referenced UML properties. This is the case of the 
equivalent properties DMAssociation.memberEnd and DMAssociationEnd.type. 

Finally, the differences identified in the comparison are the extensions that must be 
introduced into the UML in order to correctly represent the modeling needs of the 
related MDD approach. 

4.2   Transformation of the Integration Metamodel 

The third step in the process defines a set of transformation rules to automatically 
generate a complete UML profile from the Integration Metamodel and the UML ex-
tensions previously obtained. These transformation rules are defined considering that 
the new elements and the differences between equivalent elements identified during 
the metamodel comparison must be represented in the generated UML profile. In 
addition, these rules take into account the automatic generation of the needed con-
straints in order to assure the correct application of the generated extensions.  

In order to show how the Integration Metamodel can be transformed into the corre-
sponding UML profile, the required transformation rules are described below. These 
transformation rules are separated by the different EMOF conceptual constructs. The 
possible modeling situations are analyzed for each construct, according to the Integra-
tion Metamodel features. A figure that exemplifies the application of the transforma-
tion rules in a generic way is also presented.  

Classes 
Rule 1: One Stereotype for each equivalent class. The stereotype extends the refer-
enced UML class, and its name is equal to the equivalent class name. Figure 1 exem-
plifies this rule. 

This first transformation rule is the most relevant because it involves the generation 
of the stereotypes, which are the main constructs of the UML profile. The rest of 
transformation rules are applied according to the results obtained by this first rule. 
 
Validation: At the end of the UML profile generation, if there is only one stereotype 
that extends a UML class, then the stereotype extension must be defined as required. 
This constraint is defined because, in the DSML context, the UML class only has the 
semantics of the involved equivalent class (see Class3 in Figure 3).  

Integration Metamodel UML Metamodel UML Profile

Class2

Class1
UMLClass1

<<stereotype>>
Class1UMLClass2

<<metaclass>>
UMLClass1

Class3

<<metaclass>>
UMLClass2

<<stereotype>>
Class2

<<stereotype>>
Class3

{required}

 

Fig. 3. Generic example for the transformation rule related to classes: Rule 1 



 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 117 

Properties 
In EMOF, the properties represent attributes of a class (metaclass) or references (as-
sociations) between the classes. The main difference between an attribute and an 
association is that an attribute represents a data-valued property, while an association 
is an object-valued property. In other words, in an association, the type is given by 
another class of the model that represents the related class. These differences are 
taken into account in the definition of the involved transformation rules. 

 
Rule 2: One tagged value for each new property. The tagged value must have the 
same type and cardinality as the new property. The name of the tagged value must be 
the name of the new property. In the case of an association, the tagged value must 
have the same aggregation kind as the new property. The application of this rule can 
be observed in Figure 4 for the association Class1.rolClass2. 
 
Rule 3: One OCL constraint if the lower bound of an equivalent property is higher 
than the lower bound of the referenced UML property: 

self.[property]->size() >= [newLowerBound] 

Rule 4: One OCL constraint if the upper bound of an equivalent property is lower 
than the upper bound of the referenced UML property: 

self.[property]->size() <= [newUpperBound] 

As Figure 4 shows, rules 3 and 4 are applied to the Class2.roleClass3 and 
Class3.roleClass1, respectively. 
 
Validation: For rules 3 and 4, an OCL constraint is defined to validate that the corre-
sponding stereotype is applied each time that the involved UML association is estab-
lished. Thus, the type of the referenced UML association is restricted to the stereotype 
that represents the type of the equivalent association:  

self.[equivalentAssociation]->isStereotyped1∗([newType]) 

This validation is also applied if the type of an equivalent association is changed 
by a specialization of the original type (see Class2.rolClass3 in Figure 4).  

 

Lower bound cardinality difference:
Class1.rolClass3 = 1
UMLClass1.rolUMLClass3 = 0

UMLClass1Class1

UML MetamodelIntegration Metamodel

rolClass3

Class2 UMLClass2

Class3
UMLClass3

rolClass2

rolClass1

[0..*]

[0..2]

rolUMLClass2[0..*]
[1..2]

rolUMLClass3[0..2]

Upper bound cardinality difference:
Class3.rolClass1 = 2
UMLClass3.rolUMLClass2 = *

self.rolUMLClass2->isStereotyped(Class1)

self.rolUMLClass3->size >= 1

UML Profile

<<metaclass>>
UMLClass1

<<stereotype>>
Class1

<<metaclass>>
UMLClass2

<<stereotype>>
Class2

{required} {required}

<<metaclass>>
UMLClass3

<<stereotype>>
Class3

self.rolUMLClass2->size <= 2

self.rolUMLClass3->isStereotyped(Class3)

rolClass2 : Class2[0..*]

{required}

 

Fig. 4. Generic example for the transformation rules 2 to 4 

                                                           
 

1 The OCL operation isStereotyped is not part of the OMG specification and is only used to 
simplify the OCL rules presented. In the application of the integration process, this operation 
must be implemented according to the target UML tool. 



118 G. Giachetti, B. Marín, and O. Pastor 

Even though an extension relationship represents a refinement of a class in a way 
similar to a generalization relationship, its semantics is represented as a special kind 
of association and not as a generalization. For this reason, a tagged value cannot rede-
fine UML properties. Therefore, when the differences that exist between an equiva-
lent property and the referenced UML property cannot be represented using OCL 
constraints, a tagged value that replaces the original UML property is created. In this 
case, the MDD process must only consider the tagged value and not the UML  
property. 
 
Rule 5: One tagged value that replaces a UML property when one of the following 
conditions holds:  

• The type of equivalent property is different than the type of the referenced UML 
property, and the new type is not a specialization of the original type or a stereo-
type that extends the original type (see Class1.attr3 in Figure 5). 

• The upper bound of the equivalent property is higher than the upper bound of the 
referenced UML property (see Class1.attr2 in Figure 5).  

• The lower bound of the equivalent property is lower than the lower bound of the 
referenced UML property (see Class1.attr1 in Figure 5).  

UMLClass1

attr1 : typeX [1..1]
attr2 : typeX [2..2]
attr3 : typeX [1..1]

Lower bound cardinality difference:
Class1.attr1 = 0
UMLClass1.attr1 = 1

Upper bound cardinality difference:
Class1.attr2 = *
UMLClass1.attr2 = 2

UML MetamodelIntegration Metamodel

UML Profile

Class1

attr1 : typeX [0..1]
attr2 : typeX [2..*]
attr3 : typeY [1..1]

Different type:
Class1.attr3 = typeY
UMLClass1.attr3 = typeX

<<metaclass>>
UMLClass1

attr1 : typeX [0..1]
attr2 : typeX [2..*]
attr3 : typeY [1..1]

<<stereotype>>
Class1

 

Fig. 5. Generic example for transformation rule 5 

Enumerations 
The enumerations are used to specify a customized set of values that can be repre-
sented by an attribute of a class. Graphically, the enumerations are represented as a 
class. However, the enumeration is a specialization of a Classifier and not of a Class. 
This difference is considered in the following transformation rule. 

 
Rule 6: One enumeration for each new enumeration or equivalent enumeration with 
new literal values. In the case of an equivalent enumeration, the generated enumera-
tion replaces the original UML enumeration, and the involved equivalent attributes 
are considered as new attributes (Rule 2). In this case, since the UML enumeration is 
not a class, it cannot be extended with a stereotype in order to include the new literal 
values. Figure 6 shows the application of this rule for Enum2 (equivalent enumera-
tion) and Enum3 (new enumeration).  
 



 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 119 

Validation: One OCL constraint for each attribute whose type corresponds to an 
equivalent enumeration that has fewer alternatives (literal values) than the referenced 
UML enumeration (see Class1.attr1 and Enum1 in Figure 6).   

self.[attribute] <> #[nonMappedLiteralValue] 

This constraint avoids the use of invalid alternatives (non-referenced literal values) 
that are defined in the referenced UML enumeration.  

<<enumeration>>
UMLEnum1

literal1
literal2
literal3

literal3
literal4
literal5

Class1

attr1 : Enum1
attr2 : Enum2
attr3 : Enum3

UMLClass1

attr1 : UMLEnum1
attr2 : UMLEnum2

Integration Metamodel

UML Profile

<<metaclass>>
UMLClass1

<<enumeration>>
Enum1

literal1
literal2

<<enumeration>>
Enum3

literal6
literal7

<<enumeration>>
Enum2

literal3
literal4
literal5

<<enumeration>>
UMLEnum2

literal3
literal4

<<enumeration>>
Enum2

literal3
literal4
literal5

<<enumeration>>
Enum3

literal6
literal7Self.attr1 <> #literal3

attr2 : Enum2
attr3 : Enum3

<<stereotype>>
Class1

UML Metamodel

 

Fig. 6. Generic example for transformation rule 6. 

Generalizations 
The generalization relationships have interesting features that must be considered in 
the generation of the related stereotypes. Two of the main features that must be con-
sidered are: 1) since stereotypes are a special kind of class, it is possible to define a 
generalization between stereotypes; and 2) since the extension association between a 
stereotype and its related class is a specialization of Association, the extension rela-
tionship can be inherited.  

 
Rule 7: Define one generalization between two stereotypes that represent equivalent 
classes that are associated with a new generalization and that are referencing the same 
UML class. The extension related to the child stereotype is not defined since it is 
implicit in the generalization relationship. Figure 7 shows the application of this rule 
for the generalization defined between the classes Class1 and Class3. 
 
Rule 8: If there is a new generalization between two equivalent classes that are refer-
encing different UML classes, the generalization relationship is not represented in the 
UML profile. In this case, the extensions of each stereotype to the corresponding 
UML class are defined, and the inherited properties (attributes and associations) are 
duplicated (see the generalization between classes Class3 and Class4 in Figure 7). If 
the generalization is represented, then the child stereotype will be able to extend the 
UML class that is extended by the father stereotype. This could produce a modeling 
error since, according to the mapping information, the child stereotype is referencing 
(extends) a different UML class.  
 
Rule 9: If there is an equivalent generalization between two equivalent classes,  
the generalization relationship is not represented in the UML profile, and only the 



120 G. Giachetti, B. Marín, and O. Pastor 

extensions of each stereotype are defined to the corresponding UML class. In this 
way, the generalization defined in UML is used instead of the equivalent generaliza-
tion (see the generalization between classes Class1 and Class2 in Figure 7). 

Note that an equivalent generalization represents a generalization that already ex-
ists in the UML Metamodel. The equivalent generalizations are automatically identi-
fied through the participant classes of the Integration metamodel that are equivalent to 
the classes that participate in the UML generalization. 

UMLClass1

UMLClass3

<<metaclass>>
UMLClass1

UMLClass2

Equivalent generalization

Class3

property3

Class1

property1

Class2

property2

Class4

property4

<<stereotype>>
Class1

property1

<<stereotype>>
Class3

property3

<<stereotype>>
Class2

property2

<<metaclass>>
UMLClass2

self.isStereotyped(Class1)

<<stereotype>>
Class4

property1
property3
property4

<<metaclass>>
UMLClass3

Integration Metamodel UML Metamodel

UML Profile

 

Fig. 7. Generic example for transformation rules 7, 8 and 9 

OCL Rules 
The OCL rules defined in the Integration Metamodel manage the interactions between 
the different constructs of the DSML. Therefore, these rules must be included in the 
generated UML profile. 

 
Rule 10: The OCL rules defined in the classes of the Integration Metamodel must be 
included in the stereotypes generated from these classes. The elements referenced in 
the rules must be changed by the corresponding UML classes and stereotypes. 

Data Types 
Rule 11: The new data types defined in the Integration Metamodel are defined in a 
separate model library. This model library must be imported in each UML model that 
is designed using the generated UML profile.  

The equivalent data types that have differences in relation to the referenced UML 
data types are considered as new data types. Since the data types are classifiers, they 
cannot be extended using stereotypes. 
 
Validation: The UML data types that are not referenced by equivalent data types are 
not valid in the DSML context. For this reason, one OCL constraint is defined over 
the UML metaclass TypedElement to restrict the invalid UML data types: 

self.type->oclIsTypeOf([invalidType]) = False 



 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 121 

Rule 11 is the last rule defined for the transformation of the Integration Metamodel 
in the equivalent UML profile. Figure 8 presents the UML profile obtained after  
applying the proposed transformation rules to the example Integration Metamodel 
presented in Figure 2. 

UML Profile
<<metaclass>>

Class

<<stereotype>>
DMClass

<<metaclass>>
Association

<<stereotype>>
DMAssociation

<<metaclass>>
Property

<<stereotype>>
DMAssociationEnd

{required}{required} {required}

self.memberEnd->size < 3

self.memberEnd->isStereotyped(DMAssociationEnd)

self.type->isStereotyped(DMClass)

newAttr1 : stringnewAttr2 : string

self.type->size > 1

lower : integer
upper : unat

DMAssociationEnd

lower : integer
upper : unat

MultiplicityElement

memberEnd[2..*]

type [0..1]

Integration Metamodel UML Metamodel

DMAssociation

newAttr2 : string

memberEnd [2..2]

type [1..1]
Association

Property

Type

TypedElement

DMClass
newAttr1 : string

Class
attr1 : integer

 

Fig. 8. UML profile generated for the example Integration Metamodel 

In addition to the UML profile, the transformation of the Integration Metamodel 
also generates a new mapping that takes into account the generated UML profile ele-
ments (stereotypes, tagged values, etc.). This new mapping provides bidirectional 
equivalence between the Integration Metamodel and the UML Metamodel (extended 
with the generated UML profile). Figure 9 shows this new mapping information for 
the UML profile presented in Figure 8. 

Integration Metamodel UML Metamodel + UML Profile

lower : integer
upper : unat

DMAssociationEnd

lower : integer
upper : unat

MultiplicityElement

memberEnd[2..*]

type [0..1]

memberEnd [2..2]

type[1..1]

Class

Association

Property

Type

TypedElement

<<stereotype>>
DMAssociationEnd

DMClass
newAttr1 : string

<<stereotype>>
DMClass

newAttr1 : string

DMAssociation

newAttr2 : string

<<stereotype>>
DMAssociation
newAttr2 : string

 

Fig. 9. New mapping information generated for the UML profile presented in Figure 8 

The generated UML profile together with the new mapping definition can be used 
to interchange UML models and DSML models [9], in order to take advantage of 
these two modeling solutions. The following section shows how the proposed integra-
tion process has been applied to an industrial MDD approach [3], to integrate UML 
tools and the existent DSML-based tools. 



122 G. Giachetti, B. Marín, and O. Pastor 

5   Applying the Integration Process 

In this section, the implementation schema used to apply the proposed integration 
process in the OO-Method industrial approach [19][20] is introduced. This schema 
(Figure 10) takes advantage of UML tools, without losing the benefits of the existent 
MDD technology based on the OO-Method DSML. 

Integration 
Process

OO-Method
Metamodel

OO-Method
UML Profile

XMIExporter

XMI Importer

Mapping Information

OO-Method Tools

OO-Method
Model UML 

Tool

UML 
Model

 

Fig. 10. Schema designed to apply the integration process into the OO-Method approach 

XMI Importer ToolUML Model

Generated Application

…….

During the importation process, six new 
services for the creation, deletion and 
modification of instances are automatically 
generated (three services for each class). 
For this reason, in this screenshot, ten 
imported services can be observed, and not 
only the four services that are defined in the 
UML class model.

 

Fig. 11. Application of the OO-method compilation technology over a UML model 

The core of the proposed schema is made up of two interchange tools called XMI 
importer and XMI exporter [3], which transform the UML models into DSML mod-
els, and vice versa. These tools are extended with the new mapping information ob-
tained in the UML profile generation process in order to support the generated UML 
profile [9]. Figure 11 shows the application of the extended XMI importer tool to 



 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 123 

automatically generate an application from a UML model extended with the OO-
Method UML profile. This model has been defined using the Eclipse UML2 tool [5].  

The schema proposed to apply the integration process in the OO-Method approach 
has three main benefits: 

1. The technology, support, and commercial structure defined for the OO-Method 
development process can be used in a transparent way for UML users.  

2. The different OO-Method tools, such as the OO-Method model compiler [21], 
and functional size measurement tools [8][13] can be used over UML models. 

3. The customers can easily migrate from UML tools to OO-Method tools in order 
to take advantage of the improved functionalities that the OO-method tools pro-
vide for the management of OO-Method conceptual models. 

6   Conclusions and Further Work 

This paper presents a solution for the automatic generation of a UML profile from the 
metamodel that represents the DSML related to a MDD approach. This automatic 
generation is applied in an integration process in order to take advantage of the bene-
fits provided by the use of UML and DSML based technologies. 

The proposed solution tackles an important topic that has not yet received the re-
quired attention: the correct definition of UML profiles for MDD solutions. Even 
though the number of UML profile solutions has increased, the number of publications 
related to a correct UML profile definition is very limited [23]. In order to obtain this 
correct definition, the proposed transformations are focused on three main elements: 1) 
the generation of modeling elements defined in the DSML that are not present in UML; 
2) the management of differences that could exist between elements of the DSML that 
are equivalent with UML elements; and 3) the generation of constraints to assure that 
the application of the generated UML profile follows the DSML specification.  

It is important to note that the transformation rules defined in this paper are just 
one possible solution for the complete generation of a correct UML profile. Variations 
of these transformation rules can be defined depending on different design decisions. 
This paper also explains how this solution can be applied in MDD approaches, taking 
as example the application performed for the OO-Method approach in order to inte-
grate UML tools and the existent OO-Method tools. 

As further work, we plan to finish the implementation of a set of open-source tools 
that support the proposed integration process in order to provide a generic integration 
solution for different MDD approaches.  
 
Acknowledgments. This work has been developed with the support of MEC under 
the project SESAMO TIN2007-62894 and co financed by FEDER. 

References 

1. Abouzahra, A., Bézivin, J., Fabro, M.D.D., Jouault, F.: A Practical Approach to Bridging 
Domain Specific Languages with UML profiles. In: Best Practices for Model Driven Soft-
ware Development (OOPSLA 2005) (2005)  

2. Bruck, J., Hussey, K.: Customizing UML: Which Technique is Right for You? IBM (2007) 



124 G. Giachetti, B. Marín, and O. Pastor 

3. CARE-Technologies, http://www.care-t.com/ 
4. Eclipse: Graphical Modeling Framework Project, http://www.eclipse.org/gmf/ 
5. Eclipse: UML2 Project, http://www.eclipse.org/uml2/ 
6. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development using 

uml 2.0: Promises and pitfalls. IEEE Computer 39(2), 59–66 (2006) 
7. Fuentes-Fernández, L., Vallecillo, A.: An Introduction to UML Profiles. The European 

Journal for the Informatics Professional (UPGRADE) 5(2), 5–13 (2004) 
8. Giachetti, G., Marín, B., Condori-Fernández, N., Molina, J.C.: Updating OO-Method 

Function Points. In: 6th IEEE International Conference on the Quality of Information and 
Communications Technology (QUATIC 2007), pp. 55–64 (2007) 

9. Giachetti, G., Marín, B., Pastor, O.: Using UML Profiles to Interchange DSML and UML 
Models. In: Third International Conference on Research Challenges in Information Sci-
ence, RCIS (2009) 

10. Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile Generation for 
MDA Industrial Development. In: Song, I.-Y., et al. (eds.) ER Workshops 2008. LNCS, 
vol. 5232, pp. 113–122. Springer, Heidelberg (2008) 

11. Henderson-Sellers, B.: On the Challenges of Correctly Using Metamodels in Software En-
gineering. In: 6th Conference on Software Methodologies, Tools, and Techniques 
(SoMeT), pp. 3–35 (2007) 

12. Lagarde, F., Espinoza, H., Terrier, F., Gérard, S.: Improving UML Profile Design Practices 
by Leveraging Conceptual Domain Models. In: 22nd IEEE/ACM International Conference 
on Automated Software Engineering (ASE), pp. 445–448 (2007) 

13. Marín, B., Giachetti, G., Pastor, O.: Automating the Measurement of Functional Size of 
Conceptual Models in an MDA Environment. In: Jedlitschka, A., Salo, O. (eds.) PROFES 
2008. LNCS, vol. 5089, pp. 215–229. Springer, Heidelberg (2008) 

14. OMG: Catalog of UML Profile Specifications  
15. OMG: MOF 2.0 Core Specification  
16. OMG: UML 2.1.2 Infrastructure Specification  
17. OMG: UML 2.1.2 Superstructure Specification  
18. OMG: XMI 2.1.1 Specification  
19. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for Informa-

tion Systems Modelling: From Object-Oriented Conceptual Modeling to Automated Pro-
gramming. Information Systems 26(7), 507–534 (2001) 

20. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Production 
Environment Based on Conceptual Modeling, 1st edn. Springer, New York (2007) 

21. Pastor, O., Molina, J.C., Iborra, E.: Automated production of fully functional applications 
with OlivaNova Model Execution. ERCIM News 57 (2004) 

22. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5), 19–25 
(2003) 

23. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In: 
10th IEEE International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC), pp. 2–9 (2007) 

24. Wimmer, M., Schauerhuber, A., Strommer, M., Schwinger, W., Kappel, G.: A Semi-
automatic Approach for Bridging DSLs with UML. In: 7th OOPSLA Workshop on Do-
main-Specific Modeling (DSM), pp. 97–104 (2007) 


	Using UML as a Domain-Specific Modeling Language: A Proposal for Automatic Generation of UML Profiles
	Introduction
	Background
	A Process to Integrate a DSML into UML
	Definition of the Integration Metamodel

	Automatic Generation of the UML Profile
	Comparison of Metamodels
	Transformation of the Integration Metamodel

	Applying the Integration Process
	Conclusions and Further Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




