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Abstract. Research into large-scale distributed systems often relies on
the use of simulation frameworks in order to bypass the disadvantages of
performing experiments on real testbeds. SimGrid is such a framework,
that is widely used and mature. However, we have identified a scalability
problem in SimGrid’s network simulation layer that limits the number
of hosts one can incorporate in a simulation. For modeling large-scale
systems such as grids this is unfortunate, as the simulation of systems
with tens of thousands of hosts is required. This paper describes how we
have overcome this limitation through more efficient storage methods for
network topology and routing information. It also describes our use of
dynamic routing calculations as an alternative to the current SimGrid
method which relies on a static routing table. This reduces the memory
footprint of the network simulation layer significantly, at the cost of a
modest increase in the runtime of the simulation. We evaluate the effect
of our approach quantitatively in a number of experiments.
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1 Introduction

Distributed and parallel processing techniques are common today in a wide range
of applications. The increasing scale and complexity of distributed applications
and systems necessitates research into more scalable and efficient algorithms and
techniques for e.g. resource management and job scheduling. The evaluation of
new algorithms on real testbeds is however impeded by their limited flexibility,
controllability and availability. In addition, the costs for building and configuring
large-scale testbeds are high.

For this reason, researchers turn to simulation to evaluate new algorithms
and techniques, especially during the initial phases of development. A widely
used simulation toolkit in this regard is SimGrid [1]. SimGrid is a toolkit pro-
viding functions for the simulation of distributed applications in heterogeneous
distributed environments. It thereby targets platforms that range from a simple
network of workstations to large-scale computational grids.
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However, we have found SimGrid to have a scalability problem that impedes
the simulation of large-scale systems such as grids. Currently, the size of the
simulated networks is mainly limited by system memory. This memory limit is
reached at roughly 4000 hosts on a machine with 8 GB of memory. Although
scaling beyond this limit is possible through virtual memory, this results in ex-
tensive swapping which cripples the simulator’s performance. The large memory
requirements of SimGrid are due to the memory-intensive manner of storing the
routing information that is used in the simulated network. Another but less im-
portant problem is due to the structure of the platform (description) files that
describe the network topology in SimGrid. These files are larger than necessary,
resulting in significant startup costs of the simulation and decreased manage-
ability of those files.

This paper introduces methods for improving the scalability of the SimGrid
simulator. The network representation and the traffic routing functions in partic-
ular will be involved. SimGrid’s original route information storage and lookup
methods will be briefly discussed. Subsequently, different methods to improve
them will be described and evaluated using a proof of concept implementation.

2 Scalability Issues

This section gives an overview of the scalability issues that we have identified
in SimGrid. As mentioned before, the maximum attainable number of hosts in
a simulation is limited by the available memory in the system. We take a look
at the way SimGrid processes routing and topology information and how this
influences the memory usage of the simulator.

2.1 SimGrid Simulation Infrastructure

The low-level network simulation in SimGrid is performed by the SURF -module.
SURF provides the core functionalities to simulate a distributed system and is
also responsible for the parsing and processing of the platform files. Another
module, called SIMIX, is an intermediate layer between the low-level SURF -
module and the high-level MSG user API. SIMIX uses deployment (description)
files to describe a simulation scenario by assigning processes, which contain user-
defined logic, to hosts. A typical SimGrid simulation run will first process the
platform and deployment description files and then launch the simulation.

2.2 The Platform Files

SimGrid platform files are used to describe the topology of the network to be
simulated. These files contain an XML-based description of hosts, network links
and routing paths. The specified entities have properties like bandwidth or la-
tency for links, and processing power for hosts. Routing information is statically
specified by a list of links forming the path between each pair of hosts in the
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network. Note that the specified path from source to destination does not nec-
essarily constitute the shortest path, the route can consist of any chain of links.

A recent revision of the platform file XML schema [2] has made it possible
to specify a group of hosts using a cluster element. A cluster element in the
platform file contains a template host configuration for the cluster hosts, that
will be expanded to real hosts by SimGrid during the processing of the platform
file. This functionality reduces the amount of redundant information and thus
the size of the platform file. Specifying routes between clusters is also supported
and will result in the generation of routes between the hosts in the source and
destination clusters during the parsing process. This means that the simulation
code itself has no knowledge about clusters, and that is the cause of a first
inefficiency in the network model. Since the simulator only has knowledge about
hosts, it has to know the specific routes from and to every host in the network.

Although the inclusion of the cluster element has already led to a significant
reduction in the size of platform files, the need to fully specify the routes between
all clusters in the platform files still results in rather large files. Furthermore,
because SURF has no notion of clusters and routes between clusters, all the
individual hosts of a cluster and the associated routes between them need to be
expanded to an in-memory representation.

2.3 The Simulation Datastructures

During the parsing of the platform file, SURF stores the specified hosts and
routes, as lists of links in a xbt_dict_t1. When the parsing is finished, the
routing information is converted to one large two-dimensional array of size n×n
(with n the number of hosts) containing the network link lists. Each array-
element contains a list of pointers to the actual link data structures that make
up the route from one host to another. This array contains all topology and
routing information necessary to perform the simulation.

The use of the routing array has a substantial impact on the memory usage
of the simulator. A significant amount of information in the route array is re-
dundant, as the hosts of the same cluster have identical routes. Nevertheless, the
advantage of this method is that the lookup of a specific route is very fast as it
merely involves access to memory by direct indexing. The time and space com-
plexity of the route lookup algorithm are respectively O(1) and O(n2l) where n
is the number of hosts and l is the average number of links in a routing path.

3 Improving Scalability

As discussed before, the number of hosts in SimGrid is limited by memory. The
root of this problem lies in the way the routing information is kept in memory
and in the platform files. They both contain redundant routing information by
defining all paths between all hosts, even though a specification of the links from
1 xbt_dict_t: SimGrid uses its own dictionary data structure xbt_dict_t from the

XBT -module which associates a char* with any void* data.
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a host to its neighbours is sufficient to determine the routes between all pairs
of hosts. By eliminating this redundancy in the routing table, scalability should
improve significantly. We have implemented in SimGrid a number of routing
algorithms to calculate routes dynamically. This eliminates the need for the
extensive all-to-all routing table, reducing the memory footprint and the size of
the platform files. In this section, we present a number of routing algorithms
that calculate the required routing path at runtime. This consequently reduces
the amount of memory needed and the size of the platform files.

Table 1 contains formulas that approximate the routing tables’ memory usage
for the different algorithms, where n is the number of hosts, l the average number
of links in a path, m the average number of outgoing links per host, and c the
number of cached entries (the maximum is n).

3.1 Floyd’s Algorithm

We have implemented, in SimGrid, the Floyd-Warshall [3] algorithm for finding
the shortest path between two hosts in the network. It uses an adjacency matrix
that describes the network topology and it produces a predecessor matrix that
holds the destination hosts’ predecessor in the path between a pair of hosts, and
a cost matrix that contains the total cost of that path. The cost and predecessor
matrices are calculated before the start of the simulation itself. When this proce-
dure is completed, the list of links composing the route can be easily constructed
using the predecessor matrix.

The use of this algorithm results in a significant reduction in memory use.
The size of route information data now only depends on the number of hosts,
as opposed to the original algorithm where the length of the route path is an
important factor. This reduction comes at a cost however, as the algorithm
requires more time to initialize before the simulation starts. The route lookups
during the simulation, compared to the current SimGrid implementation, are
only slightly slower. The time and space complexity of the route initialization
algorithm are now O(n3) and O(n2) respectively. The lookup of the route link
list takes only O(l) where l is the average number of links in a routing path.

Table 1. Routing table memory usage approximation formula’s

Method Mem. Usage Formula Information stored in memory

Original n2l × sizeptr list of (pointers to) links per host pair
Floyd n2 × (sizedouble + sizeint + sizeptr) path cost, predecessor ID of path and

link-pointer per host pair
Dijkstra n × (sizeptr + sizeint) + nm host ID, adjacent host IDs and link-

pointers
Dijkstra
w. cache

n × (sizeptr + sizeint) + nm
+ nc × sizeint

host ID, adjacent host IDs, link-
pointers and cached predecessor IDs
of paths from source host
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3.2 Dijkstra Shortest Path Algorithm

A standard Dijkstra shortest path algorithm [4] can be used from within the
simulation itself, which eliminates the need for initialization of the routing table,
and it will further reduce the memory footprint. For the implementation of this
algorithm we have used the C++ Boost Graph Library (BGL) [5]. The algorithm
produces a predecessor list for all routing paths starting from one source host
to every other host in the network, based on a adjacency list. The reduction
in memory usage is due to the use of an adjacency list instead of a matrix to
represent the network as a graph.

The Dijkstra shortest path algorithm yields a significant reduction of the
memory needed. The space complexity of this algorithm is O(nm), with m the
average number of outgoing links per host. This algorithm results in a linear
instead of quadratic increase in memory usage as a function of the number of
hosts. The time complexity in this case adds up to O(n log n) for each route
lookup.

3.3 Dijkstra with Caching

The Dijkstra algorithm is a substantial improvement when it comes to memory
usage, but it has a large impact on runtime performance. To improve this situa-
tion, we have used a cache for the calculated predecessor array. All routes from
one source host to all other hosts are cached at the first lookup of a path from
the source host. The space complexity then becomes O(nm + cn), with m the
average outgoing links and c the cache size. Time complexity is still O(n log n)
for the first calculation of a route and O(log c) for all succeeding route lookups
from the cache, where c is the size of the cache. A C++ Standard Template
Library (STL) map [6], is used for the cache. The effect of this cache on actual
memory use and runtime performance depends on the simulated scenario.

3.4 Necessary Topology Changes

Implemention of the aforementioned algorithms requires some changes to Sim-
Grid, as SimGrid allows one to describe a route as a chain of links in the platform
files where the links do not necessary have real hosts (or other hops) in between
them. Our route calculation algorithms are not capable of working with such
a route description, because they calculate a routing path as a composition of
single links between hosts. The specification of the routes as a chain of links
does not allow one to derive the network topology graph, as two hosts in the
same cluster can be configured to have a completely different route to the same
destination.

Another problem is that SimGrid implicitly creates links when a cluster is
specified. To still be able to use the cluster declaration syntax in the platform
files, the generation of links for clusters in SURF was altered. SimGrid currently
only creates a backbone link in a cluster, connecting all of its hosts. The backbone
link should then be used in the platform files to link the cluster hosts to a gateway
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Fig. 1. New cluster network topology

connecting to the rest of the network. This way, all incoming and outgoing traffic
has to pass through the cluster’s gateway host. To perform a fair comparison
against the original SimGrid routing method, this network topology change is
also used with the original routing scheme. Figure 1 shows this new topology
scheme graphically.

4 Experiments

We compare the algorithms of the previous section to the original approach
used in SimGrid. We evaluate the differences in performance, memory usage
and disk space requirements. Our evaluation has been carried out with the
masterslave_forward example that comes with the SimGrid source code. This
example simulates a number of master hosts sending tasks to other slave hosts.
Platform files of various sized networks with their corresponding deployment
files were generated. The deployment files define 1 host for each cluster that
functions either as master or as a slave, and each master has 4 other slave hosts.
Each master distributes 20 “tasks” among its slaves. The tests are carried out
on a Linux 64-bit machine with 32 GB of RAM. The results are taken from one
testrun, as we haven’t found a considerable variance between different runs.

4.1 Platform File Size

As discussed before, the new routing scheme eliminates the need for a full spec-
ification of all routing paths through the network. Only the links between two
adjacent hosts need to be specified. Platform files were generated using a mod-
ified version of the Java PlatformGenerator from the “contributed section” of
the SimGrid source code repository. The platform generator was used to pro-
duce platform files that comply with the Barabási–Albert (BA) network topology
model [7]. The generated platform files are based on a given number of clusters
and a network topology fulfilling the BA-laws. Each cluster connects its hosts
through a gateway host to the rest of the network.
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Table 2. SimGrid platform file sizes for an increasing number of clusters in the network

Clusters Original Size New Size % of Original

10 44K 11 K 25.1 %
100 5.5 M 126 K 2.2%
200 22.2 M 254 K 1.1%
300 49.6 M 399 K 0.8%
400 95.7 M 527 K 0.5%
800 422.4 M 1.0 M 0.2%
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Fig. 2. SimGrid’s memory usage in relation to the number of hosts in the network
(logarithmic scale)

The second and third column in Table 2 show the platform file sizes respec-
tively for the original and the new platform file structure for different cluster
counts. The last column contains the percentage of the new against the original
file size. The introduction of a new platform file structure significantly reduces
the file size to a fraction of the original size, but it implies losing the ability to
describe an arbitrary topology (e.g. a hypergraph).

4.2 Memory Footprint

Memory usage with each of the algorithms is measured by monitoring the VmSize
value of the running process’ status file in the Linux proc file system. The VmSize
is the size of the total address space of a process (not including reserved regions)
[8]. The highest value that appeared in this file during a process run is used for
the evaluation.
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Figure 2 depicts SimGrid’s memory usage in relation to the number of hosts2

specified in the platform file on a logarithmic scale. It is clear that the memory
usage of the original SimGrid network representation increases very fast. For
example, 20 GB of memory is used at about 6000hosts. All other algorithms show
a significant reduction in memory usage, thus allowing for the simulation of larger
networks. The use of Floyd’s algorithm significantly reduces the rate of increase
and the two variants of Dijkstra’s algorithm do so even more. With Floyd’s
algorithm the simulation requires 20 GB at about 16000 hosts, an improvement
of more than 250 %. Furthermore, the Dijkstra algorithms are able to handle up
to 16000hosts with about 200 MB of memory.

4.3 Runtime Performance

To test the runtime performance of the algorithms, the startup time of the
simulator and the time it takes to calculate or lookup the routes has to be taken
into account. The size of the network affects the startup time for the orginal
scheme and Floyd’s algorithm, but it has no impact for the Dijkstra schemes.
However for the route lookup, the behavior is exactly the opposite. In that case,
Dijkstra takes significantly more time to perform the route calculation compared
to the other algorithms. Consequently, the amount of simulated traffic as well
as the size of the network will influence the performance.

As there is no standard benchmark for the simulator, we focus on the per-
formance of the platform initialization and the route lookups, instead of the
duration of a full simulation. We measure the time it takes to complete the
initialization functions of SimGrid, namely the MSG_create_environment and
MSG_launch_application functions for the parsing and processing of the plat-
form and deployment files respectively, and the amount of time spent looking up
a routing path. We have wrapped the route lookup in a function to be able to
profile accurately. This new function is called from the communicate function in
SURF. For the lookup time, we consider the total amount of time spent in the
wrapper function divided by the number of calls.

Initialization Performance. Table 3 clearly shows that both variants of Dijk-
stra’s algorithm result in the shortest initialization sequence. The Floyd algo-
rithm requires a significant amount of time to initialize the predecessor and cost
matrices. However, storing these on disk can remove this runtime cost for simula-
tions that reuse the same network topology. SimGrid’s original routing algorithm
is significantly slower in initialization than both Dijkstra variants, particularly
for increasing number of hosts.

2 In the tested development version of SimGrid the number of hosts appeared to be
doubled internally compared to the amount of hosts specified by the platform files,
resulting in a memory usage that is 4 times as high as it should be for the original
and the Floyd route algorithm. This explains the difference between Fig. 2 and the
formulas in Table 1.
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Table 3. Total time measurement of the platform and deployment file initialization

Clusters Hosts Dijkstra Dijkstra Floyd Original
w. cache SimGrid

10 280 74 ms 73 ms 772 ms 654 ms
50 1319 343 ms 353 ms 71874 ms 16555 ms
90 2646 806 ms 779 ms 608 s 68376 ms
150 4242 1215 ms 1213 ms 2578 s 183 s
180 5112 1483 ms 1435 ms 4450 s 267 s
250 6854 1907 ms 1968 ms 10867 s 515 s

Table 4. Average duration of a route lookup

Clusters Hosts Dijkstra Dijkstra Floyd Original
w. cache SimGrid

10 280 7629 µs 367 µs 3 µs 2 µs
50 1319 39403 µs 1672 µs 4 µs 2 µs
90 2646 91058 µs 3854 µs 4 µs 2 µs
150 4242 145 ms 6094 µs 5 µs 2 µs
180 5112 173 ms 7759 µs 5 µs 2 µs
250 6854 239 ms 9828 µs 5 µs 2 µs

Route Lookup Performance. For the route lookup performance, we have
measured the execution time of the route calculation function and compared
these timings in Table 4. The Floyd algorithm and the original routing algo-
rithm have a negligible route lookup cost, compared to the duration of other
calculations in the communicate function and the time required for solving Sim-
Grid’s analytical network model. Both Dijkstra algorithms perform much worse
in this regard. Still, the cache makes a significant difference. The efficiency of the
route cache depends on the scenario that is simulated, more specifically on the
number of network messages that are sent from the same host. We have mea-
sured an increase in average computation time per communication by a factor
of 500 for Dijkstra and by a factor of 25 for cached Dijkstra.

5 Future Work

Although our improvements are significant, still more efficient methods can be
developed. These may however require more fundamental changes to SimGrid.
A more advanced way of representing the network topology in memory can fur-
ther reduce the memory usage and also improve performance. If SimGrid has
a real notion of a clusters and its associated nodes, routing can be carried out
between clusters or cluster gateways, partially ignoring the nodes. In a hierar-
chical network representation, it would also be possible to use different routing
algorithms on different levels, each optimized for their specific network topology
or application.
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6 Conclusion

The simulation of large-scale distributed systems using SimGrid is currently
impeded by intensive memory usage of SimGrid’s network representation and
routing facilities. In addition, the platform files that describe large network con-
figurations require a significant amount of parsing time and disk space. An ad-
vantage however, is the low runtime cost of route lookups which is independent
of the number of hosts in the network.

In support of simulating large-scale systems with SimGrid, we have presented
a number of routing algorithms that considerably reduce the amount of memory
required for simulating the network. We have demonstrated that route calcula-
tion with Floyd’s routing algorithm significantly reduces the memory footprint.
Startup costs of the simulation however are heavily affected by the number of
hosts, while the route calculation is almost as fast as the original route lookup
method. The Dijkstra algorithm results in a major decrease in memory usage,
but induces a runtime cost for calculating the routes at each route lookup. In
order to mitigate this, a cached version of Dijkstra’s algorithm was introduced
that induces this cost only the first time a route is asked for, at the cost of
slightly higher use of memory. The introduction of these algorithms results in a
classical space-time tradeoff. In this regard, we have shown the implications for
each algorithm in terms of memory usage and runtime cost.
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