
Balancing Scientist Needs and Volunteer

Preferences in Volunteer Computing Using
Constraint Optimization

James Atlas, Trilce Estrada, Keith Decker, and Michela Taufer

University of Delaware, Newark, DE 19716 U.S.A.
{atlas,estrada,decker,taufer}@cis.udel.edu

Abstract. BOINC is a middleware for Volunteer Computing. In BOINC
projects, heterogeneous resources distributed across the Internet are used
for large-scale scientific simulations. The large need for resources in
BOINC projects often competes with volunteer preferences: volunteers
can impose limits on the use of their idle resources. Most of the time,
maximum project performance can be achieved only when volunteer pref-
erences are neglected.

To address this problem, we propose a novel optimization procedure
based on constraint optimization techniques that actively allocates vol-
unteer resources to improve project throughput and, at the same time,
aims to preserve volunteer preferences. We show the increase in project
throughput obtained with our approach and discuss the trade-off be-
tween volunteer preferences and project throughput.
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1 Introduction

Volunteer Computing (VC) is a form of distributed computing in which ordinary
people (i.e., volunteers) volunteer processing and storage resources to computing
projects. BOINC is a well-known middleware for VC [1] supporting scientific
computing projects (e.g., physics, biology, and medicine). The main strength
of BOINC systems is its capability to provide scientists with PetaFLOPs of
computing power at low cost. The VC community powered by BOINC currently
counts approximately 50 projects and 580 000 volunteer computers supplying an
average of 1.2 PetaFLOPs to these projects.

VC resources increasingly include diverse platforms such as video game con-
soles (Playstations) and graphics processing units (GPUs). Some VC projects are
able to customize their code to benefit from performance features of these plat-
forms. This creates an instance of a general resource allocation problem where
jobs have disparate performance profiles depending on the platform of execution.
In addition, volunteers can specify resource allocation preferences over a subset
of VC projects that they want to participate in, essentially constraining the
possible jobs the server can allocate to a volunteer host and ultimately hinders
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the maximum throughput of projects. On the other hand, ignoring volunteer’s
preferences for performance sake can upset the donors who can withdraw their
resources. Server scheduling policies decide which jobs to assign to volunteer
hosts given a set of unallocated jobs and volunteer preferences. Ideally these
policies should optimize allocation of jobs across heterogeneous volunteer re-
sources and, at the same time, preserve volunteer preferences in the best way
and with the highest performance. This task is made more challenging by the
increasing heterogeneity of VC systems.

To address this challenge, we propose a novel optimization procedure that
actively allocates volunteer resources to improve project throughput and pre-
serve volunteer preferences. Our optimization procedure is based on constraint
optimization techniques (COP) and provides a robust framework for maximiz-
ing the contributions of diverse resources. We evaluate our approach against
the current, most advanced allocation strategies of BOINC using EmBOINC,
a full-scale emulation of the BOINC platform using realistic trace populations
of volunteer hosts (including heterogeneity, churn, availability, reliability). This
paper shows the increase in project throughput obtained with our approach
and discusses the trade-off between volunteer preferences and project
throughput.

This paper is organized as follows: Section 2 presents a short overview of
important background concepts such as VC, BOINC, our emulation of BOINC
projects, and COP. In Section 3 we introduce our optimization procedure. Sec-
tion 4 compares our approach with the current practice scheduling policies of
BOINC. Section 5 concludes the paper and presents some future work.

2 Background and Related Work

2.1 Volunteer Computing

Volunteer Computing (VC) projects employ computing resources (e.g., desktops,
notebooks, and servers) owned by ordinary people and connected to the Internet.
Traditionally, VC projects target large search problems in science and, therefore,
generate large sets of jobs that are distributed across VC resources. Replication
of jobs is used to address the volatility of these systems as well as other issues
like malicious attacks, hardware malfunctions, or software modifications that
ultimately affect the reliability of results. Replicas of jobs (job instances) are
distributed to different VC resources (hosts) that execute them. When finished,
the hosts send their results to the project server, which collects the results and
distinguishes between successful and unsuccessful results. Unsuccessful results
are those that either are erroneous or are returned too late, i.e., timed-out.

2.2 BOINC

BOINC (Berkeley Open Infrastructure for Network Computing) [1] is an open-
source system that harnesses the computing power and storage capacity of thou-
sands or millions of PCs owned by volunteers for scientific simulations. The
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computing resources available to a BOINC project are highly diverse: the hosts
differ by orders of magnitude in their processor speed, available RAM, disk space,
and network connection speed. Recently, the heterogeneity of BOINC platforms
has been enriched by the adding of GPUs and Playstations. The BOINC model
involves projects and volunteers. Projects are organizations (typically academic
research groups) that need computing power. Projects are independent and have
different resource requirements. Volunteers participate by running the BOINC
client software on their computers (hosts). Volunteers can attach their hosts
to one or multiple projects (preferred projects). When a BOINC client is at-
tached to a project, it periodically issues a request to the project’s server. The
request includes a description of the host and its current workload, descriptions
of recently-completed jobs, and a request for new jobs based on the volunteer’s
preferences. The reply from the server may contain a set of new jobs. Multi-
ple job results may be returned; this reduces the rate of scheduler requests and
accommodates clients that are disconnected from the Internet for long periods.

2.3 Scheduling in BOINC

Initially BOINC scheduling policies relied on greedy and naive policies. Recently,
more sophisticated server-side scheduling policies have been implemented in sev-
eral BOINC projects. Currently, World Community Grid has a number of criteria
for job assignment [2], based on host and job diversity (e.g., size of the job and
speed of the host relative to an estimated statistical distribution, disk and mem-
ory requirements for the job to be completed, homogeneous redundancy [3] and
host error rate). A scoring-based scheduling policy uses a linear combination of
these terms to select the best set of jobs for a given host. Projects can adjust the
weights of these terms, or they can replace the scoring function entirely. None
of these policies search for trade-off between volunteer preferences and project
requirements.

2.4 Emulating BOINC

The scheduling policies embedded in the BOINC server have a large impact on
the project throughput and other performance metrics. Unfortunately, it is diffi-
cult (if not impossible) to do controlled performance experiments in the context
of a large VC project because there are many factors that cannot be controlled
and because poorly-performing mechanisms can waste volunteer resources. How-
ever, exploring new policies can be done in simulated environments, where it is
possible to test a wider range of hypotheses in a shorter period of time with-
out affecting the BOINC community. To evaluate our scheduling approach we
use EmBOINC (Emulator of BOINC Projects), a trace-driven emulator that
models heterogeneous hosts and their interaction with a real BOINC server [4].
By plugging into a BOINC server, EmBOINC triggers the server’s daemons to
generate and distribute jobs to the EmBOINC hosts. EmBOINC uses statistical
information obtained from real BOINC traces to characterize volatile, heteroge-
neous, and error-prone hosts. As it occurs in real BOINC projects, EmBOINC
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can emulate different projects running simultaneously. Projects can share the
simulated hosts partially or completely. For every project, the associated hosts
can have different levels of heterogeneity, errors, availability, and reliability. Us-
ing EmBOINC, different patterns for job generations as well as different policies
for job distribution and validation can be studied.

2.5 Constraint Optimization

Many historical problems in the AI community can be transformed into Con-
straint Satisfaction Problems (CSP). Early domains for constraint satisfaction
problems included job shop scheduling [5] and resource allocation [6]. Many of
these domains involve overly constrained problems that are difficult or impossible
to satisfy for every constraint. Recent approaches to solving problems in these
domains rely on optimization techniques that map constraints into multi-valued
utility functions. Instead of finding an assignment that satisfies all constraints,
these approaches find an assignment that produces a high level of global utility.
A typical constraint optimization problem (COP) begins with a constraint graph
mapping of a problem. The COP mapping is defined as a set of n variables and
m constraints producing the tuple < X, D, U > where:

– X = {x1,..,xn} is a set of variables, each one assigned to a unique agent
– D = {d1,..,dn} is a set of finite domains for each variable
– U = {u1,..,um} is a set of utility functions such that each function involves a

subset of variables in X and defines a utility for each combination of values
among these variables

An optimal solution to a COP instance consists of an assignment of values in
D to X such that the sum of utilities in U is maximal. An example COP in-
stance for the standard graph coloring problem with weighted utilities is shown in
Figure 1.

Fig. 1. COP Example: Simple graph coloring problem with utility functions. Coloring
shown is optimal for this problem, and utility values are next to the constraints.

3 Methodology

The idea behind our approach is that we can increase throughput for BOINC
projects by intelligently coordinating schedules for volunteers. To achieve this, we
develop a constraint optimization (COP) mapping that pursues high throughput
while trying to adhere to the volunteer’s preferences.



Balancing Scientist Needs and Volunteer Preferences in VC 147

Mapping
algorithm

Optimization
algorithm

BOINC
DB

BOINC

Input
factors 

Previous allocation 
schedules and 

input factors 

Results Jobs

Constraint 
graph 

Allocation
schedules

Fig. 2. Overview of our constraint optimization approach

3.1 Approach Overview

In Figure 2 we show the different components of our solution to optimize BOINC
schedules. The process can be run continuously in a real-time environment be-
cause it only interacts with the BOINC server through its database. Thus, the
flow through the diagram can be considered a cycle, beginning with the input
factors and ending with an update to the BOINC database. The input factors
are passed to the mapping layer (mapping application) to convert the actual
BOINC scheduling data and parameters into a constraint graph. The constraint
graph is used as a general representation for a COP and is passed into the op-
timization algorithm. The optimization algorithm determines a new containing
allocation schedules for each volunteer’s resources to the BOINC projects. These
allocation schedules are then updated in the database and are used to determine
which jobs to return when a volunteer requests new work.

3.2 Input Factors

The first step in our approach is to define input factors that we will consider
for the optimization. The value of each factor directly affects the outcome of the
optimization procedure. A list of these factors and the actor responsible for pro-
viding their value appears in Table 1. In addition to these definable factors, input
values are also derived from the BOINC database about volunteer resources (e.g.,
estimated flops) and project characteristics (e.g., GPU/coprocessor support).

3.3 Mapping BOINC Schedules to COP

The next step is to map the input factors into a coherent problem representation.
We use a constraint optimization representation, so we will provide a mapping
from the input factors to a constraint graph. A constraint graph contains vari-
ables as nodes and constraints as edges. We consider two types of variable nodes:

Allocation Schedule (AS) represents the allocated volunteer schedule. The
AS factor listed earlier determines the starting value for this variable. Possi-
ble variable assignments represent new allocation schedules for the volunteer.
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Table 1. Input factors

ID Factor Actor Description

VP Volunteer Pref-
erences

Volunteer Set of projects preferences for a volunteer.
Volunteers assign 1 to preferred projects and
0 otherwise.

PTN Project
Throughput
Need

Scientist A target number of results returned per
project per day. Specified in GFLOPS/s or
by job deadline.

AS Allocation
Schedule

BOINC-COP The specific allocation of volunteer resources
to different projects. The current set of allo-
cation schedules is input and a new set of
allocation schedules is output. Percent per
project per volunteer.

TvP Throughput vs.
Preference

Scientist A weight between 0 and 1 for favoring project
throughput over volunteer preferences, where
0 means full matching of volunteer prefer-
ences and 1 complete ignore.

Project Throughput Need (PTN) represents a level between 0 and 1 to
which the project needs additional volunteer resources. In relation to the
TN factor listed earlier, a value of 1 means that the project needs additional
resources and is currently short of its target. A value of 0 means that the
project has no use for additional resources and has already met its through-
put target. A value in between means that a project has met its throughput
target but could use additional resources.

Each volunteer has one AS variable and each project has one PTN variable.
We now create binary constraints between each volunteer (AS variable) and ev-
ery project (PTN variable) the volunteer is willing to work for. This constraint
returns a utility value that represents the utility of a volunteer’s current alloca-
tion schedule for a given project’s level of throughput need. The value of this
constraint, U(N, M) for project N and volunteer M is:

U(N, M) = PN (ASM ) · PTNN · CM (N)
·(WAT + (1 − WAT ) · V PM (N)) (1)

Where:

– PN (ASM ) is the percent allocated to project N in the schedule of M
– PTNN is the level of throughput need for project N (between 0 and 1)
– CM (N) is the contribution of volunteer M to project N in GFLOP/s
– WAT is the weight for optimizing project throughput (between 0 and 1)
– V PM (N) is volunteer M ’s preference for project N (between 0 and 1)

These variables and constraints form the constraint graph representation of our
original input factors. We now take this general COP representation and apply
our optimization algorithm to find a high utility scheduling policy.
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3.4 Optimization Algorithm

Our optimization algorithm takes as input the constraint graph formed in the
previous section, and solves for a new scheduling policy containing allocations
that optimize each volunteer’s resources to the BOINC projects. Our algorithm
is a modified version of the stochastic gain algorithm described in [7]. We add
support for derived variables and random gain delays. The following steps are
performed in parallel for each variable:

1. Get max local gain (best schedule for current state of PTN variables)
2. With probability p, change to max assignment (new value for AS variable;

setting p too high can prevent full convergence)
3. Derive new values from neighbors (for PTN variables from all schedules)

These three local search steps are performed for a number of cycles; at a specified
maximum amount of time the algorithm is terminated and the best utility as-
signment encountered so far is chosen. The algorithm converges with low enough
p. We implemented a delay in number of cycles between changes to the same
AS variable to also help with convergence. The algorithm can scale to tens of
thousands of variables. If we require optimization of larger sets of volunteers,
we can pre-process the set and cluster volunteers into groups that share simi-
lar preferences and resource contribution characteristics. Then we simply treat
each group as a super-volunteer with one volunteer variable which represents an
identical allocation schedule assigned to all volunteers in the group.

3.5 Integration with BOINC Server

The output from the optimization algorithm is a set of allocation schedules for
each volunteer. We store these allocation schedules in the BOINC database.
Modifying the BOINC server to use our allocation schedules is easily done. The
BOINC scheduler uses a scoring mechanism to handle each request for work
from a volunteer. Each unassigned job receives a score for possible assignment
to the requesting volunteer. The highest scoring set of jobs that fill the amount
of time requested by the volunteer are sent. To integrate our allocation schedules
we simply add a value to the score if the job matches the volunteer’s allocation
schedule. The schedule contains a number between 0 and 1 for each project
for this volunteer. We generate a random number between 0 and 1 and if it is
less than the schedule allocation number than that job receives a higher score.
Thus, over time the allocation of jobs will match the percentages specified in the
schedule. Typically the optimization process, run in parallel with the BOINC
scheduler, took less than one minute to complete. Large systems can tune the
frequency of optimization, or obtain faster, approximate optimizations.

4 Evaluation

To evaluate our approach, we use EmBOINC and consider different scenarios
matching the behavior of real BOINC projects.
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4.1 Performance Metrics

With EmBOINC it is possible to conduct extensive experiments targeting dif-
ferent performance metrics. We measure the following metrics:

Throughput-based metrics include project throughput in terms of total re-
sults returned to the scientist or results returned per day.

Preference metrics count the total number of jobs executed by volunteers for
preferred and non-preferred projects.

Deadline-based metrics count the number of job results that completed prior
to the deadline given by the scientist.

4.2 Scenarios

We tested our approach in two orthogonal scenarios with respect to the way jobs
are generated. We considered three projects running simultaneously.

Scenario 1. In this scenario we tested the ability of our solution to optimize
throughput with uniform generation of jobs. Project 1 (uses only CPU) and
3 (uses CPU or GPU) were given a target of 20% of the overall through-
put each. Project 2 (uses only CPU) targeted 60% of the throughput. The
scenario generated 4000 jobs for Projects 1 and 3 and 12000 for Project
2. This scenario is typical for projects without deadlines like SETI@Home
(http://setiathome.berkeley.edu).

Scenario 2. In this scenario we tested the ability of our solution to optimize
throughput with irregular generation of jobs. For Project 2 we randomly
injected 8 batches of 1500 jobs over 25 days, with a 10 day deadline for
each batch. For Projects 1 and 3 we kept a uniform generation of 4000 jobs
each. This scenario is similar to the real-world case in Critical Assessment
of techniques for protein Structure Prediction (CASP). During the biennial
CASP competition (http://predictioncenter.org/), new targets (amino acid
sequences) are released to the participants almost every day with a deadline
of 15 days for the target 3D prediction. Projects such as Predictor@Home
and Rosetta@Home belong to this class of scenarios.

We ran our simulations using a fixed amount of simulated time (25 days). We
used a base set of 500 volunteers, of which 20% have GPUs. Each volunteer
randomly chose 1 or 2 preferred projects of the 3 possible. All other host char-
acteristics (e.g., CPU speed, memory) were randomly generated based on trace
data from real-world BOINC projects.

4.3 Results

Figure 3(a) shows total throughput (number of results) for the three projects in
Scenario 1 using BOINC and different levels of TvP for our constraint optimiza-
tion (COP) approach. A low TvP means closer matching to volunteer preferences,
where TvP equal to zero means perfect matching. The gray bar is jobs executed
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Fig. 3. Throughput (number of results) for the two different scenarios

by volunteers for their preferred projects, and the white bar is jobs executed for
non-preferred projects. If we fully comply with volunteer preferences (TvP=0),
our system has the same performance as BOINC. As we increase the TvP fac-
tor, we increase the total throughput of the system, but we diverge from volunteer
preferences. A complete violation of volunteer preferences is not needed to achieve
high levels of throughput, as TvP setting of 0.25 already achieves higher through-
put than BOINC (+12%). Figure 3(b) shows the same metric for the project with
deadlines in Scenario 2. In this scenario, batches of jobs are randomly injected,
with a 10 day deadline for each batch. Throughput is the number of results for
Project 2 returned to the BOINC server before their deadline. As in Scenario 1, the
gray bar is jobs executed by volunteers for their preferred projects, and the white
bar is jobs executed for non-preferred projects. If we fully comply with volunteer
preferences (TvP=0), our system performs slightly better than BOINC (+7.4%).
As we increase the TvP factor, the throughput increases significantly. Again, we
do not need to completely violate the volunteer preferences; with a TvP setting
of 0.25 we gain 39.6% throughput. Increasing the TvP factor allows our system
to re-allocate volunteer resources to jobs with upcoming deadlines. Note that the
percentage of jobs performed for non-preferred projects is minimal (1.6%).

Overall, we see that our approach increases throughput for both uniform and
irregular job generation scenarios. Increasing the TvP factor allows us to achieve
higher throughput at a cost of making volunteers execute jobs for non-preferred
projects. A TvP trade-off of 0.25 provides maximum throughput with minimum
volunteer preference violation. The reason for increase in total throughput is not
due to additional idle cycles (we had the same resource idle time for the runs); it is
because we use the resources more efficiently. For both approaches we made sure
that there were new jobs available for every volunteer request. The results were val-
idated by repeating each simulation three times with the same observed behavior.

5 Conclusions and Future Work

We presented a novel optimization procedure based on constraint optimiza-
tion techniques that actively allocates volunteer resources to improve project
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throughput and, at the same time, aims to preserve volunteer preferences. We
show two scenarios that exhibit increased project throughput (up to 39.6%) for
a minimal trade-off in execution of jobs for non-preferred projects. Our results
show that it is possible to balance the needs of scientists with the preferences of
volunteers in VC projects. In the future, we intend to extend our approach to
optimize credit given to volunteers. Currently, volunteer credit is based on the
number of FLOPS executed by the volunteer. However, in some scenarios scien-
tists may want to assign greater credit per FLOP for one project than another.
In this case the volunteer would want to optimize the amount of credit they
earn. This is similar to scenarios in grid and cloud computing, and we intend to
examine how our approach can be applied to these related problems.
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