On Model-Checking Optimistic Replication
Algorithms

Hanifa Boucheneb! and Abdessamad Imine?

! Laboratoire VeriForm, Ecole Polytechnique de Montréal, Canada
hanifa.boucheneb@polymtl.ca

2 INRIA Grand-Est & Nancy-Université, France
imine@loria.fr

Abstract. Collaborative editors consist of a group of users editing a
shared document. The Operational Transformation (OT) approach is
used for supporting optimistic replication in these editors. It allows the
users to concurrently update the shared data and exchange their updates
in any order since the convergence of all replicas, i.e. the fact that all
users view the same data, is ensured in all cases. However, designing algo-
rithms for achieving convergence with the OT approach is a critical and
challenging issue. In this paper, we address the verification of OT algo-
rithms with a model-checking technique. We formally define, using tool
UPPAAL, the behavior and the convergence requirement of the collabo-
rative editors, as well as the abstract behavior of the environment where
these systems are supposed to operate. So, we show how to exploit some
features of such systems and the tool UPPAAL to attenuate the severe
state explosion problem. We have been able to show that if the number
of users exceeds 2 then the convergence property is not satisfied for five
OT algorithms. A counterexample is provided for every algorithm.

1 Introduction

Collaborative editors are a class of distributed systems, where two or more users
(sites) may manipulate simultaneously some objects like texts, images, graphics,
etc. In order to achieve an unconstrained group work, the shared objects are
replicated at the local memory of each participating user. Every operation is
executed locally first and then broadcast for execution at other sites. So, the
operations are applied in different orders at different replicas of the object. This
potentially leads to divergent (or different) replicas, an undesirable situation for
replication-based collaborative editors. Operational Transformation (OT) is an
approach which has been proposed to overcome the divergence problem [4]. This
approach consists of an algorithm which transforms an operation (previously
executed by some other site) according to local concurrent ones in order to
achieve convergence. It has been used in many collaborative editors such as
Joint Emacs [9] (an Emacs collaborative editor), CoWord [14] (a collaborative
version of MicroSoft Word) and CoPowerPoint [14] (a collaborative version of
MicroSoft PowerPoint).

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 7 2009.
© IFIP International Federation for Information Processing 2009

74 H. Boucheneb and A. Imine

As established in [I2], an OT algorithm consists of two parts: (i) an integration
procedure that is responsible for generating and propagating local operations as
well as executing remote operations; (ii) a transformation function (called IT
function) that determines how an operation is transformed against another. This
function depends on the semantics of the shared document. However, if an OT
algorithm is not correct then the consistency of shared data is not ensured. Thus,
it is critical to verify such an algorithm in order to avoid the loss of data when
broadcasting operations. According to [9], only the transformation function of a
shared data needs to fulfill two properties T'P1 and T'P2 (explained in Section [2])
in order to ensure convergence. Finding such a function and proving that it
satisfies T'P1 and T P2 is not an easy task. This proof is often unmanageably
complicated due to the fact that an OT algorithm has infinitely many states.

In this paper, we investigate the use of a model-checking technique [I] to
verify whether an OT algorithm satisfies the convergence property or not. Model-
checking is a very attractive and automatic verification technique of systems. It
is applied by representing the behavior of a system as a finite state transition
system, specifying properties of interest in a temporal logic and finally exploring
the state transition system to determine whether they hold or not. The main
interesting feature of this technique is the production of counterexamples in
case of unsatisfied properties. Several Model-checkers have been proposed in the
literature. The well known are SPI7 UPPAAIR and NuSMVE. Among these
Model-checkers, we consider here the tool UPPAAL.

UPPAAL is a tool suite for validation and symbolic model-checking of real-
time systems. It consists of a number of tools including a graphical editor for
system descriptions, a graphical simulator, and a symbolic model-checker. This
choice is motivated by the interesting features of UPPAAL tools [8], especially
the powerful of its description model, its simulator and its symbolic model-
checker. Indeed, its description model is a set of timed automata [1] extended
with binary channels, broadcast channels, C-like types, variables and functions
(functions can be used to abstract some complicated treatments). Its simulator is
useful and convivial as it allows to get and replay, step by step, counterexamples
obtained by its symbolic model-checker. Its model—checkeIH7 based on a forward
on-the-fly method, allows to compute over 5 millions of states.

In this work, we deal with OT algorithms that have the same integration pro-
cedure but differ only by their transformation functions. To verify these algo-
rithms, we formally describe, using UPPA AL, the behavior and the requirements
of the replication-based collaborative editors, as well as the abstract behavior of
the environment where these systems are supposed to operate. Two main models
are studied and proposed for the verification of the convergence properties of OT
algorithms: the concrete model and the symbolic model. The concrete model is
very close to the system implementation in the sense that the selection and the

! http://spinroot.com

2 http://www.uppaal.com

3 http://nusmv.irst.itc.it

4 The model-checker is used without the graphical interface.

On Model-Checking Optimistic Replication Algorithms 75

effective execution of editing operations are performed during the construction
of execution traces. However, this model runs up against a severe explosion of
states (the number of signatures increases exponentially with the number of op-
erations). We have not been able to verify some OT algorithms. The symbolic
model aims to overcome the limitation of the concrete model by delaying the
effective selection and execution of editing operations until the construction of
symbolic execution traces of all sites is completed. Using the symbolic model, we
have been able to show that if the number of sites exceeds 2 then the convergence
property is not satisfied for all OT algorithms considered here. A counterexample
is provided for every algorithm.

The paper starts with a presentation of the OT approach and one of the
known OT algorithms proposed in the literature for synchronizing shared text
documents (Section 2). Section 3 is devoted to the description of the symbolic
model and its model-checking. Related work and conclusion are presented re-
spectively in sections 4 and 5.

2 Operational Transformation Approach

2.1 Background

OT is an optimistic replication technique which allows many users (or sites) to
concurrently update the shared data and next to synchronize their divergent
replicas in order to obtain the same data. The updates of each site are executed
on the local replica immediately without being blocked or delayed, and then
are propagated to other sites to be executed again. Accordingly, every update is
processed in four steps: (i) generation on one site; (ii) broadcast to other sites;
(iii) reception on one site; (iv) exzecution on one site.

The shared object. We deal with a shared object that admits a linear struc-
ture. To represent this object we use the list abstract data type. A list is a finite
sequence of elements from a data type £. This data type is only a template
and can be instantiated by many other types. For instance, an element may be
regarded as a character, a paragraph, a page, a slide, an XML node, etc. Let £
be the set of lists.

The primitive operations. It is assumed that a list state can only be modified
by the following primitive operations: (i) Ins(p,e) which inserts the element e
at position p; (ii) Del(p) which deletes the element at position p. We assume
that positions are given by natural numbers. The set of operations is defined as
follows:

O = {Ins(p,e)le € £ and p € N} U{Del(p)|lp € N} U{Nop}

where Nop is the idle operation that has null effect on the list state. Since the
shared object is replicated, each site will own a local state [that is altered only
by local operations. The initial state, denoted by [y, is the same for all sites. The
function Do : O x L — L, computes the state Do(o,!) resulting from applying

76 H. Boucheneb and A. Imine

site 1 site 2 site 1 site 2
“efecte” “efecte” “efecte” “efecte”
o1 =1Ins(1,f) o2 = Del(5) o1 = Ins(1, f) 02 = Del(5)
“effecte:/\/“efect” “ef‘fecte”X “efect”
Del(5) Ins(1, f) IT(02,01) = Del(6) IT(01,02) = Ins(1, f)
“effece” “effect” “effect” “effect”
Fig. 1. Incorrect integration Fig. 2. Integration with transformation

operation o to state [. We say that o is generated on state [. We denote by
[01;02; . ..;0,] an operation sequence. Applying an operation sequence to a list
I is defined as follows: (i) Do([],l) = [, where [] is the empty sequence and;
(ii) Do([o1;02;...;04],1) = Do(on, Do(...,Do(oz, Do(01,1)))). Two operation
sequences seq; and segs are equivalent, denoted by seq; = seqa, iff Do(seqi,l) =
Do(seqo, 1) for all lists .

Definition 1. (Causality Relation) Let an operation o1 be generated at site
1 and an operation o2 be generated at site j. We say that oo causally depends on
01, denoted 01 — og, iff: (i) i = j and 01 was generated before os; or, (1) i # j
and the execution of o1 at site j has happened before the generation of os.

Definition 2. (Concurrency Relation) Two operations o1 and oy are said
to be concurrent, denoted by 01 || 02, iff neither o — 02 nor os — o1.

As a long established convention in OT-based collaborative editors [4,[12], the
timestamp vectors are used to determine the causality and concurrency relations
between operations. Every timestamp is a vector V' of integers with a number
of entries equal to the number of sites. For a site j, each entry V[i] returns the
number of operations generated at site ¢ that have been already executed on site
j. Let o1 and o2 be two operations issued respectively at sites s,, and s,, and
equipped with their respective timestamp vectors V,,, and V,,. The causality and
concurrency relations are detected as follows: (i) 01 — o2 iff V5, [s0,] > Vo, (S0,];
(ll) 01 ” o9 iff V01 [301} < V02 [501] and V01 [802} > V02 [502]'

2.2 Transformation Principle

A crucial issue when designing shared objects with a replicated architecture and
arbitrary messages communication between sites is the consistency maintenance
(or convergence) of all replicas.

Ezample 1. Consider the following group text editor scenario (see Figlll): there
are two users (on two sites) working on a shared document represented by a
sequence of characters. These characters are addressed from 0 to the end of
the document. Initially, both copies hold the string “ efecte”. User 1 executes

On Model-Checking Optimistic Replication Algorithms 7

operation 01 = Ins(1,f) to insert the character f at position 1. Concurrently,
user 2 performs o, = Del(5) to delete the character e at position 5. When o7 is
received and executed on site 2, it produces the expected string “effect”. But,
when o9 is received on site 1, it does not take into account that o; has been
executed before it and it produces the string “effece”. The result at site 1 is
different from the result of site 2 and it apparently violates the intention of oy
since the last character e, which was intended to be deleted, is still present in
the final string. Consequently, we obtain a divergence between sites 1 and 2.
It should be pointed out that even if a serialization protocol [4] was used to
require that all sites execute 01 and o5 in the same order (i.e. a global order on
concurrent operations) to obtain an identical result effece, this identical result
is still inconsistent with the original intention of o,.

To maintain convergence, the OT approach has been proposed by [4]. When User
X gets an operation op that was previously executed by User Y on his replica of
the shared object User X does not necessarily integrate op by executing it “as
is” on his replica. He will rather execute a variant of op, denoted by op’ (called
a transformation of op) that intuitively intends to achieve the same effect as
op. This approach is based on a transformation function IT, called Inclusive
Transformation, that applies to couples of concurrent operations defined on the
same state.

Ezample 2. In Figll we illustrate the effect of IT on the previous example.
When o is received on site 1, 02 needs to be transformed according to oy as fol-
lows: IT((Del(5), Ins(1, f)) = Del(6). The deletion position of oz is incremented
because 01 has inserted a character at position 1, which is before the character
deleted by o2. Next, op} is executed on site 1. In the same way, when o; is re-
ceived on site 2, it is transformed as follows: IT (Ins(1, f), Del(5)) = Ins(1, f);
01 remains the same because f is inserted before the deletion position of os.

2.3 Transformation Function

We present here an IT function known in the literature for synchronizing linear
objects [I0] altered by insertion and deletion operations. In this work, the sig-
nature of insert operation is extended by two parameters pre and post. These
parameters store the set of concurrent delete operations. The set pre contains
operations that have deleted a character before the insertion position p. As for
post, it contains operations that have removed a character after p. When an
insert operation is generated the parameters pre and post are empty. They will
be filled during transformation steps.

In Figl3l we give the four transformation cases for Ins and Del proposed by
Suleiman and al [10]. There is an interesting situation in the first case (Ins
and Ins), called conflict situation, where two concurrent Ins(p1, c1,pres, posty)
and Ins(ps, ca, pres, posts) have the same position (i.e. p; = pa). To resolve this
conflict, three cases are possible:

78 H. Boucheneb and A. Imine

—

(pre1 N posts) # (): character cs is inserted before character ¢y,

(pre1 N posts) # (: character ¢y is inserted after character cy,

3. (pre1 N posty) = (posty N prez) = 0: in this case function code(c), which
computes a total order on characters (e.g. lexicographic order), is used to
choose among ¢; and ¢z the character to be added before the other. Like the
site identifiers, code(c) enables us to tie-break conflict situations [3].

N

Note that when two concurrent operations insert the same character (e.g.
code(c1) = code(ce)) at the same position, the one is executed and the other
one is ignored by returning the idle operation Nop. In other words, only one
character is kept. The remaining cases of IT are quite simple.

2.4 Transformation Properties

Definition 3. Let seq be a sequence of operations. Transforming any editing
operation o according to seq is denoted by IT* (o0, seq) and is recursively defined
as follows:

IT*(o,[]) = o where || is the empty sequence;
IT*(0,[01;09; .. .;50,]) = IT*(IT(0,01), [02; - . . ; 0n])

We say that o has been concurrently generated according to all operations of seq.

Using an IT function requires us to satisfy two properties [9]. For all o, 0; and
09 pairwise concurrent operations:

e Condition T'P1: [o1;IT(02,01)] = [02;IT(01,02)].
e Condition TP2: IT*(o,[01;IT(02,01)]) = IT*(0,[02 ;1T (01,02)]).

Property T'P1 defines a state identity and ensures that if 0; and oy are con-
current, the effect of executing o, before oo is the same as executing oo before
01. This property is necessary but not sufficient when the number of concurrent
operations is greater than two. As for T'P2, it ensures that transforming o along
equivalent and different operation sequences will give the same operation.

Properties TP1 and T P2 are sufficient to ensure the convergence for any
number of concurrent operations which can be executed in arbitrary order [9].
Accordingly, by these properties, it is not necessary to enforce a global total
order between concurrent operations because data divergence can always be
repaired by operational transformation. However, finding an IT function that
satisfies T P1 and T P2 is considered as a hard task, because this proof is often
unmanageably complicated.

It should be noted that, using our model-checking technique, we detected
subtle flaws in the IT function of Figl3l These flaws lead to divergence situations
(see Section 3).

2.5 Consistency Criteria

A stable state in an OT-based collaborative editor is achieved when all generated
operations have been performed at all sites. Thus, the following criteria must be
ensured [419]12]:

On Model-Checking Optimistic Replication Algorithms 79

IT(Ins(p1, c1, pre1, post1), Ins(pz, cz, prez, postz)) =

Ins(pi,c1,pre1, posty) if p1 < p2

Ins(p1 + 1,c1,prei, posty) if (p1 > p2) V (p1 = p2 A pre; N posty # 0)
Ins(p1,c1,pre1, posty) if p1 = p2 A posty Npres # 0
Ins(p1,c1,prer,posty) if (preq N posta = @V pre; N poste = @) A

p1 = pa A code(c1) > code(csa)
Ins(p1 + 1, c1,prei, posty) if (pre; Nposta = 0V posts Npres = 0) A
p1 = pa A code(c1) < code(cz2)

Nop() otherwise
Ins(p1,c1,prer, post1 U {Del(p2)}) if p1 < p2
IT((I . c1, prei, post:), Del(ps))= ,
((Ins(py, e1, pres, posts), Del(pz)) {Ins(pl —1,¢1,prer U{Del(p2)}, post1) otherwise
Del(p1) if p1 < p2
IT((Del Ins g e st =
((Del(ps), Ins(p2, ez, pres, postz) {Del(pl l)
Del(p1) if p1 < p2
IT(Del(p1), Del(p2)) = § Del(p1 — 1) if p1 > p2
Nop() otherwise

Fig. 3. IT function of Suleiman and al

Definition 4. (Consistency Model) An OT-based collaborative editor is con-
sistent iff it satisfies the following properties:

1. Causality preservation: if 01 — 09 then o1 is executed before oo at all sites.
2. Convergence: when all sites have performed the same set of updates, the
copies of the shared document are identical.

To preserve the causal dependency between updates, timestamp vectors are used.
The concurrent operations are serialized by using I'T function. As this technique
enables concurrent operations to be serialized in any order, the convergence
depends on T'P1 and T'P2 that IT function must verify.

2.6 Operational Transformation Algorithms

Every site is equipped by an OT algorithm that consists of two main compo-
nents [4,9]: the integration procedure and the transformation component. The
integration procedure is responsible for receiving, broadcasting and executing
operations. It is rather independent of the type of the shared objects. Several
integration procedures have been proposed in the groupware research area, such
as dOPT [], adOPTed [9], SOCT2,4 [I1,15] and GOTO [I2]. The transforma-
tion component is commonly an IT function which is responsible for merging
two concurrent operations defined on the same state. This function is specific
to the semantics of a shared object. Every site generates operations sequentially
and stores these operations in a stack also called a history (or execution trace).
When a site receives a remote operation o, the integration procedure executes
the following steps:

1. From the local history seq it determines the equivalent sequence seq’ that
is the concatenation of two sequences seqy, and seq. where (i) segy contains

80 H. Boucheneb and A. Imine

all operations happened before o (according to Definition [I), and; (ii) seq.
consists of operations that are concurrent to o. For more details, see [3].

2. It calls the transformation component in order to get operation o’ that is
the transformation of o according to seq. (i.e. o' = IT*(o, seq.)).

3. It executes o’ on the current state.

4. Tt adds o' to local history seq.

The integration procedure allows history of executed operations to be built on
every site, provided that the causality relation is preserved. At stable state,
history sites are not necessarily identical because the concurrent operations may
be executed in different orders. Nevertheless, these histories must be equivalent
in the sense that they must lead to the same final state. This equivalence is
ensured iff the used IT function satisfies properties TP1 and T P2.

In this work, we deal with OT algorithms that have the same integration
procedure but differ only by their transformation functions. Five IT functions
have been considered (see [3]).

The rest of the paper is devoted to the specification and analysis of OT al-
gorithms, by means of model-checker UPPAAL. We show how to exploit some
features of OT algorithms and the specification language of UPPAAL to attenu-
ate the state explosion problem of the execution environment of such algorithms.

3 Modelling OT Algorithms with UPPAAL

3.1 UPPAAL’s Model

In UPPAAL, a system consists of a collection of processes which can com-
municate via some shared data and synchronize through binary or broadcast
channels [§]. Each process is an automaton extended with finite sets of clocks,
variables (bounded integers), guards and actions. In such automata, locations can
be labelled by clock conditions and edges are annotated with selections, guards,
synchronization signals and updates. Selections bind non-deterministically a
given identifier to a value in a given range (type). The other three labels of
an edge are within the scope of this binding. An edge is enabled in a state if and
only if the guard evaluates to true. The update expression of the edge is evalu-
ated when the edge is fired. The side effect of this expression changes the state of
the system. Edges labelled with complementary synchronization signals over a
common channel must synchronize. Two or more processes synchronize through
channels with a sender/receiver syntax [2]. For a binary channel, a sender can
emit a signal through a given binary channel Syn (Syn!), if there is another
process (a receiver) ready to receive the signal (Syn?). Both sender and receiver
synchronize on execution of complementary actions Syn! and Syn?. For a broad-
cast channel, a sender can emit a signal through a given broadcast channel Syn
(Syn!), even if there is no process ready to receive the signal (Syn?). When
a sender emits such a signal via a broadcast channel, it is synchronized with
all processes ready to receive the signal. The updates of synchronized edges are
executed starting with the one of the sender followed by those of the receiver(s).
The execution order of updates of receivers complies with their creation orders.

On Model-Checking Optimistic Replication Algorithms 81

3.2 Modelling Execution Environment of OT Algorithms

A collaborative editor is composed of two or more sites (users) which communi-
cate via a network and use the principle of multiple copies, to share some object
(a text). Initially, each user has a copy of the shared object. It can afterwards
modify its copy by executing operations generated locally and those received
from other users. When a site executes a local operation, it is broadcast to all
other users. The execution of a non local operation consists of integration and
transformation steps as explained in the previous section (see sub-section [2.G]).

Two main models are proposed for the verification of the convergence prop-
erties of OT algorithms: the concrete model and the symbolic model. The main
difference between these models concerns the effective execution of operation sig-
natures. Indeed, in the concrete model, effective execution of editing operations
is performed during the generation of traces (see Fig. H]) while, in the symbolic
model, it is delayed until the construction of symbolic execution traces of all
sites is completed (see Fig []). In this paper, we focus on the symbolic model.
For further details about the concrete model and the different variants of the
concrete and symbolic models, we refer to [3].

System definition. A collaborative editor is modelled as a set of variables,
functions, processes (one per user) and a broadcast channel. Note that the net-
work is abstracted and not explicitly represented. This is possible by putting
visible (in global variables) all operations generated by different sites and times-
tamp vectors of sites. In this way, there is no need to represent and manage
queues of messages. Behaviors of sites are similar and represented by a type
of process named Site. The only parameter of the process is the site identifier
named pid. With UPPAAL, the definition of the system is given by the following
declarations which mean that the system consists of NbSites sites of type Site:
Sites(const pid t pid) = Site(pid);

system Sites;

Input data and Variables. Variables are of two kinds: those used to store input
data and those used to manage the execution of operations. Note that almost all
variables are defined as global to be accessible by any site (avoiding duplication
of data in the representation of the system state). In addition, this eases the
specification of the convergence property and allows to force the execution, in
one step, some edges of different sites. The system model has the following inputs
and variables:

1. The number of sites (const int NbSites); Each site has its own identifier,
denoted pid for process identifier (pid € [0, NbSites — 1]).

2. The initial text to be shared by users and its alphabet. The text to be shared
by users is supposed to be infinite but the attribute Position of operations
is restricted to the window [0, L — 1] of the text. The length of the window
is set in the constant L (const int L).

3. The number of local operations of each site, given in array Iter[NbSites]
(const int Iter[NbSites|, Iter[i] being the number of local operations of

82 H. Boucheneb and A. Imine

site 7). We also use and set in constant named MazIter the total number of
operations (const int MaxIter = > Iter[i]);
1€[0,NbSites—1]

4. The IT function (const int algo).

The timestamp vectors of different sites (V[NbSites][NbSites]).

6. Vector Operations[MaxIter] to store the owner and the timestamp vector
of each operation.

7. Vectors Trace[NbSites|[MaxIter] to save the symbolic execution traces of
sites (the execution order of operations).

8. Boolean variable Detected to recuperate the truth value of the convergence
property.

9. Vector Signatures|[MaxIter] to get back signatures (operator,position,
character) of operations which violate the convergence property.

10. List[2][MaxIter] to save operation signatures as they are exactly executed
in two sites (after integration steps).

11. The broadcast channel Syn.

ot

Behavior of each site. The process behavior of each site is depicted by the
automaton shown in Figlhl Each user executes symbolically, one by one, all opera-
tions (local and non local ones), on its own copy of the shared text. The symbolic
execution of an operation (local or non local) is represented by the loop on loca-
tion [0 which consists of 3 parts: the selection of a process identifier (k : pid t),
the guard guard(k) and the update SymbolicExecution(k). The guard part ver-
ifies whether a site pid can execute an operation of site k. The update part is
devoted to the symbolic execution of an operation of a site k. The execution
order of operations must, however, respect the causality principle. The causal-
ity principle is ensured by the timestamp vectors of sites V[NbSites|[NbSites].
For each pair of sites (,7), element V[i][j] is the number of operations of site
Jj executed by site i. V[i][i] is then the number of local operations executed in
site 7. Note that V[i][j] is also the rank of the next operation of site j to be
executed by site i. Timestamp vectors are also used to determine whether oper-
ations are concurrent or dependent. Initially, entries of the timestamp vector of
every site i are set to 0. Afterwards, when site i executes an operation of a site
j (4 € [0, NbSites —1]), it increments the entry of j in its own timestamp vector
(i.e., V[i][F] + +)-

Symbolic execution of a local operation. A local operation can be
executed by a site pid if the number of local operations already executed
by site pid does not yet reach its maximal number of local operations (i.e.
Vipid][pid] < Iter[pid]). In this case, its timestamp vector is set to the
timestamp vector of its site. Its owner and the timestamp vector are stored in
array Operations. Its entry in Operations is stored in Trace[pid]. Its broadcast
to other sites is simulated by incrementing the number of local operations
executed (V[pid][pid] + +).

On Model-Checking Optimistic Replication Algorithms 83

oper: operator, p: position, c: alphabet

V[pid][pid]<Iter[pid] && pid==0 &&
c== oper*c && p < Length forall (i:pid_t) forall (k:pid_t)
Operations[ns].Owner=pid, V[ilk]==lter[k]

Operations[ns].opr=oper,
Operations[ns].ipos=p,
Operations[ns].x=c,
ns++, Execution(pid)

Syn! 12

pid==0
pid!=0 && forall (i:pid_t)
forall (k:pid_t)

V[il[k]==lter[k]
k:pid_t Syn?
k!=pid && guard(k)
Execution(k)

Fig. 4. The concrete model

Syn !
pid==0 && forall (i:pid_t)
forall (j:pid_t) V[il[jl==Iter[j]
10 EffectiveExecution() 1"
k:pid_t
guard(k) O
SymbolicExecution(k) Syn?

pid!=0 && forall (i:pid_t) pid==0

forall (j:pid_t) V[i][j]==Iter[j]
Fig. 5. The symbolic model

Symbolic execution of non local operations. A site pid can execute an
operation of another site k if there is an operation of k executed by k£ but not
yet executed by pid (i.e.: Vpid|[k] < V[k][k]) and its timestamp vector is less or
equal to the timestamp vector of site pid (i.e.: Vj € [0, NbSites —1], V[pid|[j] >=
Operations[num|.V[j], num being the identifier of the operation). Recall that,
the transformation and effective execution of operations (Insert and Delete) are
not performed at this level. They are realized when the construction of all traces
is completed.

Effective execution of operations. When all sites complete the construction
of their respective traces, they are forced to perform synchronously, via the
broadcast channel Syn, their respective edges connecting locations [0 and /1
(synchronization on termination). The update part of edge connecting locations
10 and [1 of site 0 is devoted to testing all signatures possibilities of operations
and then verifying the convergence property. The test of all these possibilities is
encapsulated in a C-function, called Ef fective Execution which is stopped as
soon as the violation of the convergence property is detected. This property is
violated if there exist two sites which have completed the same set of operations
but their texts are not identical. In this case, signatures of operations and exact
traces of both sites which violate the convergence property are returned in vectors
Signatures and List, and the variable Detected is set to true. The integration
steps (see sub-section 6] are treated at this level (i.e., in this function).

84 H. Boucheneb and A. Imine

3.3 Verification of the Convergence Property

The convergence property states that whenever two sites complete the execution
of the same set of operations, their resulting texts must be identical. A stable
state of the system is a situation where all sent operations are received and exe-
cuted (there is no operation in transit). A site 7 is in a stable state if all operations
sent to site i are received and executed by ¢ (i.e. forall(k : pid t) V[i][k] ==
V[k][k]). The convergence property can be rewritten using the notion of stable
state as follows: ” Whenever two sites 7 and j are in stable state, they have identi-
cal texts”. For the concrete model [3], we use the negation of this property spec-
ified by the following UPPAAL’s CTL formula ¢;:

EO (exists(i: pid t) exists(j : pid t)

il = j && forall(k : pid t) V[i][k] == V[k][k] && V[j][k] == V[k][k])
&& exists(l :int[0, L — 1)) text[i][I]! = text[j][!]

This formula means that there is an execution path leading to some situation
where two sites ¢ and j are in stable states and their copies of text text[i] and
text[j] are different. For the symbolic model, the verification of the convergence
propriety is based on a variable named Detected. This variable is set to true
when the convergence propriety is violated. Therefore, the convergence propriety
is violated iff UPPAAL’s CTL formula ¢} : EO Detected is satisfied.

We have tested five IT functions known in the literature for synchronizing
linear objects. Each IT function produces a new instance of OT algorithm, where
only the transformation function changes. These OT algorithms are denoted
respectively: Ellis [4], Ressel [9], Sun [13], Suleiman [10] and Imine [6]. Two
models are used : concrete and symbolic models.

We report in Table [l the results obtained, for two properties: absence of
deadlocks (¢2 : AJ] notdeadlock) and the violation of the convergence property

Table 1. Model-checking the concrete and the symbolic models

Alg. Prop. Val. Expl./Comp./Time Val. Expl./Comp./Time
Bllis 33 ¢1/¢, true 825112/1838500/121.35 true 1625/1739/0.14
Ellis33 ¢y 7 ? true 1837/1837/0.68

Ressel 33 ¢1/d, true 833558/1851350/122.76 true 1637/1751/0.25
Ressel 3 3 2 ? ? true 1837/1837/1.63
Sun 33 ¢1/¢, true 836564/1897392/122.33 true 1625/1739/0.14
Sun 3 3 P2 ? ? true 1837/1837/0.38
Suleiman 3 3 ¢1/¢), false 3733688/3733688/365.06 false 1837/1837/0.83
Suleiman 33 ¢2 ? ? true 1837/1837/2.22
Suleiman 34 ¢1/¢) 7 ? true 18450/19380/2.45
Imine 33 ¢1/¢) false 3733688/3733688/361.16 false 1837/1837/0.81
Imine 3 3 2 ? ? true 1837/1837/2.18
Imine 34 ¢1/¢7 7 ? true 18401/19331/2.45

On Model-Checking Optimistic Replication Algorithms 85

(¢1 or @) defined above, in case of 3 sites (NbSites = 3), 3 or 4 operations
(MaxIter = 3 or MaxIter = 4), and a window of the observed text of length
L =2x MaxlIter. A state q of a model is in deadlock iff there is no edge enabled
in ¢ nor in states reachable from ¢ by time progression. Property ¢ is always
satisfied and allows us to compute the size of the entire state space. Note that
all tests are performed using the version 4.0.6 of UPPAAL 2k on a 3 Gigahertz
Pentium-4 with 1GB of RAM. We give, in column 4, for each algorithm and each
property, the number of explored states, the number of computed states and the
execution time (CPU time in seconds). A question mark indicates a situation
where the verification was aborted due to a lack of memory. We report in Table[2]
the counterexamples obtained for the convergence property and the symbolic
model (each operation oi, for i = 1,3, is generated by Sitei, ol1 and 012 are
generated in this order by Sitel). Note that counterexamples obtained for the
concrete and the symbolic models may be different. These results show that the
symbolic model allows a significant gain in both time and space comparatively to
the concrete model. With the symbolic model, we have been able to prove that
the convergence property is not satisfied for five OT algorithms and to provide
counterexamples.

Table 2. Counterexamples obtained for the tested IT functions

Alg. Operations Traces
Ellis ol: Ins(1,0), 02: Ins(1,1), 03: Ins(1,0) Sitel: ol; 02; 03 Site3: 03; 02; ol
Ressel ol: Ins(2,0), 02: Ins(1,1), 03: Del(1) Sitel: ol; 02; 03 Site3: 03; 02; ol

(1
(1
Sun ol: Ins(1,0), 02: Ins(2,
s(
(2

), 03: Ins(2,1) Sitel: ol; 02; 03 Site3: 03; 0l; 02
Suleiman o11: Del(1), 012: Ins(1,0), Site2 : 02; 03; 0l1; 012
02: Ins(1,0), 03: Ins(2,0) Site3 : 03; 02; ol1; 012
Imine ol1: Ins(1,0), 012: Ins(2,0), Sitel : 011; 012; 02; 03
02: Ins(2,0), 03: Del(1) Site3 : 03; 02; ol1; 012

For instance, in Figlfl we report a divergence scenario for OT algorithm based
on transformation function proposed by Suleiman and al [10] (see FigBl), where
00, 02 and o3 are pairwise concurrent and oy — o1.

State space reduction. To reduce the size of the state space to be explored, we
propose some reductions (see [3] for more details) which preserve the convergence
property. The first reduction consists of synchronization of the execution of non
local operations in sites which have finished the execution of their local opera-
tions. This synchronization preserves the convergence property since when a site
completes the execution of all local operations, it does not send any information
to other sites and the execution of non local operations affects only the state of
the site. With this synchronization, intermediate states resulting from different
interleavings of these operations are not accessible. This reduction has been
implemented in the variant models of the concrete and the symbolic models [3].

86 H. Boucheneb and A. Imine

site 1 site 2 site 3
” OOOO” ” 0000’7 ” 0000’7
00 = Del(?’) 02 :IHS(?),O,{},{}) 03 :In5(4717{}7{})
000 00000 00001
01 = I’I”LS(S,O,{},{}) Oé :In5(5717{}7{}) 0/2 :In5(3707{}7{})
0000 000001 000001
X ~
oo = Del(4) oy = Del(4)
00001 00001
A N
Nop() Ins(5,0,{},{})
00001 000010

Fig. 6. Complete divergence scenario for Suleiman’s algorithm

The second reduction forces to stop the construction of concrete/symbolic traces
as soon as two any sites have completed the construction of their own traces. As
sites have symmetrical behaviors, this reduction does not alter the convergence
property. In the concrete and the symbolic models, edges connecting location {0
to {1 and the broadcast channel Syn, implement this reduction.

Another factor which contributes to the state explosion problem is the times-
tamp vectors of different sites and operations. These vectors are used to ensure
the causality principle. To attenuate this state explosion problem, we offer the
possibility to replace the timestamp vectors by a relation of dependence over
operations. This model allows to test whether an OT algorithm works or not
under some relation of dependence (see [3] for more details).

4 Related Work

To our best knowledge, there exists only one work on analyzing OT algo-
rithms [7]. In this work, the authors proposed a formal framework for modelling
and verifying IT functions with algebraic specifications. For checking the prop-
erties T'P1 and T P2, they used a theorem prover based on advanced automated
deduction techniques. For all IT functions considered here, they showed that:
(i) TP1 is only satisfied for Suleiman’s and Imine’s IT functions; (i) TP2 is
always violated.

For example, consider the IT function proposed by Suleiman et al. [10]
(see Fig[d). A theorem prover-based verification revealed a T' P2 violation in this
function [5], as illustrated in Figlfl As this is related to T'P2 property, there are

On Model-Checking Optimistic Replication Algorithms 87

site 1 site 2 site 3
o1 = Ins(p,z,{},{}) o2 = Ins(p,z,{},{Del(p)}) o3 = Ins(p,y,{Del(p)},{})
o3 = Ins(p+1,y,{Del(p)}, {}) 0y = Ins(p,x, {}, {Del(p)})
AN BN
o} = Nop() of =1Ins(p+2,z,{} {})

Fig. 7. T P2 violation for Suleiman’s algorithm

three concurrent operations (for all positions p and all characters z and y such
that Code(x) < Code(y)):

o1 = Ins(p,z,{},{}), 02 = Ins(p,z,{},{Del(p)}) and o3 = Ins(p,y,{Del(p)},
{}) with the transformations o5 = IT(03,02), 05 = IT(02,03), 0] =

IT*(01,[02;05]) and of = IT*(01, [03;0b)).

However, the theorem prover’s output gives no information about whether
this T'P2 violation is reachable or not. Indeed, we do not know how to obtain
02 and os (their pre; and posts parameters are not empty respectively) as they
are necessarily the results of transformation against other operations that are
not given by the theorem prover. Using our model-checking-based technique, we
can get a complete and informative scenario when a bug is detected. Indeed,
the output contains all necessary operations and the step-by-step execution that
lead to divergence situation. Thus, by model-checking verification, the existence
of the T'P2 violation depicted in Figlll is proved (or certified) by the complete
scenario given in Table

As they are the basis cases of the convergence property, T'P1 and T P2 are
sufficient to ensure the data convergence for any number of concurrent operations
which can be performed in any order. Thus, a theorem prover-based approach
remains better for proving that some IT function satisfies T P1 and T'P2. But it is
partially automatable and, in the most cases, less informative when divergence
bugs are detected. A model-checking-based approach is fully automatable for
finding divergence scenarios. Nevertheless, it is more limited as the convergence
property can be exhaustively evaluated on only a specific finite state space.

5 Conclusion

We proposed here a model-checking technique, based on formalisms used in
tool UPPAAL, to model the behavior of replication-based collaborative editors.

88 H. Boucheneb and A. Imine

To cope with the severe state explosion problem of such systems, we exploited
their features and those of tool UPPAAL to establish and apply some abstrac-
tions and reductions to the model. The verification has been performed with
the model-checking module of UPPAAL. An interesting and useful feature of
this module is to provide, in case of failure of the tested property, a trace of
an execution for which the property is not satisfied. We used this feature to
give counterexamples for five OT algorithms, based on different transformation
functions proposed in the literature to ensure the convergence property. Using
our model-checking technique we found an upper bound for ensuring the data
convergence in such systems. Indeed, when the number of sites exceeds 2 the
convergence property is not achieved for all OT algorithms considered here. We
think that our work is a forward step towards an efficient framework for formally
developing shared objects based on the OT approach.

However, the serious drawback of the model-checking is the state explosion.
So, in future work, we plan to investigate the following directions: (i) It is in-
teresting to find, under which conditions, the model-checking verification prob-
lem can be reduced to a finite-state problem. (ii) Combining theorem-prover
and model-checking approaches in order to attenuate the severe state explosion
problem.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183-235 (1994)

2. Bérard, B., Bouyer, P., Petit, A.: Analysing the pgm protocol with uppaal. Inter-
national Journal of Production Research 42(14), 2773-2791 (2004)

3. Boucheneb, H., Imine, A.: Experiments in model-checking optimistic replication
algorithms. Research Report 6510, INRIA (April 2008)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: SIGMOD
Conference, vol. 18, pp. 399-407 (1989)

5. Imine, A.: Conception formelle d’algorithmes de réplication optimiste. Vers
I’édition Collaborative dans les réseaux Pair-a-Pair. Ph.d thesis, University of Henri
Poincaré, Nancy, France (December 2006)

6. Imine, A., Molli, P., Oster, G., Rusinowitch, M.: Proving correctness of trans-
formation functions in real-time groupware. In: ECSCW 2003, Helsinki, Finland,
September 14-18 (2003)

7. Imine, A., Rusinowitch, M., Oster, G., Molli, P.: Formal design and verification
of operational transformation algorithms for copies convergence. Theoretical Com-
puter Science 351(2), 167-183 (2006)

8. Larsen, K., Pettersson, P., Yi, W.: Uppaal in a nutshell. Journal of Software Tools
for Technology Transfer 1(1-2), 134-152 (1997)

9. Ressel, M., Nitsche-Ruhland, D., Gunzenhauser, R.: An integrating,
transformation-oriented approach to concurrency control and undo in group
editors. In: ACM CSCW 1996, Boston, USA, November 1996, pp. 288-297 (1996)

10. Suleiman, M., Cart, M., Ferrié, J.: Serialization of concurrent operations in a
distributed collaborative environment. In: ACM GROUP 1997, November 1997,
pp. 435-445 (1997)

11.

12.

13.

14.

15.

On Model-Checking Optimistic Replication Algorithms 89

Suleiman, M., Cart, M., Ferrié, J.: Concurrent operations in a distributed and
mobile collaborative environment. In: IEEE ICDE 1998, pp. 36-45 (1998)

Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: ACM CSCW 1998, pp. 59-68 (1998)

Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality-
preservation and intention-preservation in real-time cooperative editing systems.
ACM Trans. Comput.-Hum. Interact. 5(1), 63-108 (1998)

Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai, W.: Transparent adapta-
tion of single-user applications for multi-user real-time collaboration. ACM Trans.
Comput.-Hum. Interact. 13(4), 531-582 (2006)

Vidot, N., Cart, M., Ferrié, J., Suleiman, M.: Copies convergence in a distributed
real-time collaborative environment. In: ACM CSCW 2000, Philadelphia, USA
(December 2000)

	On Model-Checking Optimistic Replication Algorithms
	Introduction
	Operational Transformation Approach
	Background
	Transformation Principle
	Transformation Function
	Transformation Properties
	Consistency Criteria
	Operational Transformation Algorithms

	Modelling OT Algorithms with UPPAAL
	UPPAAL's Model
	Modelling Execution Environment of OT Algorithms
	Verification of the Convergence Property

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

