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Abstract. The efficient use of multicore architectures for sparse matrix-
vector multiplication (SpMV) is currently an open challenge. One algo-
rithm which makes use of SpMV is the maximum likelihood expectation
maximization (MLEM) algorithm. When using MLEM for positron emis-
sion tomography (PET) image reconstruction, one requires a particularly
large matrix. We present a new storage scheme for this type of matrix
which cuts the memory requirements by half, compared to the widely-
used compressed sparse row format. For parallelization we combine the
two partitioning techniques recursive bisection and striping. Our results
show good load balancing and cache behavior. We also give speedup
measurements on various modern multicore systems.

1 Introduction

In contrast to computer tomography (CT), which aims at structural imaging,
positron emission tomography (PET) visualizes functional processes, by mea-
suring the distribution of a tracer consisting of radioisotopes injected into a pa-
tients body. Clinical PET scanners for example assist in tumor diagnosis. PET
research currently focuses on improving spatial resolution and sensitivity of the
technique.

A PET scanner consists of fixed detectors, usually arranged in a ring around
the subject to be analyzed. A positron-emitting radioisotope can be detected
indirectly, as positrons annihilate with electrons, creating two 511 keV gamma
photons traveling in opposite directions. When two detectors each record a pho-
ton within a certain time window, an annihilation event is assumed somewhere
along the line connecting the detectors. This line is called the line of response
(LOR). The number of detected events influences the quality of the measure-
ment, while the coverage of three-dimensional space of interest (field of view,
FOV) by LORs affects the achievable resolution. The resolution is usually bet-
ter at the center than at the edges of the field of view. The FOV is com-
monly divided into a three-dimensional grid, where each grid cell is called a
voxel.
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Fig. 1. Geometry of MADPET-II

The experimental small-animal scanner MADPET-II [8] was developed at the
Department of Nuclear Medicine. This scanner is able to resolve the issue of poor
spatial resolution by adding a second ring of detectors (see Fig. 1). This leads
to a quadratic increase of measurement data, and consequently, a significant
increase in computational demand for the post processing step, the 3D image
reconstruction.

Several algorithms can be used for reconstructing PET images. One is filtered
back-projection (FBP), which is based on an analytic solution of the Radon trans-
form. Other algorithms are based on iterative reconstruction such as the maximum
likelihood maximization (MLEM) algorithm. This algorithm usually outperforms
FBP in terms of image quality, but is more computationally intensive.

The huge memory requirements of MLEM come from fixed input data, de-
scribing the geometrical and physical properties of the scanner. This data is
arranged in a matrix which gives the probability of an event occurring in one
voxel being recorded by a given pair of detectors. This so-called system matrix is
sparse, since for voxels outside a given LOR, the detection probability is almost
certainly zero. The system matrix can be measured in a physical experiment,
or it can be computed from analytic models or by Monte Carlo simulation. The
simulation takes a number of physical effects into account, which influence the
trajectory and detection of the photons.

The MLEM algorithm is iterative meaning that it starts with an estimate of
the solution, which is then corrected in every iteration step. In each step, two
vector scaling operations and two sparse matrix-vector multiplications (SpMV
or sometimes SpMxV) are carried out. The latter operations are known for a
number of performance problems [3]. Amongst them are indirect referencing
and irregular access of the source vector as well as high load on the memory
subsystem created by the traversal of the matrix. We parallelize the MLEM
algorithm by splitting the SpMV operations into smaller ones. As target systems,
we have computer clusters using multicore processors in mind.
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2 Related Work

A comprehensive overview of iterative algorithms for image reconstruction in
general is given in [7]. Parallel algorithms for reconstructing both CT and PET
images are described in [5]. The article also provides an overview of feasible
acceleration techniques, and covers a broad range of parallel environments, from
networks of workstations, to peer-to-peer and grid computing.

During the 1990s, various approaches to parallelizing MLEM have been pro-
posed [1,2,6]. They exploit the symmetries in the scanner geometry and partition
the FOV and thus the image vector in a compatible way. All proposals are lim-
ited by the computational power available in the respective years. Thus, in all
the articles cited, image, measurement and system data is much smaller than in
our work.

Given future systems with accelerators, another method of dealing with the
huge memory requirements is computing the system matrix on the fly from a
simplified analytical model. In a previous work [4] we made use of this technique,
implementing the MLEM algorithm on the IBM Cell BE and using the fast ac-
celerator cores of the Cell processor. Currently, more work is done here to test
more accurate and faster analytical models [10].

3 The MLEM Algorithm

The MLEM algorithm was first proposed by Shepp and Vardi [11]. It can be
viewed as an implementation of the more general expectation-maximization
(EM) algorithm, applied to the problem of image reconstruction. In the fol-
lowing, we will give a short formal explanation of the algorithm.

The system matrix A = (aij) gives the probability of a photon emitted from
voxel j being recorded by detector pair i. Its number of columns m equals the
number of voxels, its n rows correspond to the n detector pairs or LORs. Let f
denote the image vector and g the measuring vector. Disregarding all stochastic
effects, we can state that the MLEM algorithm tries to approximate a solution
of the set of linear equations Af = g.

An MLEM iteration step is given by
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We use the superscript q to denote the iteration number. One step can be divided
into several parts. First, the forward projection (FP) is calculated:
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This equation describes a multiplication of the sparse matrix A with the image
vector f (q). The resulting vector h(q) shows what the measurement would look
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Fig. 2. Density plot and possible partitioning of matrix II

like for the approximate image vector f (q). Subsequently, the forward projection
is compared to the actual measurement and a correction factor is derived:
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h
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i

(3)

This step is called back projection (BP) and matches a sparse matrix-vector
multiplication, this time using the transposed matrix. Finally, the vector of cor-
rection factors and an additional scaling factor are applied to the image vector
(see Eq. 1). The scaling factor can of course be calculated before the iteration
starts.

4 Implementation

To come up with an efficient implementation of the MLEM algorithm, a fitting
storage format for the system matrix has to be created. Our two test matri-
ces, labeled I and II, describe the sensitivity of the small animal pet scanner
MADPET-II [8], which has 1152 detectors arranged in two rings (see Fig 1).
This results in n = 662976 lines of response or matrix rows. The field of view is
divided into m = 784000 voxels arranged in a 140 × 140 × 40 grid.

The test matrices were both generated by Monte Carlo simulation, but with
different parameters. Two million annihilation events per voxel were simulated.
Besides the information of the LOR, the simulation also returns the absorption
energy of a detection. Whether a given detection is counted for the resulting
matrix depends on a chosen energy threshold. The energy threshold for matrix
I was set to 400 keV, resulting in a 2.6 GB matrix, whereas the energy threshold
for matrix II was set to 200 keV, resulting in a 17.6 GB matrix. Matrix I has
0.12% non-zero entries, whereas the sparsity of matrix II is 0.84%.

To provide an impression of the matrix structure we include a grayscale plot
of matrix II in Fig. 2.

4.1 Matrix Storage Format

As the same number of events is simulated in every voxel, only the number of
successfully detected events needs to be stored in the matrix. Even in the longest
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running Monte Carlo simulation, the largest number of successfull recordings was
below 100, because a huge amount of generated photon pairs completely miss
any detector.

We use a modified version of the compressed sparse row format (CSR) to store
the matrix. Because of the low number of possible values of a matrix element,
an array to explicitly store the values is not needed. Let ãi denote the maximal
entry of each matrix row. In detail, the three arrays of our matrix format are
the following:

– column – An array whose length equals the total number of matrix entries.
It contains the column numbers of the entries. The elements are sorted into
sections according to their respective row number. Within the sections, the
elements are sorted in ascending order of their value.

– value – An array of length
∑

ãi +1. It contains indices of the array column.
The element value[j] points to the column number of a matrix element in
row i with a value of j − row[i] + 1.

– row – An array of length n + 1, containing indices of the array value. The
element row[i] points to the first non-zero element of row i.

As an example, we show how the following matrix is stored in our format.
⎛

⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 2 1 0
0 3 2 0 0
0 0 0 0 0
0 0 1 1 0

⎞

⎟⎟⎟⎟⎠
−→

row 0 1 3 6 6 7
value 0 4 6 7 7 8 9 11
column 0 1 2 3 1 3 2 2 1 2 3

By using this format, we can store a system matrix in about half the amount of
memory that would be required for the CSR format, due to the short length of
the array value.

It should be noted that the multiplication with the transposed matrix in the
second stage of the MLEM algorithm does not raise any additional issues. The
same matrix format can be used; only the type of access to the source and
destination vectors is interchanged. During BP the source vector is accessed
sequentially, whereas the destination vector is accessed according to the sparsity
pattern of the matrix.

4.2 Parallelization

Having cluster environments in mind, we use the message passing interface (MPI)
as a basis of our parallelization. On multicore architectures, MPI uses shared
memory for communication. Future work will evaluate the performance of a
hybrid parallelization, i.e. OpenMP within the nodes and MPI as an inter-node
communication model on computer clusters.

We use recursive bisection to parallelize the SpMV operations. Blocks of equal
numbers of non-zero matrix elements are created. We then assign each block to
one MPI process and each process is mapped to one processor core. Using this
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“owner computes” approach, each core calculates a small SpMV operation. The
partial results are gathered in an all-reduce operation. The blocks resulting from
recursively dividing matrix II three times are displayed in Fig. 2.

If the number of columns of one block is large, it can be further subdivided
into vertical stripes. In terms of strategies for cache optimization this is known
as one-dimensional blocking. The stripes are processed in sequential order by the
core processing the block. Creating stripes turns out to be especially beneficial
on machines with small last-level CPU cache, as will be shown in section 5.1.
Striping creates sections in the vector that is affected by the problem of irregular
access. The sections fit into the last-level cache. This applies to the source vector
of the multiplication during forward projection and the destination vector during
back projection.

Given this parallelization idea, a process only needs to load its assigned block
of the system matrix. Thus, the huge memory consumption of a large matrix
can be distributed to the nodes of a computer cluster or the nodes of a machine
with non-uniform memory access.

5 Experiments and Results

In this section we present results gained from tests on five machines with both
uniform (UMA) and non-uniform memory access (NUMA). We use Intel Com-
piler 10.1 with the option -O3 for compiling and OpenMPI 1.3 as MPI runtime
environment. In order to obtain reliable results we pin the MPI processes to
CPU cores using the tool taskset1. The importance of pinning will be shown
in section 5.3.

The first system consists of two Intel Xeon 5335 (Clovertown) processors at
2.6 GHz and 8 GB main memory. The Clovertown processor has four cores, with
two cores sharing a 4 MB L2 cache each. See Fig. 3 (a) for the design of this
UMA system that will be referred to as Clovertown.

The second system is equipped with two AMD Opteron 2352 (Barcelona)
processors at 2.1 GHz and 16 GB main memory. Each CPU has four cores, each
of which has a private L2 cache. All cores on a chip share a 2 MB L3 cache. This
NUMA machine will be referred to as Barcelona and is displayed in Fig. 3 (b).

The third system is a Sun Fire X4600 M2. It comprises 8 AMD Opteron 8218
(Santa Rosa) dual-core processors with 1 MB L2 cache per core. Each CPU has
access to 8GB local memory and three HyperTransport interfaces. We will refer
to this system as X4600. The precise system architecture can be found in [12].

The fourth system is made of four Intel Xeon X7460 and will be referred to as
Dunnington. The Dunnington is a hexa-core processor with a 16 MB L3 cache
shared by all cores. Furthermore, the cores are grouped into pairs with an
L2 cache of 3 MB per pair. The system is equipped with 32 GB of main memory.

The last system is an Intel Nehalem pre-production system. It consists of two
Intel Xeon X5570 running at 2,9 GHz and 12 GB DDR3 memory. The CPU has

1 http://userweb.kernel.org/∼kzak/util-linux-ng
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(a) Intel Clovertown system (b) AMD Barcelona system

Fig. 3. System architectures of test machines

four cores (HyperThreading disabled), an 8 MB L3 cache and two QPI interfaces.
This NUMA machine will be referred to as Nehalem.

Matrix I was used on Clovertown, Barcelona and Nehalem, whereas matrix II
was used on X4600 and Dunnington. This applies to all results presented below.
Also we do not report timings for the vector scaling operations in MLEM as
these operations need less time than inter-process communication.

5.1 Striping

Subdiving matrix blocks into vertical stripes proved beneficial on every system.
Most systems showed best performance with stripes of 200 000 columns in width.
This corresponds to sections of approximately 0.8 MB in the input vector (for-
ward projection) and output vector (back projection) of the SpMV operation.

The X4600 with its small L2 cache of 1 MB showed exceptional good speedup
with even smaller stripes. For example, the time per iteration step on a single
core dropped form 185 s to 52 s when using 16 vertical stripes. This corresponds
to a vector section length of 200 KB, which easily fits into the L2 cache.

5.2 Load Balancing

The bisection approach generally gives good load balancing, as can be seen in
Fig. 4. The chart displays the relative load imbalance, which we define as

Lrel =
max

i
|ti − tavg|
tavg

.

The load imbalance was measured in runs with eight processes and averaged
over five iteration steps. Fig. 4 also shows that striping improves load balancing,
especially on the X4600 system. We attribute the remaining load imbalance to
the fact that partitioning is based on the number of matrix elements per block.
A more sound fundament of block size would be the number of cache misses in
the source and destination vectors. But this approach would require dynamic
load balancing by repartitioning the large matrix after the first iteration steps,
which is inefficient.
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Lrel

Fig. 4. Relative load imbalance with striping switched off (black) and on (gray)

5.3 Core Pinning

The selection of CPU cores is essential for good speedup. The core numbers
in Fig. 5 correspond to those in Fig. 3. FP and BP denote forward and back
projection, respectively. Total time also encompasses the time needed for com-
municating the partial results. Taking the Clovertown system as an example it
can be seen, that pinning two processes to cores 0 and 2, which share a common
L2 cache, returns a speedup of only 1.1, whereas using cores 0 and 1, results in a
speedup of 1.8. On NUMA machines it is advantageous to use cores with sepa-
rate memory links (see Fig. 5 (b)). In test runs with two processes this improved
the speedup by about 25% on the Barcelona system.

N Cores FP BP Total Speed-
[s] [s] [s] up

1 0 3.75 3.89 7.64
2 0,2 3.12 3.58 6.76 1.1
2 0,1 2.11 2.13 4.30 1.8
4 0,2,4,6 1.28 1.31 2.99 2.6
4 0,1,4,5 0.83 0.85 1.95 3.9

(a) Clovertown

N Cores FP BP Total Speed-
[s] [s] [s] up

1 0 6.43 5.79 12.23
2 0,4 3.81 3.77 7.65 1.6
2 0,1 3.23 2.90 6.17 2.0
4 0,1,4,5 1.78 1.76 4.07 3.0
4 0,1,2,3 1.50 1.33 3.16 3.9

(b) Barcelona

Fig. 5. Different alternatives for process to core pinning

5.4 Speedup

Finally, we present speedup data for all five test machines. We used the best
pinning and optimal striping for these runs. Fig. 6 compares the speedup on
Clovertown, Barcelona and Nehalem, using the smaller matrix I. The column
labeled “Comm.” gives the communication time for forward (FP) and back
projection (BP), respectively. It can be seen, that Clovertown’s system archi-
tecture only scales well up to two processes. With more processes running, the
memory bandwidth of the front-side bus is saturated. The final speedup of 4.0
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N FP Comm. BP Comm. Total Speed-
[s] [s] [s] [s] [s] up

1 2.68 0.0 2.61 0.0 5.29
2 1.37 0.01 1.35 0.02 2.75 1.9
4 0.73 0.05 0.71 0.04 1.54 3.4
8 0.57 0.11 0.58 0.08 1.34 4.0

(a) Timings on Clovertown (b) Speedup on Clovertown
(black), Barcelona (darkgray)

and Nehalem (lightgray)

Fig. 6. Results for Clovertown, Nehalem and Barcelona, using matrix I

N FP Comm. BP Comm. Total Speed-
[s] [s] [s] [s] [s] up

1 26.67 0.0 25.66 0.0 52.33
2 13.28 0.13 12.81 0.12 26.34 2.0
4 6.66 0.22 6.43 0.23 13.54 3.9
8 3.38 0.22 3.29 0.21 7.10 7.4

16 2.34 0.63 2.33 0.61 5.91 8.9

(a) Timings on X4600 (b) Speedup on X4600 (black)
and Dunnington (gray)

Fig. 7. Results for X4600 and Dunnington, using matrix II

when using eight cores can easily be outperformed by Barcelona with a speedup
of 6.8.

The X4600 system scales reasonably well up to 8 cores, i.e. as long as we only
use one core per chip (Fig. 7 (a)). The final speedup is 8.9, whereas Dunnington
reaches a speedup of 12.3 on 16 cores.

6 Conclusion and Outlook

In this paper we applied two partitioning techniques, recursive bisection and
striping, to the SpMV operations in MLEM. The techniques provided good load
balancing and cache behavior. We also showed the importance of pinning MPI
processes to cores on multicore architectures. There is ongoing work to automate
this process [9]. Our approach reduces memory requirements of large matrices
by using data parallelism and distributing matrix blocks to processor cores. A
considerable amount of memory is also saved by our new matrix format. Future
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work will focus on improving cache usage, by reordering rows and columns of
the system matrix.
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