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Abstract. Climate simulation will not grow to the ultrascale without
new algorithms to overcome the scalability barriers blocking existing im-
plementations. Until recently, climate simulations concentrated on the
question of whether the climate is changing. The emphasis is now shift-
ing to impact assessments, mitigation and adaptation strategies, and
regional details. Such studies will require significant increases in spatial
resolution and model complexity while maintaining adequate through-
put. The barrier to progress is the resulting decrease in time step with-
out increasing single-thread performance. In this paper we demonstrate
how to overcome this time barrier for the first standard test defined for
the shallow-water equations on a sphere. This paper explains how com-
bining a multiwavelet discontinuous Galerkin method with exact linear
part time-evolution schemes can overcome the time barrier for advec-
tion equations on a sphere. The discontinuous Galerkin method is a
high-order method that is conservative, flexible, and scalable. The addi-
tion of multiwavelets to discontinuous Galerkin provides a hierarchical
scale structure that can be exploited to improve computational efficiency
in both the spatial and temporal dimensions. Exact linear part time-
evolution schemes are explicit schemes that remain stable for implicit-size
time steps.

1 Introduction

Large-scale scientific computing has maintained its exponential growth via the
ever expanding parallelism while individual processor speeds have begun to stag-
nate [9]. This trend requires the development of new algorithms that can over-
come the time barrier, or effectively scale in spatial resolution while maintaining
adequate throughput and accuracy. This paper takes a step towards this goal
by demonstrating how the time step for advection equations on a sphere can be
significantly increased by using a multiwavelet discontinuous Galerkin method
with an exact linear part time-evolution scheme.

The discontinuous Galerkin (DG) method has an elegant and flexible for-
mulation that can provide high-order accurate solutions to complicated models
[Bl6]. DG is a finite element method that is locally conservative and allows for
an element-wise discontinuous solution approximation. DG is a scalable method
because numerical information of each element is only passed locally through
numerical fluxes to the nearest neighbors. In a set of papers, the DG method
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was successfully implemented on the sphere for advection models [II] and the
shallow water equation [I2]. We build on this work by merging multiwavelets
with discontinuous Galerkin on the sphere and accelerate the time step by using
an exact linear part (ELP) time-evolution scheme.

Multiwavelets are a discontinuous, orthogonal, compactly supported, multi-
scale set of functions with vanishing moments that yield high-order hp-adaptive
approximations of L? functions [I]. Combination of multiwavelets with the DG
method results in a computationally fast and effective multi-scale adaptive DG
method [3]. ELP has been demonstrated to be particularly effective and efficient
for multiwavelet-based schemes [2J4] since the operators generated for the ELP
method remain sparse in a multiwavelet representation.

This paper is orgainized as follows. In section Bl we introduce the multiwavelet
basis and its key features. In section [8] we describe the DG method for the cubed
sphere and further demonstrate how multiwavelets are incorporated. Section [
describes ELP for the multiwavelet DG method. Section Bl demonstrates the
time acceleration of advection problems on the cubed sphere. Section [6l ends the
paper with a discussion of the results.

2 Multiwavelet Bases

In this section we briefly summarize the important properties of the multiwavelet
basis derived and developed in [I] and introduce notation as given in [2]. We begin
by defining V¥ as a space of piecewise polynomial functions, for & = 1,2,...,
andn=0,1,2,..., as

VfL ={f:fell(Iy), for 1 =0,..,2" =1, and supp(f) = Iu}, (1)

where ITj(I,;) is the space of all polynomials of degree less than k on the interval
I, = [2"1,2™(1 + 1)]. Using this space, we can describe not only multiwavelets,
but the solution space that the DG method uses for approximation. The multi-
wavelet subspace WF n = 0,1,2,..., is defined as the orthogonal complement
of VE in VE_ | or

VEewE=vt WELVE (2)

The immediate result of this definition of the multiwavelet subspace is that it
splits V¥ into n + 1 orthogonal subspaces of different scales, as

Vi=VioWieaWio...o W, (3)

n—1-

Given a basis ¢o,...,dx_1 of VE, the space V¥ is spanned by 2"k functions
which are obtained from ¢y, ..., ¢r_1 by dilation and translation,

n(x) =2"2¢;2" e —1), j=0,....k—1, 1=0,...2"-1  (4)

By construction similar properties hold for multiwavelets. If the piecewise poly-
nomial functions ty, ..., ¥,_1 form an orthonormal basis for WE, then by dilation
and translation the space WF is spanned by 2"k functions

Pl =222 1), j=0,....k—1, 1=0,...,2"—1. (5)



Time Acceleration Methods for Advection on the Cubed Sphere 255

A function f € VF can be represented by the following expansion of scaling

functions.
2" 1 k—1

= Z ZS?Z (@), (6)

1=0 j=0

where the coefficients sh are computed as

(1+1)
si= [ r@e ”)
The decomposition of f(z) has an equivalent multiwavelet expansion given by
k-1 n—12"—1
Fla) = (shoi(@) + D D dijvfi(a (8)
j=0 m=0 [=0
with the coeflicients
27" (141)
e[ e, (©)

It is demonstrated in [I] how fast transforms between (@) and (8) can be de-
veloped using two-scale difference equations. Specifically, expansion coefficients
of multiwavelets with k vanishing moments can be constructed on consecutive
levels m and m + 1 through repeated application of

k—1
0 1 1 1
Si= D (g s+ b sTaL),
7=0
k—1
0 1
i = Dol s 0l s k) (10)
7=0
using the scaling coefficients hg?) and gi(?) for i,7 = 0,...,k — 1. The inverse
operation that takes expansion coefficients of (8) to (@) is given by
k—1
0
siat = D (s + g5 i),
7=0
k—1
1
dfsit = D (hg) s+ g ), (1)
7=0

for the scaling coefficients hg?) and gi(?)7 fori,7=0,....k—1.

The total number of expansion coefficients in (@) and () are the same, but the
number of significant expansion coefficients for a given error tolerance level € will
be different. A benefit of using the multiwavelet expansion (8)) is that much-fewer
significant expansion coeflicients are generally needed. A result of this property
when multiwavelets are used in DG methods is an increase in computational
speed and efficiency [I]. In this paper we use hard thresholding to eliminate
non-significant expansion coefficients.
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3 Multiwavelet Discontinuous Galerkin Method on the
Cube Sphere

In this section we begin by describing the multiwavelet DG [1] method in two
dimensions and finish by demonstrating how this method can be used with the
cube-sphere geometry to model equations on the sphere.

Consider the two-dimensional scalar nonlinear conservation law

ug + V- f(u) =0, in [0,1]% x [0, 7. (12)

We restrict our attention to uniform Cartesian meshes since they provide the
most natural representation for multiwavelets; other mesh choices are possible
but the implementation becomes more challenging [7]. Given a fixed order k > 0
and resolution n > 0, variational formulation of the DG method is derived by
multiplying (I2)) by the test functions ¢ € VE and integrating to obtain

/ L, / . y)dady = /M /M fu 8¢ ne(y)dxdy
o) [ s ¢gy<y) dady

- / f(u) -0 @ (@)en()ds,  (13)
O neX1Ini)

for j,9=0,....k—1and [,¢ =0,1,...,2" — 1, where n is the outward-facing
unit normal vector on the element boundary 9[I,,; x I,;]. Consider the following
two-dimensional multiwavelet expansion.

‘T yu Zd;77]l; ]E(y)v (14)

with summation taken over j,3 =0,...,k—1 and m,up = —1,0,...,n—1 and
I =0,1,...,min(0,2™ — 1) and £ = 0,1,...,min(0,2* — 1), where notation
is condensed by defining wj_ol(-) = ¢;(-), for j = 0,...,k — 1. The numerical
multiwavelet DG scheme supplants the test functions ([3)) with multiwavelets
and solves

/1 ; a@th i ()05 (y) daedy = / / f(un) %l() ™ () daudy

/ / f uh ]l ]Z(y) dmdy
Lng J Iny y

- / Flun) -1 @7 (@) (y)ds, (15)
O neX1Ini)

where f (up,) is a monotone numerical flux, the focal point for the only commu-
nication between elements. Throughout this paper we use the well known simple
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Fig.1. The cubed-sphere gridding technique projects the red points on the sphere
along radial lines to the blue points on the inscribed cube face

Lax-Friedrichs flux [I0] and Gauss-Lobatto quadrature for integration. An ex-
plicit solution of (&) results directly from the orthogonality of multiwavelets,

where _—
/ / Oy =
nl nl at

for all index values given previously.

The cubed sphere, first developed in [I3], has proven to be a particularly
useful gridding technique for solving partial differential equations on the sphere
[TTUT2UT4]. Figure[D depicts the cubed sphere, where the transformation between
the inscribed cube and the sphere is determined by the gnomonic (center) pro-
jection from the sphere to each face of the cube. DG is well-suited for this type
of gridding [IT12], since each face can be solved as a separate two-dimensional
problem, with faces communicating with each other as boundary conditions.

4 Time Discretization

We use a method of time stepping that has been demonstrated to be particularly
effective and efficient for multiwavelet schemes [2/4]. The idea behind the devel-
opment of these schemes, as it is related to this research, is to convert differential
equations of the form

= Lu + N (u), (16)

where the system is split into a linear operator £ and nonlinear operator A, into
the equivalent integral equation,

t
u(t) = e*uy —I—/ eIEN (u)dr. (17)
0
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The multiwavelet basis allows fast scaling and squaring methods that produce
sparse and highly accurate approximations to the exponential linear opera-
tor. These time-stepping schemes are therefore called ezact linear part (ELP)
schemes.

This paper focuses on linear advection equations on the sphere, and therefore
we will only discuss how to approximate the exponential operator e**. Suppose
we are given the matrix £ and an error tolerance ¢; the scaling and squaring
method that approximates the exponential linear operator is as follows.

1. Compute the exponent j such that ¢[|L]|2/27 < e.
2. Compute the approximation e**/?" =T + t||£|2/2.

3. et£/? ig squared j times to obtain e“.

Sparsity is maintained by truncating to the error tolerance at each step.

5 Numerical Results

In this section we consider the following problem of advection on the sphere, a
problem that has specific importance to the development of climate models.

Example 1. Given the advecting field h, the equation for advection in flux form is

oh
ot + V- (hv) =0. (18)

The first test in the standard suit developed by the climate modeling community
[15] is to solve ([I8) on the surface of a sphere, with initial conditions given in
spherical coordinates as

h(r(/\,ﬁ)) _ {"20(1+cos(7;{)) if r < R, (19)

0 otherwise,

for r(\, 8) = aarccos(sin(6.) sin(f) + cos(f.) cos(f) cos(A — X)) and advecting
wind

_ cos(0)cos(a) + sin(0)cos(N)sin(a)
V=t <—8in()\)sin(a) ’ (20)
Here the parameters are set to a = 6.37122 x 10°m, hy = 1000m, (A.,0.) =
(32”70), R =%, u = IZQQZyS, and o = 7. We note that this choice of a rep-

resents a particularly difficult problem, since the advecting cosine bell passes
through four corners and along two edges of the cubed-sphere grid during each
full revolution.

Along with the Cosine bell initial conditions (IJ]), we will also consider the so
called Gaussian hill initial conditions,

h(r(A,G)) = hoe” #?, (21)

for p = 2500 km.
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Fig. 2. (a) Final multiwavelet DG solution of Example [Il for Cosine bell initial con-
ditions. (b) Relative error after one complete revolution, with N = 16, k = 3 and
CFL = 18.2.

Throughout this section we will use

CFL::fz?t and N, = 6N2, (22)
where At is the time step, N, is the total number of elements on each cube face,
and Az = .

FigurePldepicts the multiwavelet DG solution and relative error of Example [I]
for Cosine bell initial conditions, with N = 16, £ = 3 and CFL = 18.2. It can
be seen that using ELP time stepping provides a stable solution for time steps
that significantly exceed the CFL requirement for explicit methods. Figure
depicts the same multiwavelet DG solution and relative error of Example [ for
Gaussian hill initial conditions. The difference between the multiwavelet DG
solution and the exact solution is no more than a fraction of a percent for each
initial condition and is considerable better for Gaussian hill initial conditions
due to the increased smoothness of this initial condition.
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Fig. 3. (a) Final multiwavelet DG solution of Example [[l for Gaussian hill initial con-
ditions. (b) Relative error after one complete revolution, with N = 16, k¥ = 3 and
CFL = 18.2.

Table [I] gives more-detailed insight into the properties of multiwavelet DG.
We compare fourth order in time Runge-Kutta time stepping (RK4) [§] to ELP.
Since Example [ is linear, we can convert the Runge-Kutta method into an
equivalent matrix operation. Each time step for the ELP method also consists
of one matrix operation, and therefore we use the number of non-zero elements,
N., in each time-evolution matrix to give a measure of the computational effort
for each time step. Our first observation from Table [l is that for both types of
initial conditions the Lo error and order of convergence is comparable for each
time-stepping method and CFL number. We note that the convergence rates
and errors are similar to the results published in [I1] for the same problem,
with cosine bell initial condition, using a DG method with CFL = 0.1 and a
third-order Runge-Kutta method. We report that in this study CFL > 0.35 re-
sulted in instability for the RK4 method. Finally, it can be seen that the ELP
method can significantly increase the time step while preserving accuracy. ELP
time stepping provided a sixteen-fold acceleration of Runge-Kutta with no signif-
icant increase in the number of nonzero elements in the time-evolution matrixes.



Time Acceleration Methods for Advection on the Cubed Sphere 261

Table 1. Convergence rates for Example [Tl using RK4 and ELP time stepping for the
multiwavelet DG method with order k& = 3 and drop tolerance ¢ = 10™% for the ELP
with CFL= 4.8 and € = 1075 otherwise. The number of non-zero elements for each
operator is give by N..

RK4 (CFL = 0.3) ELP (CFL =48)  ELP (CFL = 18.2)

N Lo error Order N, Lo error Order N, Lo error Order N,
cosine bell

4 1.98e-1 - 5.7e5 1.98e-1 - 5.9e5 1.96e-1 - 1.5e6
8 4.04e-2  2.30 2.4e6 4.18e-2 2.25 2.5e6 4.11e-2 2.26 8.2e6
16 7.53e-3  2.42 9.9e6 7.6le-3 2.46 1.0e7 7.7le-3 2.14 3.4e7
Gaussian hill

4 2.0e-2 - 5.7e5 2.01e-2 - 5.9¢5 2.02e-2 - 1.5e6
8 3.04e-3  2.72 2.4e6 3.06e-3 2.72 2.5¢6 3.08e-3 2.72 8.2¢6
16 3.6e-4 3.09 9.9e6 3.62¢e-4 3.08 1.0e7 3.63e-4 3.08 3.4e7

Also, a sixty-fold time acceleration was achieved at the cost of a three-fold in-
crease in the number of nonzero elements.

6 Conclusions

This research has demonstrated that significant increases in time-step length
are possible for advection problems on the cubed sphere by using an ELP mul-
tiwavelet DG method as compared to DG. A sixty-fold increase in time step is
achieved for the first test in the standard suit developed by the climate modeling
community [I5] in the most-challenging advection direction for the cubed-sphere
geometry. The cost of this time acceleration is a three-fold increase in the number
of spatial calculations. This penalty is small relative to the gain in time accel-
eration and is desirable because spatial operations offer better opportunities for
parallelization.

Acknowledgments

This research has been sponsored by the Laboratory Research and Development
Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle,
LLC for the U.S. Department of Energy under Contract No. DE-AC05-000R22725.
Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow others to do
so, for U.S. Government purposes.

References

1. Alpert, B.: A class of bases in L? for the sparse representation of integral operators.
SIAM J. Math. Anal. 24(1), 246 (1993)

2. Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differ-
ential equations in multiwavelet bases. Journal of Computational Physics 182(1),
149 (2002)



262

10.

11.

12.

13.

14.

15.

R.K. Archibald et al.

Archibald, Fann, Shelton: Adaptive Discontinuous Galerkin Methods in Multi-
wavelets Bases. Journal of Scientific Computing (2008) (submitted)

Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of stable time discretization
schemes for the solution of nonlinear PDEs. Journal of Computational Physics 147,
362 (1998)

. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-

dependent convection diffusion systems. STAM Journal on Numerical Analysis 35,
2440 (1998)

Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for
convection-dominated problems. Journal of Scientific Computing 16(3), 173 (2001)
Coult, N.: Introduction to Discontinuous Wavelets. In: Cockburn, B., Karniadakis,
G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory Computation
and Applications. Springer, Heidelberg (2000)

Davis, P.J., Polonsky, I.: Numerical Interpretation, Differentiation, and Integration.
In: Abramowitz, M., Stegun, I. (eds.) Handbook of Mathematical Functions. Dover
(1972)

Drake, Jones, Vertenstein, White I1I, Worley: Software Design for Petascale Cli-
mate Science. In: Bader, D. (ed.) Petascale Computing: Algorithms and Applica-
tions. Chapman & Hall/CRC, Boca Raton (2008)

LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhauser Verlag,
Basel (1990)

Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin transport scheme
on the cubed sphere. Monthly Weather Review 133(4), 814 (2005)

Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin global shallow
water model. Monthly Weather Review 133(4), 876 (2005)

Sadourny, R.: Conservative Finite-Difference Approximations of the Primitive
Equations on Quasi-Uniform Spherical Grids. Monthly Weather Review 100(2),
136-144 (1972)

Taylor, M.A., Tribbia, J.J., Iskandrani, M.: The spectral element method for the
shallow water equations on the sphere. Journal of Computational Physics 130,
92-108 (1997)

Williamson, D.L., Hack, J.J., Jakob, R., Swarztrauber, P.N., Drake, J.B.: A stan-
dard test set for numerical approximations to the shallow water equations in spher-
ical geometry. Journal of Computational Physics 102, 211 (1992)



	Time Acceleration Methods for Advection on the Cubed Sphere
	Introduction
	Multiwavelet Bases
	Multiwavelet Discontinuous Galerkin Method on the Cube Sphere
	Time Discretization
	Numerical Results
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




