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Abstract. MPI is the de-facto standard for message passing in parallel
scientific applications. MPI-IO is a part of the MPI-2 specification defin-
ing file I/O operations in the MPI world. MPI-IO enables performance
optimizations for collective file I/O operations as it acts as a portability
layer between the application and the file system. The goal of this study
is to optimize collective file I/O operations. Three different algorithms for
performing collective I/O operations have been developed, implemented,
and evaluated on a PVFS2 file system and over NFS. The results indicate
that different algorithms promise the highest write bandwidth for differ-
ent number of processors, application settings and file systems, making
a one-size-fits-all solution inefficient.

1 Introduction

Many scientific applications utilizing parallel computers have to analyze tremen-
dous amounts of data. The main challenge for such applications is the limited
performance of individual magnetic hard drives, respectively of the entire I/O
subsystem attached to typical clusters. Compared to the performance of CPU,
memory and networking cards, a magnetic hard drive offers multiple orders of
magnitude of higher latencies and lower bandwidths. Operating Systems try to
hide the latency of file I/O operations by applying buffering and caching tech-
niques, which show significant performance improvements for certain (regular)
scenarios, but lead to performance degradation for applications having more
irregular 1/O patterns. In order to overcome the bandwidth limitations, most
systems combine multiple disks to a single logical unit in a RAID configura-
tion [I], such that files can be striped over multiple disks. The I/O performance
of an application will thus depend on characteristics of the storage device, the
file system utilized, the network interconnect used between compute nodes and
the storage as well as in-between the compute nodes, and the I/O pattern of the
applications.

The MPI 2 specification [2] includes routines for handling files in a parallel
application, leveraging existing concepts from MPI 1, such as process groups and
derived data-types. Among the most important features of the MPI I/O specifi-
cation is the notion of a file view, which defines the portion of a file accessible to
a particular process. Declaring a file view allows the MPI I/O implementation
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to pre-calculate offsets for the subsequent I/O operations from a process, de-
tect overlap or the lack of overlap between individual processes, and potentially
prefetch data items for read operations.

The MPI I/0 interfaces offer both blocking and non-blocking operations to
access a file, as well as the notion of individual vs. collective I/O operations.
The latter offers the possibility to concatenate data from multiple processes, po-
tentially avoiding a sequence of small, individual file requests, but post a single,
large 1/0 request instead. ROMIO [3], the most wide-spread implementation of
MPI I/O as of today, utilizes so-called two-phase collective I/O operations [4],
which combines the data and posts I/O requests similarly to what we described
in this paragraph. This approach has also been taken by some file systems to
accumulate multiple user-level requests [0l6], and has been extended in various
ways, e.g. to reduce the amount of meta-data required to be communicated be-
tween the processes by using derived data types [7] instead of lists of offsets.
In [8], an adaptive approach for parameters that are passed as file hints is pre-
sented to optimize the performance of collective I/O operations on the SX vector
computer with the GFS [9] file system. Yu et. al. exploit the file joining feature
of Lustre to optimized collective write operations [10].

In this paper we analyze the performance characteristics of three different
algorithms to implement collective write operations. Although the algorithms
here can easily be transformed and used for read operations as well, we stick
with write operations due to space limitations. The first algorithm is based on
the two phase collective I/O algorithm described above, having the option to
group internally the processes and thus vary the number of processes executing
file I/O operations. The second is a modification of the two-phase collective I/O
algorithm which does not optimize the file access to the hard drive, but the com-
munication occurring during the shuffle operation. Lastly, the third algorithm
avoids any communication between the processes and has each process handle
its own I/O requests. We explore the performance behavior of these algorithms
over a PVFS2 file system and over NFS, and compare them to the performance
numbers achieved using ROMIO.

The remainder of the paper is organized as follows: section [2] gives details to
the three algorithms explored in this paper. In section [3] we present the results
obtained over PVFS2 and NFS. Finally, in section @] we summarize this work
and outline the future work in this area.

2 Collective Write Algorithms

This section describes the algorithms that have been implemented within this
study. Two of the algorithm are derived from the two-phase collective I/O ap-
proach used in ROMIO, while the third algorithm acts similarly to individual I/O
routines. The routines have been implemented in a stand-alone library utilizing
the profiling interface of MPI to intercept the MPI Init and the MPI Finalize
functions. The library implements a subset of the MPI I/O routines defined in
the standard. In MPI Init the library reads a configuration file which specifies
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the algorithm to be used for collective I/O operations. This allows us to test
various algorithms without having to recompile the library.

For simplicity of low level I/O operations, a file I/O layer is introduced consist-
ing of four simple interfaces, namely open, read, write and close. Two different
implementations for the lower level I/O operations are available as of today. The
synchronous low level I/O functions use pwrite/pread while the asynchronous
version relies on the aio write/aio read [I1] operations. Both sets of routines
eliminate the need for seek operations, since the user has to provide explicitly
the offset into the file for every operation. Since our results did not show a signif-
icant impact on using the synchronous or asynchronous low-level I/O functions
for the platforms tested, we stick for the sake of simplicity to the synchronous
low-level I/O operations for the rest of the paper.

2.1 Dynamic Segmentation Algorithm with Multiple Writers

This algorithm follows mostly the two-phase collective I/O operations outlined
in the introduction. Its main goal is to combine data from multiple processes
in order to minimize the number of I/O operations presented to the file system
and avoid rewinds on the disk if possible. In a first step, all processes share
location information about the data to be written with each other. Using two
MPI_Allgather () operations, all processes share the list of file offsets and num-
ber of elements to be written with each other within the given collective write
operation. Thus, every process has the knowledge of the operations to be per-
formed by every other process. All processes can than sort these lists in an
ascending order of the file offsets. The lists are divided in cycles of operation,
where in each cycle, a fixed number of bytes are written to disk. A process can
calculate how many elements it has to contribute for the write operation in that
cycle. Using an extended version of the MPI_Gatherv() function, each process
sends its elements contributing in the current cycle to the writer process assigned
to him.

Note, that there can be more than one writer process, depending on the
number of writer processes defined in the configuration file. Each writer process
would handle the I/O for a certain number of processes. For example, for 24
processes and 4 writers, the processes would be grouped such that processes
0 — 5 will have the rank 0 as a writer, processes 6 — 11 process 6 as a writer,
processes 12 — 17 process 12 as a writer and so on. The writers would gather
all the information and data needed from the other processes in their group and
perform the actual write to disk.

Figure [I shows a case where three processes are writing collectively with
a cycle size of five bytes using a single writer process, namely rank zero. It
shows that the operation is performing sequential disk access under optimal
conditions with each process contributing varying amount of data in each cycle.
Furthermore, it highlights one of the important characteristics of this algorithm,
namely the fact, that a process might not be actively involved in every cycle of
this algorithm. Thus, while the algorithm optimizes the disk access operations,
the communication pattern deployed is suboptimal due to the fact that the data
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Cycle Size=35

Fig. 1. Sketch of the write dynamic segmentation algorithm with a single writer

contributed by a particular process varies per cycle and thus does not make use of
all communication channels in each cycle. The communication costs are affected
however positively when using multiple writers in this algorithm, since it leads
to the forming of smaller subgroups of process, which each execute internally a
gather operation. Thus, the congestion typically occurring at the root process of
the gather operation is avoided by having multiple root processes.

Since large write-all operations are typically executed in multiple cycles, one
of the open questions is whether the size of the temporary buffer used for con-
catenating data from multiple processes, in the following referred to as the cycle
buffer, shall be fixed and independent of the number of writer processes, or
whether it should scale with the number of writers. We will evaluate both op-
tions in the subsequent results section.

2.2 Static Segmentation Algorithm

In this algorithm, data is gathered from all processes at a root process which will
perform the low-level write operation. Data is written in fixed chunks, with the
size of the chunk being a parameter of the configuration file read in MPI Init.
In contrary to the previous algorithm, the root process gathers a fixed number
of bytes from all processes in each cycle. Thus, the algorithm does not necessarily
reduce the overall number of I/O requests presented to the file system, but reduces
the number of processes executing these I/O requests. Furthermore, due to the
fact that every process contributes in every cycle a constant amount of data, this
algorithm makes a better use of the communication resources in the cluster.

Figure [2 shows a scenario where three processes are writing collectively with
cycle buffer size of two bytes. It shows that the operation is performed in three
cycles. After the 1st cycle, the file pointer needs to be moved back for the next cy-
cle. Note, that the algorithm does not support as of today the notion of multiple
writers, i.e. one process is only allowed to execute I/O operations. Similarly to
the dynamic segmentation algorithm, the question on whether to scale the cycle
buffer with the number of processes or whether to keep it constant independently
of the number of process used, arises.
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Process 0 Process 1 Process 2
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Fig. 2. Sketch of the write static segmentation algorithm

At first sight, this algorithm seems counterintuitive to the common knowledge
which states, that file access operations are the most time consuming part of
collective I/O operations. However, many large scale installations provide huge
caches on the I/O nodes, which effectively decouple the compute cluster form the
storage devices, and thus show - from the application perspective - virtually no
sensitivity to irregular or strided file access patterns [12]. Furthermore, one of the
distinctive features of a technology currently on the rise, solid state hard drives
(SSD), is its insensitivity to irregular access in the file. For these two scenarios,
the static segmentation algorithm optimizes the second most time consuming
operation, namely the communication occurring during the shuffle step.

2.3 Individual Write

This algorithm avoids communication operations entirely and has each process
write its data individually to the hard drive. The MPI File write all opera-
tion exposes therefore the behavior that the application would face when us-
ing individual MPI File write operations instead of the collective version. The
main difference compared to the latter approach is that the collective operation
internally structures the I/O operations in cycles, similarly to the previous al-
gorithms, in order to overlap the I/O operations with the calculation of the file
offsets based on the file view and the merging of different segments.

Note, that this algorithm has also been extended by using a scheduling ap-
proach to control the number of processes concurrently performing 1/O opera-
tions, and thus limit the burden on meta-data servers for some file systems. Due
to space limitations we skip however this (fourth) algorithm.

3 Performance Evaluation

This section presents the performance evaluation of the three algorithms pre-
sented previously. For the dynamic segmentation algorithm using multiple writ-
ers, we explore the performance using 1, 2, 4, 8, 12, and 24 writers. We also
compare these algorithms to the performance of ROMIOs MPI File write all
routine. The ROMIO algorithm has been executed without passing any addi-
tional hints to the library, since the main goal of using ROMIOs implementation
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within this context is to have a baseline for the comparison of our algorithms.
The cluster used for these tests consists of 24 single process dual-core AMD
Opteron nodes and 5 dual-processor quad-core AMD Opteron nodes, providing
a total of 88 compute cores. The nodes are connected by a 4x InfiniBand network
interconnect. It has a parallel file system (PVFS2) mounted as ’/pvfs2’, which
utilizes 22 hard drives, each hard drive is located on a separate compute node.
The PVFS2 file system internally uses the Gigabit Ethernet network to commu-
nicate between the pvfs2-servers. The home file system on is NF'S mounted from
the front-end node.

We executed a simple benchmark in which processes collectively write
max size bytes of data for a given number of iterations to the file. The file
view is determined by another parameter (segment size), which allows to control
the size of the data portion ’owned’ by a process. To explain the correlation
between the two parameters, consider an example, where mazx size is set to 8
bytes, while segment size is set to 2 bytes. In a four process test case, a call to
MPI File write all having to write maz size bytes of data per process would
lead to process 0 having to write two bytes each at offsets (0,8,16,24), process
1 writing two bytes each at the offset (2,10,18,26) and so on. We measure the
execution time of the test required to write all data to file, and calculate the
bandwidth achieved by taking the size of the overall file created and overall ex-
ecution time. Each test has been executed three times, and we present here the
maximum bandwidth achieved through these runs.

3.1 Results Achieved over PVFS2

When writing over PVFS2, each process executes MPI_File_write_all opera-
tions writing 20MB of data per function call, writing all-in-all 1GB of data to
file. Note, that we did perform tests with even larger files, which lead however to
the same performance numbers that we present in this paper. Thus, the overall
file size for the 24 processes test cases is 24GB and for the 48 processes test cases
is 48 GB. Furthermore, we vary the segment size (2MB, 10MB, 20MB) and the
cycle buffer size (1MB, 10MB, 20MB) for our tests.

The results of the first set of tests executed over PVFS2 are shown in Fig. Bl
For both, the 24 and the 48 processes tests, the dynamic segmentation and
the static segmentation algorithm were using scaling cycle buffers, as explained
in the according subsections. Both graphs have in common, that the dynamic
segmentation algorithm with 24 writers and the individual algorithm achieve
the highest bandwidth. More generally, as the number of writers increase in
the dynamic segmentation algorithm, so does the bandwidth achieved for those
operations. The static-segmentation algorithm shows a bad performance in these
tests. ROMIO is achieving a reasonably good performance, although the two
top performing algorithms are significantly outperforming the default ROMIO
version.

All algorithms show increasing performance with increasing segment sizes.
The main reason for this is that the number of data blocks that have to be
sorted and potentially merged is decreasing, since the size of each data block is
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Fig. 3. Performance Comparison for 24 processes (left) and 48 processes (right) with
varying the segment size and keeping the cycle buffer size constant at 20MB

Table 1. Performance Breakdown (in seconds)of the Dynamic Segmentation and In-
dividual Algorithms over PVFS2 with 24 and 48 processes with segment size and cycle
buffer size being 20 MB

Gathering 1/0 Total

24 48 24 48 24 48
Dynamic 24 0.74 2.97 33.18 99.39 3491 104
Dynamic 12 1.8 5.24 46.62 232.28 50.08 239.63
Dynamic 1 25.88 49.46 285.14 755.75 325.74 837.83
Individual N/A N/A 39.8 86.49 39.8 86.49

increasing. ROMIO shows a significantly lower sensitivity to the segment size
than our algorithms, probably due to the usage of derived data types [7] instead
of lists of offsets for the according operations.

Comparing the performance of the 24 and 48 process test-cases, it is notable,
that the overall bandwidth of all algorithms drops when using two processes per
node. Tabel [l shows the performance breakdown of the dynamic segmentation
and individual algorithms. Both cases (24 and 48 processes) show that most of
the time is spent in I/O operations, and a smaller fraction is spent on the data
gathering operations. However, the data also indicates, that although the data
volume doubles between the two cases, both the I/O and the communication
costs increase more severely, e.g. by a factor of 2-5. Note that for the 48 processes
case, we were not able to get a result for the static segmentation algorithm due to
the enormous amount of temporary buffer required for that scenario (960MB).
With a fixed cycle buffer size, the algorithm could finished successfully, but
performed poorly overall.

In Fig. @ we analyze the effect of the cycle buffer size on the algorithms. For
this, we execute the same write tests keeping the segment size constant at 20MB.
The results show that increasing the cycle buffer size improves the performance
but not by a huge factor. The individual algorithm is an exception there, where
increasing the cycle buffer size does not necessarily yield a better performance.

Finally, table 2] shows the difference between fixed and scaling cycle buffer
sizes when using the dynamic segmentation algorithm. The results show that



192 M. Chaarawi, S. Chandok, and E. Gabriel

700 T T
M CBS=1MB
600 -~ CBS=10MB -~
O CBS=20MB

500 oo

s b

L

200 [

Bandwidth [MBytes/sec]

100 ==

Dynamic_24
Static
Individual

Dynamic_I
Dynamic_2
Dynamic_4
Dynamic_8

Dynamic_12

Fig. 4. Comparing the performance of some of the algorithms while varying the cycle
buffer size and keeping the segment size constant at 20MB

Table 2. Bandwidth comparison (MB/sec) of the Dynamic Segmentation algorithm
with Constant vs. scaling cycle buffer size of 20 MB and a segment size of 20 MB

24 procs 48 procs

constant scaling constant scaling
Dynamic 1 74.47 82.27  55.09  68.7
Dynamic 2 116.52 139.31 86.87 95.35
Dynamic 4 189.37 223.48 112.72 133.59
Dynamic 8 328.27 403.49 110.21 204.81
Dynamic 12 330.99 494.89 71.59 198.53
Dynamic 24 350.41 694.82 280.26 538.81

having each writer write the specified cycle buffer size in a cycle would be better
than dividing the cycle buffer size over all the writers in each cycle. The reason
would be that with the scaling cycle buffer size, the actual I/O is done with
larger sequential chunks of data as compared with small chunks of the fixed
cycle buffer size. Another common observation between the two approaches is
that increasing the number of writers over PVFS2 still provides better results.

3.2 Results Achieved over NFS

Although NFS is considered to not be well suited for parallel I/0O, it is as of today
the most wide spread file system on small and medium size clusters. End-users
experimenting with MPI I/O over NFS should not see a performance degrada-
tion compared to sequential POSIX I/O even on this file system, since this will
discourage them from using MPI I/O in their codes.

In order to keep the execution time of our tests within a reasonable time
frame, we set each process to write only 100MB of data. Tests have been executed
with various cycle buffer size (1MB, 10MB, 20MB), and keep the segment size
constant at 2MB.

The results that were gathered over NFS show significant deviations from the
PVFS2 results. For the dynamic segmentation algorithm, the lower the number
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Fig. 5. Performance Comparison for 24 processes (left) and 48 processes (right) with
varying the cycle buffer size and keeping the segment size constant at 2MB

of writers, the better the performance. The static segmentation algorithm using
scaling cycle buffers performs well in that case, compared to the other algorithms.
Most algorithms that we tested outperformed ROMIOs version in this setting.
Since the cycle buffer size is not relevant for ROMIO, the graph shows only one
bar for ROMIO. Independent of the algorithm used, the user still would observe
a performance hit when using MPI I/O over NFS compared to the raw write
performance of a single hard drive ( 35 MB/s sustained).

4 Summary

In this paper, we described three algorithms for MPI-IO collective write opera-
tions, the dynamic segmentation, static segmentation, and individual algorithms.
The testing was done over two file systems, PVFS2 and NFS. The results show
that there is a large room for optimizations within the collective I/O operations.
The performance of the algorithms depended on the file system, number of pro-
cesses and the file view (segment size) utilized by the processes, and lead in fact
to different algorithms delivering the best performance.

Future work in this area includes further extending some of the algorithms
described above, e.g. including the ability to have multiple writers for the static
segmentation algorithms, and extend the individual algorithms by sophisticated
scheduling approaches in between the processes to limit the burden on meta-data
servers. Furthermore, we plan to evaluate the performance of the algorithms on
a wide variety of hardware and software configurations in collaboration with
various institutions, including a RAID of SSD disks. Preliminary tests on a
Lustre file system have already been performed and revealed again a highly
different behavior of the algorithms. The long term goal of the project is to
develop a flexible module for collective I/O operations that can easily adjust
to various hardware and software configurations and choose the right algorithm
dynamically, using dynamic runtime adaption techniques.
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