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Abstract. Random number sequences are used in a wide range of applications 
such as simulation, sampling, numerical analysis, cryptography, and recreation. 
The quality of random number sequences is critical to the correctness of  
these applications. Many statistical tests have been developed to test various 
characteristics of random number generators such as randomness, independence, 
uniformity, etc. Most of them are based on testing on a single sequence. When 
multiple sequences are employed in an application, their potential correlations are 
also concerned. In this paper, we explore the techniques of using the Minkowski 
functionals and their extensions, the Minkowski valuations, to study the 
mathematical morphology of two dimensional binary image generated by pair-
wise random number sequences, and apply this method to describe and compare 
the properties of several well-known pseudo- and quasi-random number 
generators. 
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1   Introduction 

Random number sequences are desired to display no describable deterministic patterns, 
but follow a certain statistical distribution. The quality of a random number generator is 
usually measured by efficiency, uniformity, independence, randomness, reproducibility, 
and aperiodicity. To test the quality of random number sequences, many statistical tests 
suites are available [1, 2]. Most of these tests are designed for testing a single sequence. 
However, in many applications such as parallel Monte Carlo, multiple sequences are 
involved and the potential correlations among these sequences may also affect the 
correctness of these applications. To ensure random behavior across multiple random 
number sequences, studies of statistical testing on interleaving sequences [3] as well as 
averaging sequences have been used in the past [4]. In this paper, we explore the testing 
of sequence correlations in two dimensions (2D).   
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The study of the pair-wise random number sequence correlation is the foundation 
of the analysis of correlations among multiple sequences. To identify the correlations 
between sequences, a tool to describe point distribution in 2D quantitatively is 
required. Recently, the Minkowski functionals have been used to quantify patterns 
found in galaxies, neuronal cells, and metal foams as well as random point patterns [5, 
6, 7]. In 2D, the Minkowski functionals correspond to area V0, perimeter V1, and Euler 
characteristic V2, i.e.:  
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where κ  denotes the curvature of along the boundary P∂ . The Minkowski 
functionals distill the complexity of an image into a small number of descriptors. 
However, they cannot fully describe morphological properties such as heterogeneity, 
symmetry, and anisotropy of images. To overcome the shortcoming, they are 
extended to the Minkowski valuations, which are the higher order moments of the 
Minkowski functionals [8]. The first- and second-order moments are of particular 
interest. Correspondingly in 2D, there are three first-order moments, V0, V1, and V2, 
also referred to as the Minkowski vectors, given by: 
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where x is the position vector. Moreover, the Minkowski vectors are usually 
normalized by their associated Minkowski functionals for a better geometric 
interpretation. These so-called centroids are defined as:  

),02,1,0(/ ≠== iiii VifiVVp  (3) 

where 0p is the center of mass, 1p is the center of perimeter, and 2p is the center of 

curvature. The second-order moments define the second-order Minkowski tensors, 
V0

2,0, V1
r,s, and V2

r,s
, viz: 
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where )2,0(),1,1(),0,2(),( =sr  indicates the degree of the tensor product of each 

vector with itself. However, only four of the above seven tensors carry independent 
information [9] and we will concentrate on the mass and perimeter tensors: 

mass tensor : ,20,2
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In this paper, we compare the Minkowski functionals of 2D binary images of the 
random number sequences generated by several well-known pseudo- and quasi-
random number generators. We investigate the difference of the pseudo- and  
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quasi-random number sequences from the theoretical values, and their Minkowski 
valuations. We also study the Minkowski functionals in 2D random point distribution 
when correlation between random number sequences occurs. The remainder of the 
paper is organized as follows: Sect. 2 describes the general method of Minkowski 
functionals study of random number sequences, Sect. 3 introduces the measures of the 
Minkowski functionals and valuations, Sect. 4 analyzes the sequences generated by 
the random generators mentioned above, and Sect. 5 finalizes the conclusions.  

2   Computation of the Minkowski Functionals and Valuations 

The definitions of Minkowski functionals are given in equation (1). For binary images 
on a square lattice, the Minkowski functionals are linear combinations of elements 
including faces, edges, and vertices. The computation of Minkowski functionals is 
simply counting the total number of faces 

2n , edges 
1n , and vertices 

0n . The area, 

perimeter and Euler characteristic are computed by  

12120 24, nnVnV +−== , .0122 nnnV +−=  (7) 

Michelsen et al. provided programming examples for counting 
2n , 

1n , and 
0n  of 

2D and 3D binary images [6]. Later Blasquez and Poraudeau gave a more efficient 
algorithm on 3D binary images by examining only half of a voxel’s neighbors and 
using binary decision diagrams [10]. Their method can also be applied to 2D images. 

In 2D, two random number sequences are mapped to x and y coordinates of the 
points in a square lattice of LL× . The double precision random numbers are 
multiplied by d and truncated to get an integer in [0, L). Grains (discs or squares) are 
attached to the points and their sizes grow gradually. Figure 1 shows a square grain. 
As the lattices are square, it is reasonable to use square grains. A long sequence is 
divided into k subsequences and the Minkowski functionals are computed on each 
subsequence. As a result, this approach reveals both global and local properties.  

 

Fig. 1. Square grain with edge length of 2r+1 

We consider a collection of N points whose x and y coordinates are generated from 
uniform, uncorrelated random number sequences. In the bulk limit, when the volume 
approaches infinity and the density ρ  is fixed, the averages 

Ni NV /  are given by 

[7]: 
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where 
NiV  denotes the average of the Minkowski functionals of the point ensemble 

with density ρ  and im  denotes the mean values of the Minkowski functionals of a 

single grain. 
By applying the normalized Minkowski functionals on a square lattice, and 

substituting the Minkowski functionals for a single square grain of edge length a, the 
theoretical values of point distribution of uniform, uncorrelated random number 
sequences can be derived as 
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where 2an ρ=  and A , U , χ , are the normalized Minkowski functionals 

( NVLNVULVA /,/,/ 2

2/1
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0 === χ ) of a square [7]. Figure 2 shows the Minkowski 

functional curves with various densities. As the density decreases, the spans of the 
curves increase. While mapping a fixed length subsequence of random numbers to a 
lattice, a larger lattice size L yields a lower density and smoother curves, but demands 
more computation. In computation practice, one can control the density to be around 
1% for a reasonable resolution.  
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Fig. 2. Minkowski functionals as a function of square grain length 

When computing the Minkowski valuations of 2D binary images, the equations (5) 
to (6) are used and the center of mass p0 and the mass tensor V0

2,0 are integrated on the 
pattern area, while the perimeter and curvature centroids p1 and p2, and perimeter 
tensor V1

2,0 are integrated on the pattern boundary [9]. An efficient algorithm is given 
by Zhang et al. [11].  

3   Measures of the Minkowski Functionals and Valuations 

As the grain size grows, the image will eventually cover the whole lattice. The grain 
size of the full coverage is related to the largest gap. The perimeter curve first 
increases and then decreases to zero due to most grains at smaller size are isolated and 
their growth mainly contributes to increasing perimeter. When the growth of grains 
reaches a certain size and the overlapping dominate the process, as a result, the 
perimeter curve starts to decrease and eventually drops to zero if periodic boundary 
conditions are applied. The Euler characteristic curve can be explained in a similar 
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way. Initially, all of the grains are isolated and the Euler characteristic is 1. As the 
grains grow and overlapping occurs, the Euler characteristic decreases. When most of 
the grains overlap, the structure is dominated by holes and thus the Euler 
characteristic drops to negative. When the grains continue to grow, the holes start to 
be filled out and finally the Euler characteristic is 0 when the full coverage is reached.  

Due to the discretization errors and the variations of random number generators, 
the experimental results may deviate from the theoretical values. To measure this 
difference, we compute the area between the two Minkowski functional curves using 
the trapezoid equation. Let )(rF be the theoretical curve and )(rFn

be the curve of a 

random number sequence, then the area is 
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where *r is the grain radius when the full coverage is reached for both curves.  
In addition, we measure the distances dP of the centroids of the area, perimeter, or 

Euler characteristic P from the image center C,  

.CP −=dP  (13) 

For a normalized square lattice with length 1.0, C is (0.5, 0.5).  
Another important property of the random number sequences is the isotropy. The 

isotropy X is measured by the ratio of the two eigenvalues, λ1 and λ2, of a Minkowski 
tensor,  
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We measure the ratios of the eigenvalues of the area and perimeter tensors. 

4   Random Number Generators 

The middle-square method for random number generation was firstly suggested by 
John von Neumann. It has proved to be a comparatively poor source of pseudo-
random numbers. The fundamental idea of the middle-square method is to take the 
square of the previous random integer and to extract the middle digits [2]. For 
example, one can take a four digit random integer 8653 and square it to get 74874409, 
and then take the middle 4 digits to create the next random integer of 8744. Most of 
the starting values will soon lead to a sequence with cycle of 6100, 2100, 4100, 8100, 
6100 … or degenerate to zero. With more digits, the period is larger and the quality is 
better.   

Linear Congruential Generator (LCG), 64 bit Linear Congruential Generator 
(LCG64), Multiplicative Lagged Fibonacci Generator (MLFG), Lagged Fibonacci 
Generator (LFG), and Combined Multiple Recursive Generator (CMRG) are well-
known “good” pseudo-random number generators provided by the SPRNG (Scalable 
Parallel Random Number Generators) library [12]. Parameterization is used in 
SPRNG library to generate parallel, independent random number sequences.  
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Quasi-random number sequences, also called low-discrepancy sequences, are 
designed to improve convergence rate of Monte Carlo integration. The sequences 
intend to provide high uniformity instead of randomness to achieve low discrepancy. 
The Halton, Faure’, and Sobol are popular quasi-random number generators [13].   

In this article, we study the Minkowski functionals of the pseudo-random number 
sequences generated by LCG, LCG64, LFG, MLFG, and CMRG provided by the 
SPRNG library and the middle-square generator as well as the Halton, Faure’, and 
Sobol quasi-random number sequences. For each of the pseudo- or quasi-random 
number generator, we generate 100 pairs of sequences with length 1,024,000. Each 
pair of these sequences is divided to 100 pairs of subsequences and mapped to the two 
axes of a square lattice of size 10241024×  to form a 2D binary image. Square grains 
are attached to the points. The growth is cut off at r equals 100. Periodic boundary 
conditions are used for all the cases. The Minkowski functional measures given in the 
last section are computed with the results given in Tables 1, 2, and 3.  

Table 1. Area bounded by the Minkowski functional curve from random number sequences and 
the theoretical uniform uncorrelated point distribution 

AD  UD  χD   

Mean Std Mean Std Mean Std 
Pseudo-random number sequences 

Middle-square  
6 digits 

60.0637 29.1301 57.8705 35.7068 26.0772 29.9295 

Middle-square  
8 digits 

80.3811 20.2021 45.9626 26.5424 41.1672 40.6423 

LCG 0.0122 0.0071 0.4052    0.0062 0.2946 0.0088 
LCG64 0.0122 0.0072 0.4055    0.0063 0.2947 0.0087 
LFG 0.0123 0.0072 0.4054    0.0063 0.2947 0.0088 
MLFG 0.0123 0.0072 0.4053 0.0063 0.2949 0.0088 
CMRG 0.0124 0.0072 0.4053    0.0063 0.2946 0.0088 

Quasi-random number sequences 
Sobol 0.4451 0.2704 1.7844 0.7816 0.8696 0.3007 
Halton 0.5408 0.2506 2.2789 0.8433 1.1447 0.3475 
Faure 1.1830 0.9434 3.6864 2.1378 1.5648 0.3856 

The middle-square generators have extreme large D  values, since degeneration 
occurs in many cases. The generators in SPRNG show very close means and standard 
deviations in Table 1 and demonstrate good match with theoretical values of the 
Minkowski functionals. Figure 3 shows the distribution of AD , UD , and χD  of the 

LCG samples.  
The values of quasi-random numbers vary dramatically, since their high uniformity 

and poor randomness by design. As a result, some obvious patterns can be observed 
in Fig. 4 for Sobol and Faure’ sequences. The averaged Minkowski functionals as a 
function of radius are plotted in Fig. 5 for the LCG, Sobol, Halton, and Faure’ 
sequences. When degeneration happens in the middle-square generator, the density 
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Fig. 3. Distributions of curve areas of the LCG sequences 

(a) LCG (b) Halton (c) Sobol (d) Faure’ 

Fig. 4. 2D images of paired sequences generated from pseudo- and quasi-random number 
generators 
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Fig. 5. Averaged Minkowski functionals as a function of the grain size 
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decreases and also causes a great deviation from the theoretical curve. The sequences 
such as Sobol and Halton with smaller gaps have their area values A grow faster and 
reach 1 (i.e., full coverage) at a smaller grain size, while the Faure’ sequences have 
large gaps and reach the full coverage slowly. The degenerated patterns of middle-
square reach their full coverage at a grain size greater than the cutoff radius 100. 

The means and standard deviations of the distance of the centroids from the image 
center and the eigenvalue ratios are listed in Tables 2 and 3, respectively. The SPRNG 
pseudo-random number generators demonstrate similar characteristics. The quasi-
random number generators yield rather different values due to their inherent patterns. 
The area and perimeter centroids of the quasi-random number generators are closer to 
the center with smaller variances, and the eigenvalue ratios of the quasi-random 
number sequences are smaller than pseudo-random numbers, which indicates better 
uniformity and isotropy.  

Table 2. Distances of centroids from the image center 

0dP  1dP  2dP   

Mean Std Mean Std Mean Std 
Pseudo-random number sequences 

LCG 0.0013 0.0006 0.0907 0.0215 0.0894 0.0185 
LCG64 0.0013 0.0006 0.0910 0.0223 0.0898 0.0191 
LFG 0.0013 0.0006 0.0907 0.0221 0.0894 0.0189 
MLFG 0.0013 0.0006 0.0910 0.0219 0.0898 0.0188 
CMRG 0.0013 0.0006 0.0908 0.0221 0.0897 0.0189 

Quasi-random number sequences 
Sobol 5.8681e-005 3.0018e-005 0.0589 0.0093 0.0622 0.0338 
Halton 2.3473e-004 1.5721e-004 0.0753 0.0174 0.1336 0.3001 
Faure 1.2252e-004 5.5186e-005 0.0465 0.0075 0.1911 0.3698 

Table 3. Eigenvalue ratios of mass and perimeter tensors 

0,2
0V

X  
0,2

1V
X   

Mean std Mean Std 
Pseudo-random number sequences 

LCG 0.0018 0.0012 0.0835 0.0382 
LCG64 0.0018 0.0012 0.0838 0.0383 
LFG 0.0018 0.0012 0.0835 0.0388 
MLFG 0.0018 0.0012 0.0837 0.0379 
CMRG 0.0018 0.0012 0.0841 0.0388 

Quasi-random number sequences 
Sobol 0.0002 0.0002 0.0096 0.0122 
Halton 0.0004 0.0003 0.0340 0.0331 
Faure 0.0001 0.0001 0.0055 0.0106 
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5   Correlation Identification 

RANDU is an infamous pseudo-random number generator that has been used for 
decades on IBM mainframes [14]. If we simply generate random number doublets to 
build 2D binary images, it yields similar Minkowski values to those of the SPRNG 
generators provided in Tables 1-3. However, if we generate triplets x,y,z from a 
sequence and constructed a pair of random sequences in which one sequence comes 
from the x, and the other from 6x-9y+z, all points fall into 15 lines in a stripe, as shown 
in Fig. 6(a), which indicates strong correlation [15]. In contrast, when a good random 
number generator is used, the points should fill in the stripe as shown in Fig. 6(b).  

We compute the Minkowski functionals of the 2D binary images created by 
RANDU and LCG and CMRG in SPRNG, for 100 sequences and plot their averages 
as a function of the grain size. One can easily observe the difference between 
RANDU and SPRNG generators in Fig. 7. The area between the Minkowski 
functional curve and x-axis in Fig. 7(a) is 11.26 for RANDU, and 17.0359 for LCG 
and CMRG.  

 
(a) RANDU 

 
(b) LCG 

Fig. 6. Images of the RANDU and LCG sequences generated from x and 6x-9y+z 
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Fig. 7. Averaged Minkowski functionals as a function of grain size for RANDU, LCG, and 
CMRG sequences generated from x and 6x-9y+z 

6   Conclusions and Discussions 

In this paper, we discussed the method of applying the Minkowski functionals and 
valuations to study random number sequences. Pairs of sequences are mapped to 2D 
lattices to form a binary image. Grains are attached to the points. We compute the 
Minkowski functionals and valuations as a function of the grain size. A close match 
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of the Minkowski functional curves with the theoretical curves of uniform 
uncorrelated point distribution indicates good randomness. The locations of the 
centroids of mass and perimeter, along with the ratios of mass and perimeter tensors 
give us some insight on the uniformity, symmetry, and isotropy of the patterns 
generated by random number sequences. Our examples given in this paper also 
showed that the Minkowski functionals are able to identify degenerated sequences, 
highly uniform sequences, and sequences with correlation. In summary, the 
Minkowski functionals and valuations can provide meaningful indication of the 
quality of random number sequences and are potential tools for testing new developed 
random number generators as a complementary to the existing statistical tests.  
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