
C. Boldyreff et al. (Eds.): OSS 2009, IFIP AICT 299, pp. 70–82, 2009.
© IFIP International Federation for Information Processing 2009

Providing Commercial Open Source
Software: Lessons Learned

Øyvind Hauge and Sven Ziemer

Norwegian University of Science and Technology
{oyvind.hauge,sven.ziemer}@idi.ntnu.no

http://www.idi.ntnu.no

Abstract. Even though companies like Sun, IBM, MySQL and others have
released several commercial Open Source Software (OSS) products, little
evidence exist of how to successfully launch such products and establish a
living community around them. This paper presents a case study from a small
software company succeeding at establishing a business model and a vivid
community around their own OSS products. Based on this case study, the paper
presents lessons learned which could help other OSS providers.

1 Introduction

Open Source Software (OSS) development has become a serious source of revenue
for the software industry [10, 13]. Large companies like Apple, IBM, Sun and others
have released significant amounts of their software as OSS. Going open source can
however be a significant change for a commercial organization [5]. Small and
medium enterprises (SME) do not have the same resources as large companies to
adapt to these changes. Yet, companies like JBOSS, MySQL and Qt Software have
successfully established businesses around their own OSS products. Even though
these OSS providers have been quite successful, the research literature contains only
limited empirical evidence on the challenges and benefits which face a commercial
OSS provider [27]. We define a commercial OSS as an OSS product being released
by for-profit organizations like MySQL [7], Philips Healthcare [18], JBoss [25], and
IBM, Apple and Sun [26]. While these large well known OSS providers have received
some attention, small companies providing their own OSS products are overlooked.
This is unfortunate since SMEs with less than 250 employees constitute almost 70%
of the sector for computer and related activities in the European Union [9].

In this paper we present the story of a small Norwegian software company that has
built their business around their OSS products. We analyze the case and compare the
findings from this case with what has been reported in the literature. Based on this
discussion we also present some lessons learned that may help other companies in
their establishment of a viable business model around their own OSS products.

2 Related Works

Companies and organizations providing OSS have attracted some attention in the
literature as for instance [1, 7, 16, 25, 26]. Nevertheless, research on commercial OSS
providers is generally missing [27]. Here we discuss three important topics from this
literature; business models, communities and software licenses.

 Providing Commercial Open Source Software: Lessons Learned 71

2.1 Business Models and Related Issues

The ways companies approach OSS development are diverse [28] and several
business models are described in the literature [10, 14, 17, 20]. Four such models are
the value-adding service enabler, market creation, leveraging community
development and leveraging the OSS brand [10]. Two of these models are particularly
interesting for OSS providers (1) using an OSS product to create a market for other
services and products and (2) getting contributions from the OSS community [26]. An
OSS provider may also use OSS branding to promote its products. While service
enabling is more appropriate for companies extending existing OSS communities
rather than OSS providers seeking to create their own. Companies may also use OSS
products to reach other strategic goals besides directly making money on them. The
DICOM validation tool was released as OSS primarily to establish a de facto standard
to save rather than to make money [18]. Moreover, Sun established the Java platform
to limit Microsoft’s control over industry standards [26].

Companies like MySQL and JBOSS do on the other hand build their business
around their OSS products [7, 25]. Profiting from the OSS product and its com-
munity is for these companies particularly important. Thus creating or identifying a
demand for one’s products and services is one of the most important risks facing an
OSS provider [25]. Roxen tried to make an OSS competitor to the Apache HTTP
Server but was forced to change focus due to the strong position of Apache and a lack
of demand for their own OSS solution [7]. To be able to create or identify a need for
ones products, a commercial OSS provider must understand its customers and their
domains. They should therefore hire developers with domain knowledge [27] and use
their own software [15] to better understand its strengths and weaknesses.

Making adjustments to the business model and adapting to opportunities and
challenges, is key for an OSS provider. When Firefox started to get popular, a wave
of viruses and security issues came across the Internet and created a need for a new
browser. Firefox was there to fill that need [1]. JBOSS has also been able to adapt to
changing opportunities and customer needs [25]. First, the community requested
training and documentation. Second, customers demanded advice on building Java
applications on top of JBOSS. Third, customers wanted support. Fourth, customers all
over the world needed local expertise. JBOSS has evolved its business model by
providing training, documentation, consulting services, support and finally an
international partner program [25].

2.2 Community

Succeeding at attracting a community is one of the most difficult challenges related to
releasing a commercial OSS product [7, 18]. Just releasing the source code is clearly
not enough [1]. Considerable investment and several support functions may be needed
to successfully release an OSS product [15, 27]. First, practical measures must be
taken to prepare a product for release. The source code should be documented and
written in a comprehensible manner so it can be understood by users and developers,
and the product should be packaged and distributed in easy installable packages
[2, 19].

72 Ø. Hauge and S. Ziemer

Next, it is necessary to create a common infrastructure on which the company
and the community can collaborate. The provider has to set up tools for easy
communication and sharing of code, knowledge, experiences and problems [2]. In one
project, the participants failed to agree on a configuration management strategy and a
set of tools for version control [6]. This made development difficult and contributed
to the failure of the project [6].

Another prerequisite for releasing an OSS product is a stable team of core
developers which can secure the continuity of the project [15]. This core team should
provide the necessary structure to keep the project moving forward [27]. The provider
must have resources which can support the product’s community including
responding to questions and bug reports, fixing problems, take care of contributions
and so on [2, 15]. Even though companies may release a product to get contributions
from the community [10] most end up implementing almost all the code themselves
[24]. A reason for this could be that it proves difficult to rely on the community
performing mundane tasks like maintenance, support and so on [15]. Next, in
many cases the company wants control over the product to be able to guarantee the
quality of it to its customers. Furthermore, the company’s employees work with the
product the whole time and they are therefore the ones with the most extensive
knowledge of it.

To run a community it must be included in the ways of the company, the com-
munity members must feel able to contribute to and influence the product, and the
provider must respect the norms and values of an OSS community [7, 27]. The OSS
norms and values must also be spread to the community, in particular other
companies, as the idea of not sharing with other companies is still rooted in the
culture of many companies [2].

To include the community, the provider must apply a governance model which is
appropriate for the needs of all the stakeholders involved in the community [27]. Too
much focus on only a group of stakeholders could be harmful in the long run [15].
Consequently, the provider must be open to new community members and make it as
simple as possible to participate in the community [4, 15]. Open communication and
transparency should help community members understanding the provider and
ongoing activities. OSS projects should furthermore have well documented goals,
roles and responsibilities [4]. When opening up the development around Mozilla, the
development crew had to release more information and to use public information
channels to include the community members [1]. In another project, the project team
wanted to deliver a mature product to the OSS community and decided to develop it
internally before releasing a mature version [6]. This was a big mistake as
communication with the community was very scarce during the development.
External users were because of the lack of communication and a product, not
particularly interested when the product was released.

To encourage community contributions, the provider should also consider letting
go of some control [1]. Too strict control over the product and the community may be
counterproductive [18]. If necessary, payment or gifts could be considered to
encourage certain behavior or to get contributions [7].

 Providing Commercial Open Source Software: Lessons Learned 73

2.3 Software Licensing

Commercial OSS providers must apply a license which is fruitful for both the
company and the community [7, 27]. The license must enable the company to make
money on either the product or related services and it should enable the growth of a
vivid community. A license which the users are unhappy with can severely limit the
adoption of a product and it may provoke strong reactions from the community [12].

An OSS provider has a few choices when it comes to selecting a license, as he may
develop new licenses or reuse existing ones. Creating new licenses is discouraged
[11] since potential users will be unfamiliar with the new license, and since it would
require significant resources to create a license of high quality. By reusing existing
and well known licenses it is more likely that potential users are familiar with the
license, that it is tested, and that it is of good quality.

When reusing existing licenses the OSS provider basically has three choices [8].
First, the OSS provider may use a license like GPL which requires all derivate
products to be released under the same license. This may enable him to release the
product under a proprietary license as well and thereby create an income from a dual
licensing scheme [11]. However, a dual licensing scheme requires that the provider
own intellectual property rights for the whole code base. Second, the OSS provider
may select a license like MPL which requires direct changes to the original code base
to be licensed with the same license, and thereby ensuring that bug fixes and similar
changes done by others will be available. Third, the OSS provider may use a license
like the new BSD license which sets no restrictions on the choice of license on
derivate works, and thereby encourage adoption in any kinds of products.

3 Method

This paper reports on research performed in the COSI project. COSI stands for "Co-
development using inner & Open source in Software Intensive products" and is a
European industrial research and development project. The project ran for three years,
from November 2005 until October 2008 and was organized as a consortium of 13
industrial and academic partners from five countries. The project’s goal was to
increase awareness of industrial usage of distributed collaborative software and OSS.
The research design of the COSI project consisted of five phases, including two case
executions, where the companies were working on selected issues identified by the
project’s plan. During the case executions the companies documented their practices,
identified problematic issues and improved these practices.

The authors worked with the five Norwegian companies in the project, supporting
and guiding their activities in the project. In addition, we collected data relevant for
OSS research. In the case of eZ, the activities were focused on understanding and
improving the community management practice, and both case executions addressed
this issue.

This research has applied two methods for data collection in this approach: the
qualitative research interview and post-mortem analysis (PMA). In addition, we had
access to the project deliverables from eZ and had also several informal meetings with
the company at COSI workshop meetings, community conferences and other occasions.

74 Ø. Hauge and S. Ziemer

Eleven interviews have been conducted with four persons from the development
group from eZ at several occasions, distributed over the three years the project lasted.
The interviews have been unstructured [21] and have been focused on both on the
current community management practice and the history of eZ’s main product eZ
Publish (hereafter Publish). Notes were taken from all interviews and sent to the
interviewees for review.

The authors organized two PMA [3] sessions with most of the developers in the
development team. Both sessions focused on how the community management
process could be changed in order to increase the number of community contributions
to Publish. During these sessions we described the current community management
practice and identified both positive and negative issues with this practice. In addition
root-cause analyses for some of the negative issues were conducted.

This paper presents the story of a SME that has successfully developed an OSS
product and attracted a large community that contributes substantially to the ongoing
development of the product. The authors had access to eZ for more than three years.
During this time an understanding of how eZ was able to make these achievements
was built up based on the conversations with the employees and the authors’
reflection. As mentioned above there is little literature on how SMEs develop OSS
products, what business models they choose and how they create and take advantage
of a community to develop an OSS products. This paper shares lessons learned from
such a company and contributes thus to a broader understanding of how SMEs can
release OSS products and used the products to attract a community of users and
developers.

In analyzing the data and identifying potential lessons learned we found that there
are two ways of understanding of eZ’s achievements. The first way of understanding
is the one of the interviewees, who presented the development of Publish as a series
of strategically planned activities. The second way of understanding is from the
authors, who see the development of Publish not as a strategic planned activity but
rather driven by the skill to identify new opportunities and to make rapid decisions to
realize the opportunities. It is the authors’ view that both understandings are equally
valuable and needed to attract and take advantage of a community.

4 The eZ Systems Case

eZ Systems is a Norwegian software provider founded in 1999. Today they have
around 60 employees spread over offices in Norway, Denmark, Germany, France and
North America. eZ has almost since its origin focused on providing a PHP based OSS
Content Management System (CMS), eZ Publish. The company has a large customer
base from all over the world and the CMS has been downloaded more than 2.5
million times from their web site, as of February 2009.

4.1 The Early Days 1999-2001

In the beginning, eZ focused on developing applications for stock brokers but
delivered at the same time consultant services to local businesses. These services
included network and systems administration, and application and web development.

 Providing Commercial Open Source Software: Lessons Learned 75

The increasing popularity of the Internet gave them several customers who wanted
web sites. Many of these sites contained similar functionality and eZ soon started
reusing code from one site to another. This reusable code was quickly bundled into
two packages, Publish (article management) and Trade (shop management) and
released under the GPL, see Figure 1. The employees’ support for the OSS ideology
made releasing the packages as OSS, natural.

The company continues developing stock market applications. Meanwhile, the
CMS attracts attention in the OSS community and requests for consulting services
related to Publish are coming in. In parallel, they start selling the OSS philosophy to
local businesses. The philosophy is simple, if eZ disappears or if the customer is
unhappy with eZ’s work, he has access to the source code and he may hire someone
else. Publish is an attractive product and as a consequence of growing interest from
both customers and the OSS community, Publish gradually requires more and more
attention. This growing interest forces them to focus on either the stock market
applications or Publish. Even though it is a bold move including significant risks, the
final decision is to discontinue the stock market application and focus 100% on
Publish. The employees have a strong desire for OSS, they really want to create a
viable business model based on OSS, and releasing an OSS product sounds fun.

Fig. 1. The development of the Publish architecture

4.2 The Middle Ages 2001-2005

After deciding to focus on the development of the CMS, eZ starts developing Publish
2.0. This version is module based with the intention of enabling custom modules
extending the core functionality, see Figure 1. However, the possibility to extend
existing modules without changing the kernel is very limited, if existing. Even though
there are some problems with the modular architecture, the system provides
interesting functionality, and it therefore attracts a rather large community of OSS
users.

The development of the third version starts in 2003 and the PHP 4 based 3.0
version is released in March the next year. The focus of this version is increasing the

76 Ø. Hauge and S. Ziemer

modularity of Publish, allowing Plug-ins and simplifying the configuration of the
system. A simple two layer architecture consisting of a library and the application
itself is attempted in addition to the plug-ins, see Figure 1. However, the two layers
are soon too dependent of each other, making it eventually impossible to use the
library without installing the application. Even though eZ is unable to keep the two
layers separated the plug-in architecture is a success in the sense that it enables the
users of Publish to extend it with their own functionality.

4.3 Components and Publish 4.0 2005-Today

Due to dependency problems in Publish it is decided to make a new independent
library, giving birth to eZ Components (hereafter Components), see Figure 1. The
library is built separately from the CMS and the development process is opened up to
the community. The idea is to create a library which could be used for a wide variety
of PHP applications. The library should also be included into Publish when it reached
a mature state. This is done iteratively to straighten out eventual problems one at a
time. The Library is furthermore a way of refactoring the code in Publish, gradually
introducing PHP 5 to the CMS and ensuring support for Windows, Unix and Linux.
Late 2007, the forth major version of Publish is released. Through refactoring of
Publish and by incorporating Components into the CRM, it gains PHP 5 support.
Components furthermore enables those making plug-ins for Publish to make use of
the functionality it provides and thereby achieving synergies between the two
communities. The division of the system into independent parts enables the growth of
three communities around Components, Publish and the plug-ins, see Figure 2.

Fig. 2. The parts of eZ Publish and their surrounding communities

5 Analysis of the eZ Case and Comparison with Findings from the
Literature

In the previous section we gave an historical overview of how a small Norwegian
software company has successfully launched an OSS product and attracted a large
ecosystem of users and developers. This ecosystem can, as illustrated in Figure 2, be
divided into three communities. In this section we will review the case, using the
challenges identified in the literature.

 Providing Commercial Open Source Software: Lessons Learned 77

5.1 Business Model and the Benefits of Communities

Having a large number of potential customers in the community around Publish
creates a greater need for services like support, quality assurance, training,
installation, and hosting. Furthermore, it makes selling these services easier and
reduces the need for marketing. Users are made aware of Publish through the Internet
and services are often sold through bottom-up adoption of the product. Advantages
like reduced marketing efforts and shorter sales cycles are also observed elsewhere
[19, 25].

The Plug-ins community has developed a large number of plug-ins which extend
the functionality of Publish. These plug-ins increase the whole value of the product,
enable community members to solve their specific problems, and help eZ to
understand these problems. Furthermore, one might see the activity in the Plug-ins
community as a way of outsourcing the development and maintenance of these plug-
ins, and thereby reducing eZ’s development efforts. The community members’
investments in developing these plug-ins build a stronger connection between them
and Publish and thereby increase their loyalty to it.

The Components community contributes code to a library eZ would have needed to
develop regardless of these contributions. Next, the future of PHP is essential to eZ’s
products and Components, particularly if it becomes widely adopted, is a tool eZ can
use to keep up with and influence the development of PHP. Adoption of the library
will also contribute positively to increasing eZ’s reputation, particularly in the OSS
community.

Using the categorization of business models in [10] we see that the communities
around eZ support different strategic goals. Publish is creating a market for the
supplementary services eZ and their partners provide. More, through the two other
communities, eZ gets contributions from the OSS community. OSS products can as
we see be used to reach other strategic goals than directly increasing the income of a
company [18, 27]. Components, the plug-ins and their communities illustrate this as
they contribute to reducing eZ’s development costs, increasing the value of Publish,
and to monitoring and influencing the future of PHP. eZ are in other words using
different strategies for each of the communities to support their over all business
strategy.

eZ is furthermore able to construct a good understanding of the needs of their users
through feedback, requirements and interaction with all three communities.
Community developed plug-ins, recruitment of developers from the community and
the use of their own product give eZ better understanding of the domain and thereby
reduce their expenses on market research.

The business strategy of eZ has evolved from application development targeting a
specific domain to providing services and support to the ecosystem around an OSS
product. An evolution of the business model can also be seen in the JBOSS case [25].
Income from services and support are more predictable and consistent than from
licenses and consulting, and less sensitive to economic turnaround [25]. This is being
particularly true when having a large install base. It is therefore natural to evolve the
business model as the customer base grows.

78 Ø. Hauge and S. Ziemer

5.2 Community

Infrastructure: eZ has been investing in a common infrastructure for the three
communities. For the Plug-in community, eZ is hosting a portal for plug-ins, as well as
organizing developer days at their annual Publish event. The infrastructure for Publish
consists of forums, mailing lists, issue trackers, documentation and source code. For
the Components community mailing lists and an open issue tracker are provided.

Providing this infrastructure is a rather small investment, even for a small
company. In addition, eZ did not set up their community infrastructure before the
product was released but did so over time, driven by the activity level and demand of
the communities. The cost of establishing the infrastructure has thus been spread out
over several years. This contrasts the findings of [15, 27], that both mention that
considerable investment is needed to release an OSS product and to set up support
functions. One possible explanation is that eZ never planned from the start to provide
an OSS product.

Attracting and governing a community: Attracting and governing a community is
one of the most challenging aspects of releasing an OSS product [7, 18]. Today eZ has
an ecosystem that consists of three communities, serving its two products. Together this
ecosystem attracts users, volunteers and customers to use the products and to be part of
the communities. eZ is attracting the communities by providing two interesting products
that are downloaded and used by a large user base. eZ is further attracting member to
their communities by accepting and hosting plug-ins to their Publish product, and by
accepting contributions from both the Publish and Components community. eZ also
communicates a positive attitude towards open source to the outside world and uses the
open source label to differentiate itself from non-open source competitors.

Attracting a community starts with releasing an attractive product, that is of
interest to a potential large user base. The most active community in eZ ecosystem is
the Plug-in community. It started when users started developing their own
functionality by using the plug-in mechanism in the architecture of Publish. These
developers wanted to share their plug-ins with other Publish users, and reflected thus
the same attitude to open source that made eZ release Publish as an open source
product in the first place. The plug-in community is attractive to its members even
when the members are not included in the way of the company. The inclusion in the
way of the company is suggested to be a necessity to attract a community [7, 27]. eZ
is including the members of the Publish and Component communities in varying
degrees, but in none of the communities are the members fully included in the way of
the company. The community members’ motivation to contribute is thus not the
inclusion in the way of a company but rather implementing functionality they are
interested in themselves. The argument made here is not that it is not important to
include community members into the ways of a company, but that the attraction of a
community starts with a product that is appealing to a large number of users.

eZ is as of now not satisfied with the activity level in the Publish community and
would like to increase it. This deals with how to govern a community, and with how
to balance conflicting interests between the community and eZ customers. Since
Publish is the strategic core product for eZ, control with the product and its future
development is needed for strategic reasons. Exercising too much control, however,
may result in that the community looses its attractiveness with its members [18].

 Providing Commercial Open Source Software: Lessons Learned 79

5.3 Software Licensing

Publish and Components address different strategic goals. To avoid licensing problems,
to attract a community and to reflect these strategic goals, eZ selected two different, but
well established OSS licenses. The GNU Public License (GPL) allows the community
to use Publish without paying any license fees. At the same time it gives eZ control over
how Publish is used. GPL requires code sharing and prevents the use of the source code
in proprietary products. Moreover, GPL enables eZ to dual license Publish and thereby
getting some income from the license sales. eZ provides proprietary licenses for
companies which (1) include Publish in their proprietary products, (2) build proprietary
extensions on top of Publish and (3) use Publish as any other proprietary software. This
last license is particularly useful for companies which not yet have legally approved the
use of OSS licenses in their organization. However, to lower the threshold for adoption
of Components, eZ released it under the New Berkeley Software Distribution (BSD)
license which gives adopters quite unlimited freedoms.

6 Lessons Learned

With eight years of experience, the eZ case identifies some lessons learned about how
to release an open source product.

Allow your business model to evolve: Providing an OSS product is not a trivial task,
and the experience from the eZ case shows that providing an OSS product may take
unexpected turns. Even though the use of OSS in the software industry is growing,
OSS business models have yet to stabilize themselves. It is thus important to plan for
a business model and to allow it to evolve with the opportunities and challenges
presented by the product and its community. Core team needs experience from other
OSS projects and communities Setting up an OSS community requires knowledge
about how open source communities function. Having developers with experience
from other open source communities is beneficial since they have fit hand experience
with OSS values and practices. The Components community is a good example that
this is helping to create an active community.

Balance control and bureaucracy related to community contributions: Lack of
control over community contributions directly to your product can reduce the quality
of it and potentially introduce illegitimate source code into the product. Too strict
control on the other hand may discourage contributions and community participation.
It is therefore important to clearly specify where you are going with your product and
what kind of contributions you want, and to make contributions and wanted behavior
visible to other community members.

Be part of your own community: In order to sustain a community of volunteers a
community needs to be active and including. This can be achieved when the core
development team is part of the community, and uses a common infrastructure to
share information and to coordinate all activities. This creates the transparency that a
community is expecting. The opposite of such a transparent community would be a
community where the core team uses a parallel infrastructure to communicate and
coordinate their activities internally.

80 Ø. Hauge and S. Ziemer

Apply well known licenses which suit both you and your users: Unnecessary strict
licenses may limit the adoption of a product. Both OSS users and paying customers will
most likely go elsewhere if their needs are not met by the software’s license. To avoid
intimidating the users, simple, well known licensing models should be chosen. Explain
the OSS licenses, its permissions and restrictions. Launching a product as OSS could
include a constant fear of license infringement. When the source code is available it is
technically quite simple to misuse the source code. However, this has not been a
problem for eZ and the very few incidents which have occurred have easily been solved.

7 Discussion and Conclusions

Finally, some issues will be pointed out. First, investing in an infrastructure is not
reserved only to open source providers. While this investment has been seen as
something that is an extra investment for companies providing OSS, providers of
commercial products need an infrastructure as well to stay in touch with their
customers, and receive error reports and other feedback.

eZ Systems have established an ecosystem with three communities that are based
on different business models and give different benefits in return. This strategy to
create more than one community with an OSS product seems to enable eZ to take
advantage of several of the benefits that are associated with having a community of
users. This division helps attracting and directing contributions to two areas where it
is more convenient to receive them while controlling the core product. At the same
time as eZ wants to attract more contributions to Publish (the core), there is also a
need to keep certain control with this product for commercial reasons. Resolving
conflicts between community interests and commercial interests is a delicate balance.

This paper has presented the history of the two open source products provided by eZ
and the three communities that constitute the ecosystem around these products. Based
on eZ’s experience, we have identified some lessons learned which could help other
OSS providers. There is no single answer on how to succeed as an OSS provider. In
case presented in this paper, however, there are some factors that contributed to the
success of the provided OSS. This includes the evolvement of the business model,
having an attractive product and adapting to community needs and opportunities.

Acknowledgments

The research has been conducted within the ITEA COSI project and is supported by
the Research Council of Norway. We are grateful for the support from eZ Systems
and to our colleagues in the COSI project, in particular Vidar Langseid, Thomas
Østerlie, and Carl-Fredrik Sørensen.

References

1. Baker, M.: The Mozilla Project: Past and Future. In: DiBona, C., Cooper, D., Stone, M.
(eds.) Open sources 2.0, pp. 3–20. O’Reilly Media Inc., Sebastopol (2006)

2. Banzi, M., Bruno, G., Caire, G.: To What Extent Does It Pay to Approach Open Source
Software for a Big Telco Player? In: Russo et al. [22], pp. 307–315

3. Birk, A., Dingsøyr, T., Stålhane, T.: Postmortem: Never Leave a Project without It. IEEE
Software 19(3), 43–45 (2002)

 Providing Commercial Open Source Software: Lessons Learned 81

4. Bleek, W.-G., Finck, M.: Ensuring Transparency - Migrating a Closed Software
Development to an Open Source Software Project. In: IRIS 28 Proceedings of the 28th
Information Systems Research Seminar in Scandinavia, August 6-9 (2005)

5. Bleek, W.-G., Finck, M., Pape, B.: Towards an Open Source Development Process?
Evaluating the Migration to an Open Source Project by Means of the Capability Maturity
Model. In: Scotto and Succi [23], pp. 37–43

6. Boldyreff, C., Nutter, D., Rank, S.: Communication and Conflict Issues in Collaborative
Software Research Projects. In: Feller, J., Fitzgerald, B., Hissam, S.A., Lakhani, K.R.
(eds.) Collaboration, Conflict and Control Proceedings of the 4th Workshop on Open
Source Software Engineering, pp. 14–17 (2004)

7. Dahlander, L., Magnusson, M.G.: Relationships between Open Source Software
Companies and Communities: Observations from Nordic Firms. Research Policy 34(4),
481–493 (2005)

8. de Laat, P.B.: Copyright or copyleft?: An analysis of property regimes for software
development. Research Policy 34(10), 1511–1532 (2005)

9. Eurostat: Number of persons employed by enterprise size-class in the EU-27 (2009),
http://ec.europa.eu/eurostat/ (accessed 2009-02-12)

10. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3), 587–
598 (2006)

11. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software
Project. O’Reilly, Sebastopol (2005)

12. Hamerly, J., Paquin, T., Walton, S.: Freeing the Source: The Story of Mozilla. In: DiBona,
C., Ockman, S., Stone, M. (eds.) Open Sources: Voices from the Open Source Revolution,
pp. 197–206. O’Reilly, Sebastopol (1999)

13. Hauge, Ø., Sørensen, C.-F., Conradi, R.: Adoption of Open Source in the Software
Industry. In: Russo et al. [22], pp. 211–222

14. Hawkins, R.E.: The economics of open source software for a competitive firm.
Netnomics 6(2), 103–117 (2004)

15. Järvensivu, J., Mikkonen, T.: Forging A Community Not: Experiences On Establishing An
Open Source Project. In: Russo et al. [22], pp. 15–27

16. Jensen, C., Scacchi, W.: Collaboration, Leadership, Control, and Conflict Negotiation and
the Netbeans.org Open Source Software Development Community. In: HICSS 2005
Proceedings of the 38th Annual Hawaii International Conference on System Sciences, p.
196b. IEEE Computer Society, Los Alamitos (2005)

17. Krishnamurthy, S.: An Analysis of Open Source Business Models. In: Feller, J.,
Fitzgerald, B., Lakhani, K.R., Hissam, S.A. (eds.) Perspectives on Free and Open Source
Software, pp. 279–296. MIT Press, Cambridge (2005)

18. Lindman, J., Uitto, T.: Case study of company’s relationship with open source community
in open source software development. In: IRIS 31 Proceedings of the 31st Information
Systems Research Seminar in Scandinavia, pp. 1–22 (2008)

19. Onetti, A., Capobianco, F.: Open Source and Business Model Innovation. The Funambol
Case. In: Scotto and Succi [23], pp. 224–227

20. Raymond, E.: The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly, Sebastapol (2001)

21. Robson, C.: Real World Research, 2nd edn. Blackwell Publishing, Malden (2002)
22. Russo, B., Damiani, E., Hissam, S.A., Lundell, B., Succi, G. (eds.): Open Source

Development Communities and Quality IFIP Working Group 2.13 on Open Source
Software, Milano, Italy, September 7-10, 2008. IFIP International Federation for
Information Processing, vol. 275. Springer, Boston (2008)

82 Ø. Hauge and S. Ziemer

23. Scotto, M., Succi, G. (eds.): OSS 2005 Proceedings of The First International Conference
on Open Source Systems (2005)

24. Wasserman, A.I., Capra, E.: Evaluating Software Engineering Processes in Commercial
and Community Open Source Projects. In: Capiluppi, A., Robles, G. (eds.) FLOSS 2007
First International Workshop on Emerging Trends in FLOSS Research and Development,
Washington, DC, USA, p. 1. IEEE Computer Society, Los Alamitos (2007)

25. Watson, R.T., Wynn, D., Boudreau, M.-C.: JBoss: The Evolution of Professional Open
Source Software. MIS Quarterly Executive 4(3), 329–341 (2005)

26. West, J.: How open is open enough?: Melding proprietary and open source platform
strategies. Research Policy 32(7), 1259–1285 (2003)

27. West, J., O’Mahony, S.: Contrasting Community Building in Sponsored and Community
Founded Open Source Projects. In: HICSS 2005 Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, p. 196c. IEEE Computer Society, Los
Alamitos (2005)

28. Ziemer, S., Hauge, Ø., Østerlie, T., Lindman, J.: Understanding Open Source in an
Industrial Context. In: SITIS 2008 Proceedings of the 4th IEEE International Conference
on Signal-Image Technology & Internet-Based Systems, pp. 539–546. IEEE Computer
Society, Los Alamitos (2008)

	Providing Commercial Open Source Software: Lessons Learned
	Introduction
	Related Works
	Business Models and Related Issues
	Community
	Software Licensing

	Method
	The eZ Systems Case
	The Early Days 1999-2001
	The Middle Ages 2001-2005
	Components and Publish 4.0 2005-Today

	Analysis of the eZ Case and Comparison with Findings from the Literature
	Business Model and the Benefits of Communities
	Community
	Software Licensing

	Lessons Learned
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

