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Abstract. Consider CRT-RSA with N = pq, q < p < 2q, public en-
cryption exponent e and private decryption exponents dp, dq. Jochemsz
and May (Crypto 2007) presented that CRT-RSA is weak when dp, dq

are smaller than N0.073 . As a follow-up work of that paper, we study the
partial key exposure attack on CRT-RSA when some Most Significant
Bits (MSBs) of dp, dq are exposed. Further, better results are obtained
when a few MSBs of p (or q) are available too. We present theoretical
results as well as experimental evidences to justify our claim. We also
analyze the case when the decryption exponents are of different bit sizes
and it is shown that CRT-RSA is more insecure in this case (than the
case of dp, dq having the same bit size) considering the total bit size of
dp, dq.
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1 Introduction

RSA [20] is one of the most popular cryptosystems in the history of this subject.
Let us first briefly describe the idea of RSA:

– primes p, q, (generally the primes are considered to be of same bit size, i.e.,
q < p < 2q);

– N = pq, φ(N) = (p − 1)(q − 1);
– e, d are such that ed = 1 + kφ(N), k ≥ 1;
– N, e are publicly available and the plaintext M ∈ ZN is encrypted as C ≡

M e mod N ;
– the secret key d is required to decrypt the ciphertext C ∈ ZN as M ≡

Cd mod N .

The study of RSA is one of the most attractive areas in cryptology research as
evident from many excellent works (one may refer [4,14,19] and the references
therein for detailed information).

Speeding up RSA encryption and decryption is of serious interest and for
large N , both e, d cannot be small at the same time. For fast encryption, it is
possible to use smaller e and e as small as 216 + 1 is widely believed to be a
good candidate. For fast decryption, the value of d needs to be small. However,
Wiener [21] showed that when d < 1

3N
1
4 then N can easily be factored. Later,
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Boneh-Durfee [5] increased this bound up to d < N0.292. Thus the use of smaller
d is in general not recommended. In this direction, an alternative approach has
been proposed by Wiener [21] exploiting the Chinese Remainder Theorem (CRT)
for decryption. The idea is as follows:

– the public exponent e and the private CRT exponents dp and dq are used
satisfying edp ≡ 1 mod (p − 1) and edq ≡ 1 mod (q − 1);

– the encryption of the plaintext M ∈ ZN is same as the standard RSA;
– to decrypt a ciphertext C ∈ ZN one needs to compute M1 ≡ Cdp mod p and

M2 ≡ Cdq mod q;
– using CRT, one can get the plaintext M such that M ≡ M1 mod p and

M ≡ M2 mod q.

This variant of RSA is popularly known as CRT-RSA. Without loss of gener-
ality, consider dp is available. One can take any random integer a in [2, N − 1]
and then gcd(aedp − a, N) provides p with a probability almost equal to 1 (but
not exactly 1). Thus, it is clear that CRT-RSA becomes insecure if any of the
decryption exponents is known. An important work in this direction shows that
with the availability of decryption oracle under a fault model, one factorize N in
poly(log N) time [6, Section 2.2] and the idea has been improved by A. Lenstra [6,
Section 2.2, Reference 16].

May [18] described two weaknesses in CRT-RSA that work when the smaller
prime factor is less than N0.382. Bleichenbacher and May [1] improved the idea
of [18] when the smaller prime factor is less than N0.468. In [12], at attack on
CRT-RSA has been presented for small e when the primes are of the same bit
size. Recently, Jochemsz and May [16] presented an attack on CRT-RSA with
primes of same bit size in poly(log N) time. In [16], it is shown that CRT-RSA
can be attacked when the encryption exponents are of the order of N , and dp and
dq are smaller than N0.073. The strategy of [16] is based on the idea presented
in [15] which in turn exploits the techniques from [9]. Further, in [15], it has
been shown that CRT-RSA is weak if dp − dq is known and dp, dq are smaller
than N0.099.

We work with techniques similar to [16], but our analysis considers that cer-
tain amounts of MSBs of dp, dq are exposed. This model is already accepted
in literature for analysis of standard RSA, where it is considered that certain
fraction of bits of the secret decryption exponent d may be exposed [3,2,11] by
side channel attack. We consider a similar model in this paper. In addition, we
also consider that a few MSBs of the secret prime p may be available, that can
be exhaustively searched or may be known from side channel attack (as p, q are
used during the decryption of CRT-RSA).

The main result of [16] was to show that for e of O(N), CRT-RSA is insecure
when dp and dq are smaller than N0.073. Our generalization (see Theorem 2
and also Table 1 in Section 2) shows that if around 0.009 log2 N MSBs of each
of dp, dq are exposed and 0.01 log2 N MSBs of p can be searched, then CRT-
RSA is insecure when dp and dq are smaller than N0.083. Our results are indeed
not surprising, but the analysis we present in this paper give a clear indication
how the results of [16] extend when certain amount of partial information is
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available regarding the secret parameters. Our theoretical ideas are supported
by experimental evidences and the results are presented in Section 2.1. The
case of unbalanced decryption exponents is considered in Section 3. Section 4
concludes the paper.

1.1 Preliminaries

Let us present some basics on lattice reduction techniques. Consider the lin-
early independent vectors u1, . . . , uω ∈ Z

n, where ω ≤ n. A lattice, spanned by
{u1, . . . , uω}, is the set of all linear combinations of u1, . . . , uω, i.e., ω is the di-
mension of the lattice. A lattice is called full rank when ω = n. Let L be a lattice
spanned by the linearly independent vectors u1, . . . , uω, where u1, . . . , uω ∈ Z

n.
By u∗

1, . . . , u
∗
ω, we denote the vectors obtained by applying the Gram-Schmidt

process [7, Page 81] to the vectors u1, . . . , uω.
The determinant of L is defined as det(L) =

∏ω
i=1 ||u∗

i ||, where ||.|| denotes
the Euclidean norm on vectors. Given a polynomial g(x, y) =

∑
ai,jx

iyj , we

define the Euclidean norm as ‖ g(x, y) ‖=
√∑

i,j a2
i,j and infinity norm as

‖ g(x, y) ‖∞= maxi,j |ai,j |.
It is known that given a basis u1, . . . , uω of a lattice L, the LLL algorithm [17]

can find a new basis b1, . . . , bω of L with the following properties.

1. ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < ω.
2. For all i, if bi = b∗i +

∑i−1
j=1 μi,jb

∗
j then |μi,j | ≤ 1

2 for all j.

3. ‖ bi ‖≤ 2
ω(ω−1)+(i−1)(i−2)

4(ω−i+1) det(L)
1

ω−i+1 for i = 1, . . . , ω.

By b∗1, . . . , b
∗
ω, we mean the vectors obtained by applying the Gram-Schmidt

process to the vectors b1, . . . , bω.
In [8], techniques have been discussed to find small integer roots of polynomials

in a single variable mod n, and of polynomials in two variables over the integers.
The idea of [8] extends to more than two variables also, but the method becomes
probabilistic. The following theorem is also relevant to the idea of [8].

Theorem 1. [13] Let g(x, y, z, v) be a polynomial which is a sum of ω many
monomials. Suppose g(x0, y0, z0, v0) ≡ 0 mod n, where |x0| < X , |y0| < Y ,
|z0| < Z and |v0| < V . If ‖ g(xX, yY, zZ, vV ) ‖< n√

ω
, then g(x0, y0, z0, v0) = 0

holds over integers.

Considering the property 3 mentioned above with i = 4 and Theorem 1, the

condition 2
ω2−ω+6
4(ω−3) det(L)

1
ω−3 < n√

ω
implies that if the polynomials b1, b2, b3, b4

(corresponding to the four shortest reduced basis vectors) have roots over 0 mod
n, then those roots hold over integers too. The solutions corresponding to each
unknown can be achieved by calculating the Gröbner basis of the ideal generated
by {b1, b2, b3, b4}.

Suppose we have a set of polynomials {f1, f2, . . . , fi} on n variables having
the roots of the form (x1,0, x2,0, . . . , xn,0). Then it is known that the Gröbner
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Basis [10, Page 77] {g1, g2, . . . , gj}, of J = < f1, f2, . . . , fi > (the ideal gener-
ated by {f1, f2, . . . , fi}), preserves the set of common roots of {f1, f2, . . . , fi}.
For our problems, we assume that the roots can be collected efficiently from
{g1, g2, . . . , gj}. Though this is true in practice as noted from the experiments
we perform, theoretically this may not always happen. Thus we formally state
the following assumption that we will consider for the theoretical results.

Assumption 1. Consider a set of polynomials {f1, f2, . . . , fi} on n variables
having the roots of the form (x1,0, x2,0, . . . , xn,0). Let J be the ideal generated
by {f1, f2, . . . , fi}. Then we will be able to collect the roots efficiently from the
Gröbner Basis of J .

2 Weaknesses of CRT-RSA When Some MSBs of dp, dq

and p Are Known

In this section, we extend the idea of [16] towards a partial key exposure attack
on CRT-RSA where the secret primes are of the same bit size. We present a
general result considering that some of the MSBs of dp, dq, p will be exposed.

Since edp ≡ 1 mod (p−1) and edq ≡ 1 mod (q−1), we write edp = 1+k(p−1)
and edq = 1 + l(q − 1). We start with the following technical result.

Lemma 1. Let e = Nα and dp, dq < N δ. Consider that dp0 , dq0 , p0 are exposed
such that |dp − dp0 | < Nγ, |dq − dq0 | < Nγ and |p − p0| < Nβ. Then one
can find the integers k0, l0 such that |k − k0| and |l − l0| are O(Nλ) where λ =
max{α + δ + β − 1, α + γ − 1

2}.
Proof. We consider p, q are of same bit size, i.e., q < p < 2q. In such a case,√

N < p <
√

2N and
√

N
2 < q <

√
N . Estimate k0 as the closest integer value

of edp0−1

p0−1 . Also we have k = edp−1
p−1 . Now

|k − k0| ≈ |edp − 1
p − 1

− edp0 − 1
p0 − 1

|

≈ |edp

p
− edp0

p0
|

= |edpp0 − edpp + edpp − edp0p

pp0
|

≤ edp|p − p0| + ep|dp − dp0 |
pp0

<
Nα+δ+β +

√
2Nα+ 1

2+γ

pp0
(as p <

√
2N)

< Nα+δ+β−1 +
√

2Nα+γ− 1
2 (as pp0 > N)

< (1 +
√

2)Nλ,
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where λ = max{α + δ + β − 1, α + γ − 1
2}. Next we calculate q0 = N

p0
. One can

check |q − q0| < Nβ . Taking l0 as the nearest integer of edq0−1

q0−1 , it can be shown
similarly as before that |l − l0| is O(Nλ). 	

Now we will prove our main result.

Theorem 2. Let e = Nα and dp, dq < N δ. Consider that dp0 , dq0 , p0 are exposed
such that |dp − dp0 | < Nγ, |dq − dq0 | < Nγ and |p − p0| < Nβ. Let λ =
max{α + δ + β − 1, α + γ − 1

2}. Then, under Assumption 1, one can factor N in
poly(log N) time when

γ < max
τ≥0

h(τ), where h(τ) =
(2α − 3λ)τ2 + (2α − 10

3 λ)τ + (α
2 − 5

6λ)
2τ3 + 5

2τ2 + 4
3τ + 1

3

.

Proof. Suppose dp0 , dq0 , p0 are exposed from dp, dq and p respectively. Following
Lemma 1, we get the approximations k0, l0 of k, l respectively. Let dp1 = dp−dp0 ,
dq1 = dq − dq0 , k1 = k − k0 and l1 = l − l0. Thus, dp1 , dq1 , k1, l1 are unknown to
the attacker.

We have edp = 1 + k(p− 1) and edq = 1 + l(q − 1). This can be re-written as
edp + k − 1 = kp and edq + l − 1 = lq. Multiplying these two equations, we get

e2dpdq + edp(l − 1) + edq(k − 1) − (N − 1)kl − (k + l − 1) = 0.

Now putting dp = dp1+dp0 , dq = dq1 +dq0 , k = k0+k1 and l = l0+l1 in the above
equation we have e2dp1dq1 +(e2dp0 −e+ek0)dq1 +(e2dq0 −e+el0)dp1 +ek1dq1 +
el1dp1 + (edq0 − 1− l0N + l0)k1 + (edp0 − 1− k0N + k0)l1 + (1−N)k1l1 + R = 0,
where R = (e2dp0dq0 − edp0 − edq0 +1+ edp0l0 + edq0k0 − l0k0N + l0k0 − l0 − k0)
is a known constant. Now if we substitute dp1 , dq1 , k1, l1 by x, y, z, v respectively
then we have e2xy +(e2dp0 − e+ ek0)y +(e2dq0 − e+ el0)x+ ezy + evx+(edq0 −
1− l0N + l0)z+(edp0 −1−k0N +k0)v+(1−N)zv+R = 0. Hence we have to find
the solution dp1 , dq1 , k1, l1 of the polynomial f(x, y, z, v) = e2xy + (e2dp0 − e +
ek0)y +(e2dq0 −e+el0)x+ezy+evx+(edq0 −1− l0N + l0)z +(edp0 −1−k0N +
k0)v + (1− N)zv + R. Note that this polynomial has the same monomials as of
f(x1, x2, x3, x4) presented in [16, Section 4], though the coefficients are different.
Also, the upper bounds on the variables are different as mentioned below.

Here dp1 < Nγ , dq1 < Nγ . Also from Lemma 1, k1, l1 are O(Nλ). Let X =
Y = Nγ , and Z = V = Nλ, which are the upper bounds of x, y, z, v respectively
(note that for the upper bounds of z, v, we have neglected the constant terms as
mentioned above).

When e is significantly greater than N0.5, then dp1 , dq1 are significantly smaller
than k1, l1. As we are mostly interested for large e, we apply extra shifts on x, y
as advised in the “Extended Strategy” of [15, Page 274]. In this direction we
define the following as in [16]:

S =
⋃

0≤j≤t

{xi1+jyi2+jzi3wi4 : xi1yi2zi3wi4 is a monomial of fm−1},

M = {monomials of xi1yi2zi3wi4f : xi1yi2zi3wi4 ∈ S}.
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That is, xi1yi2zi3vi4 ∈ S iff i1 = 0, . . . , m−1−i3+t, i2 = 0, . . . , m−1−i4+t, i3 =
0, . . . , m − 1, i4 = 0, . . . , m − 1, and

xi1yi2zi3vi4 ∈ M iff i1 = 0, . . . , m − i3 + t, i2 = 0, . . . , m − i4 + t, i3 =
0, . . . , m, i4 = 0, . . . , m for some non-negative integer t.

We need to find at least three more polynomials f0, f1, f2 that share the
same root (dp1 , dq1 , k1, l1) over the integers. Given W = ||f(xX, yY, zZ, vV )||∞,
from [15], we know that these polynomials can be found by lattice reduction if
Xs1Y s2Zs3V s4 < W s for sr =

∑
xi1yi2zi3vi4∈M\S ir, r = 1, 2, 3, 4 and s = |S|.

For a given integer m and t = τm, from the definition of S and M and
neglecting the lower order terms we have the required condition same as the one
presented in [16, Section 4] due to the same polynomial f used in both the cases.

(XY )
5
12 + 5

3 τ+ 9
4 τ2+τ3

(ZV )
5
12+ 5

3 τ+ 3
2 τ2

< W
1
4 +τ+τ2

. (1)

However, the bounds on X, Y, Z, V, W are different than what presented in [16,
Section 4]. As W ≥ N2α+2γ , substituting the values of X, Y, Z, V in Inequal-
ity (1), it is enough to satisfy the following inequality:

(
5
12

+
5
3
τ +

9
4
τ2 + τ3)2γ + (

5
12

+
5
3
τ +

3
2
τ2)2λ < (

1
4

+ τ + τ2) · (2α + 2γ). (2)

Thus we get the following:

γ <
(2α − 3λ)τ2 + (2α − 10

3 λ)τ + (α
2 − 5

6λ)
2τ3 + 5

2τ2 + 4
3 τ + 1

3

.

Fixing α, λ, let h(τ) = (2α−3λ)τ2+(2α− 10
3 λ)τ+( α

2 − 5
6 λ)

2τ3+ 5
2 τ2+ 4

3 τ+ 1
3

. Putting h′(τ) = 0, we
get the equation

(6λ − 4α)τ4 + (
40λ

3
− 8α)τ3 + (

28λ

3
− 16α

3
)τ2 + (

13λ

6
− 7α

6
)τ = 0. (3)

The non-negative real solutions of τ from this equation are considered and let
τm be the value among them for which h(τ) is maximum. Putting this optimal

value of τ we have γ <
(2α−3λ)τm

2+(2α− 10
3 λ)τm+( α

2 − 5
6 λ)

2τm
3+ 5

2 τm
2+ 4

3 τm+ 1
3

.
Under Assumption 1, we get the root using Gröbner Basis as it is done in [16]

and the algorithm works in poly(log N) time. 	

It can be checked that when β = 1

2 and γ = δ, we have the same bound as
in [16].

Below we present some numerical results based on Theorem 2. We start from
α = 0.4 as the results of [16] are better than the results of [12] when α ≥ 0.4 and
we follow the the technique of [16] only. Additionally we like to mention that
in the proof of Theorem 2, we have assumed that e is significantly greater than
N0.5, and that actually motivates the extra shifts on the variables x, y. Thus for
e < N0.5, the results may not be optimal. While studying the numerical results,
we explain two cases:
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Table 1. Increased bounds of decryption exponents (that are not secure) with knowl-
edge of some MSBs of dp, dq with(out) the knowledge of some MSBs of p

α δ following δ − γ, when τm from Theorem 2

[16, Section 4.1] Theorem 2 β = 1
2

β = 1
2
− 0.01 β = 1

2
β = 1

2
− 0.01

0.4 0.243 0.253 0.036 0.011 0 0

0.5 0.214 0.224 0.034 0.01 0 0

0.577 0.192 0.202 0.034 0.01 0 0

0.7 0.157 0.167 0.035 0.01 0 0

0.8 0.128 0.138 0.033 0.01 0.0708 0

0.9 0.1 0.11 0.032 0.01 0.2814 0.1479

0.925 0.093 0.103 0.031 0.01 0.3411 0.1972

0.95 0.087 0.097 0.032 0.012 0.4212 0.2626

1.0 0.073 0.083 0.027 0.01 0.5563 0.3751

1. when some of the MSBs of dp, dq are known, but none of the bits of p is
known,

2. when some of the MSBs of dp, dq as well as p are known.

Let us now present Table 1 based on the numerical values arising out of
Theorem 2 and compare it with the values presented in [16]. We consider the
asymptotic upper bound of δ presented in the table in [16, Section 7.1] (it follows
the formula of [16, Section 4.1]). As we claim to improve the bound on δ with
knowledge of some MSBs of dp, dq, we take the δ values 0.01 more than the
asymptotic upper bounds presented in [16].

To get the improved bounds on δ, we need to know (δ − γ) log2 N MSBs for
each of the decryption exponents. We present the values of τm (as in the proof of
Theorem 2) given different values of α, where h′(τm) = 0 and h(τm) is maximum.

The exercises are done in both the cases, (i) when none of the MSBs of p is
known, i.e., β = 1

2 and (ii) when certain amount of MSBs (0.01 log2 N bits) of p
is known.

2.1 Experimental Results

We have implemented the programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on
a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB RAM
and 2 MB Cache.

As we work with low lattice dimensions, the theoretical bounds of dp, dq pre-
sented in Theorem 2 may not be reached and the actual requirement of MSBs
to be known will be higher in experimental results than the numerical values
arrived from the theoretical results. However, we show that the values of dp, dq

achieved in our experimental results indeed exceed the experimental evidences
presented in [16]. The implementation in [16, Section 5] used Coppersmith’s orig-
inal method [8] instead of Coron’s reformulation [9]. On the other hand, we have
followed the idea of [15] based on Coron’s strategy [9] itself for our experiments.
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Example 1. We consider 500 bits p, q, i.e., 1000 bits N = pq. The primes p, q are
as follows:
257982890708293518390079668089547327140094192761354318342177532056
591406252118442411708524558220040883218254274670592143045254411833
7323748167716006673,
219175753591795206167656820069977488073370238295740745766814008472
138727195704836927992992835177976408563857693206444747859754365066
1348649341629849809.

We consider α = 0.8, i.e., e is an 800 bit integer as follows:
381488272445274098681501407517305078463396289118603070856927451668
680476133479793702456098517534653338608646458073266532528791321957
770232953077386115965246285769851351453842444699396326285020512454
7833724025378461669383099996626917921859531.

In [16, Section 7.2], it has been shown that in such a case, decryption expo-
nents up to 79 bits are insecure in practice. The lattice parameters used in this
case are m = 2, t = 0 and the time required to run the LLL algorithm was 2
seconds in the experimental set up of [16].

The experiment is with decryption exponents of 90 bits, where dp, dq are
1187824505872763330365347843, 1197585192151765825516761747 respectively.
We consider that 36 MSBs of each of dp, dq and 10 MSBs of p are known. We
used the lattice parameters m = 2, t = 0. The time required to run the LLL
algorithm is 24 seconds in our experimental set up.

As referred in the proof of Theorem 2, we have f, f0, f1, f2 after the LLL al-
gorithm. Then we apply the strategy exploiting Gröbner Basis and find a poly-
nomial on the single variable v, i.e., l1. Once we get l1, we find l. Consequently
we can find out q since e > N

1
4 (one may refer to the discussion in [16, Section

7.1]). 	


Example 2. We consider 500 bits p, q, i.e., 1000 bits N = pq. The primes p, q are
as follows:
308536652523786752403262271587380862779156002539534598580650377819
837308083923866689819772202260205864471663039568900406887433048818
1354605267758401737,
174884640339050989948134239058179947355258107199237642863944051459
787872529871998850799955677509191511939485741856556131422997911453
4175281806597704419.

We consider α = 1, i.e., e is a 1000 bit integer as follows:
650836990581869614252071497849163666992784539277711863628883327803
447764262103970654043363725365856415076337791404005870468638937810
821150247754816434038612733008679525086364394895223068051664347774
104165881644840283525895285922376024682931696898353489945338018493
5253711023618697785834142726686557409.

In [16, Section 7.2], it has been shown that in such a case, decryption expo-
nents up to 15 bits are insecure in practice. The lattice parameters used in this
case are m = 3, t = 1 and the time required to run the LLL algorithm was 13787
seconds in the experimental set up of [16].
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We consider the decryption exponents of 18 bits, where dp, dq are 255025,
257539 respectively. We consider that 9 MSBs of each of dp, dq, p are known. We
used the lattice parameters m = 2, t = 1. The time required to run the LLL
algorithm is 3347 seconds in our experimental set up. 	

The values of dp, dq in Example 2 are quite low and any one of them can be easily
searched for a complete attack. Example 2 is presented only for the purpose of
comparison with the result of [16].

3 Unbalanced Decryption Exponents

In this section we present similar analysis as in the earlier section, with the
only difference that now the decryption exponents dp, dq can be of different size.
Instead of considering t amount of extra shifts on both the variables x, y as in
Theorem 2, here we apply two different shifts t1, t2 on x, y respectively. Taking
two different shifts produce better results than considering the same shift in case
of unbalanced decryption exponents.

Theorem 3. Let e = Nα, dp < N δ1 and dq < N δ2 . Consider that dp0 , dq0 , p0

are exposed such that |dp − dp0 | < Nγ1 , |dq − dq0 | < Nγ2 and |p− p0| < Nβ. Let
λ1 = max{α + δ1 +β− 1, α + γ1 − 1

2} and λ2 = max{α + δ2 +β − 1, α + γ2 − 1
2}.

Then, under Assumption 1, one can factor N in poly(log N) time when there
exist non-negative real numbers τ1, τ2 ≥ 0 for which h(τ1, τ2, γ1, γ2, λ1, λ2, α) =
τ1

2τ2γ1 + τ1τ2
2γ2 + 3

4τ1
2γ1 + 1

2τ1τ2(γ1 +γ2)+ 3
4τ2

2γ2 + 3
2τ1τ2(λ1 +λ2)−2τ1τ2α+

1
2τ1γ1 + 1

6τ2γ1 + 1
6τ1γ2 + 1

2τ2γ2 + τ1λ1 + 2
3τ2λ1 + 2

3τ1λ2 + τ2λ2 − τ1α − τ2α +
1
6 (γ1 + γ2) + 5

12 (λ1 + λ2) − α
2 < 0.

Proof. This proof is similar to the proof of Theorem 2 till the construction of
the polynomial f(x, y, z, v).

Here dp1 < Nγ1 , dq1 < Nγ2 and we also consider k1 < Nλ1 , l1 < Nλ2 (ignoring
the constants presented in Lemma 1). Let X = Nγ1 , Y = Nγ2 , Z = Nλ1 , V =
Nλ2 .

We have the following definitions of S, M , where t1, t2 are non-negative inte-
gers.

S =
⋃

0≤j1≤t1,0≤j2≤t2

{xi1+j1yi2+j2zi3wi4 : xi1yi2zi3wi4 is a monomial of fm−1},

M = {monomials of xi1yi2zi3wi4f : xi1yi2zi3wi4 ∈ S}.
Similar to the proof of Theorem 2, we need, Xs1Y s2Zs3V s4 < W s for sr =∑
xi1yi2zi3vi4∈M\S ir, r = 1, 2, 3, 4, s = |S| and W = ||f(xX, yY, zZ, vV )||∞ ≥

N2α+γ1+γ2 .
For a given integer m, let t1 = τ1m and t2 = τ2m. Then from the definitions

of S, M we have the required condition

Xs1Y s2Zs3V s4 < W s, (4)
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where,
s1 = ( 5

12m4 + m3t1 + 3
4m2t1

2 + 2
3m3t2 + 3

2m2t1t2 + mt1
2t2) + o(m4),

s2 = ( 5
12m4 + m3t2 + 3

4m2t2
2 + 2

3m3t1 + 3
2m2t1t2 + mt1t2

2) + o(m4),
s3 = 5

12m4 + m3t1 + 2
3m3t2 + 3

2m2t1t2 + o(m4),
s4 = 5

12m4 + m3t2 + 2
3m3t1 + 3

2m2t1t2 + o(m4), and

s = m4

4 + m3(t1+t2)
2 + m2t1t2 + o(m4).

Substituting the values of X, Y, Z, V, W in Inequality (4), and putting t1 =
τ1m, t2 = τ2m, we have ( 5

12 +τ1+ 3
4τ1

2+ 2
3 τ2+ 3

2τ1τ2+τ1
2τ2)γ1+( 5

12 +τ2+ 3
4τ2

2+
2
3τ1 + 3

2τ1τ2 + τ1τ2
2)γ2 +( 5

12 + τ1 + 2
3τ2 + 3

2τ1τ2)λ1 +( 5
12 + τ2 + 2

3τ1 + 3
2τ1τ2)λ2 <

(1
4 + τ1+τ2

2 + τ1τ2)(2α + γ1 + γ2). From which we get h(τ1, τ2, γ1, γ2, λ1, λ2, α) =
τ1

2τ2γ1 + τ1τ2
2γ2 + 3

4τ1
2γ1 + 1

2τ1τ2(γ1 +γ2)+ 3
4τ2

2γ2 + 3
2τ1τ2(λ1 +λ2)−2τ1τ2α+

1
2τ1γ1 + 1

6τ2γ1 + 1
6τ1γ2 + 1

2τ2γ2 + τ1λ1 + 2
3τ2λ1 + 2

3τ1λ2 + τ2λ2 − τ1α − τ2α +
1
6 (γ1 + γ2) + 5

12 (λ1 + λ2) − α
2 < 0.

Then the proof follows by finding the root similar to the idea described in
Theorem 2. 	

One may check that putting τ1 = τ2 = τ in Theorem 3, we get the same form
as presented in Theorem 2.

First consider the case, when no information about the bits of dp, dq, p is
known. Thus, we have γ1 = δ1, γ2 = δ2, β = 1

2 . When δ1, δ2 are available, we
will take the partial derivative of h with respect to τ1, τ2 and equate each of them
to 0 to get non-negative solutions of τ1, τ2. Given any pair of such non-negative
solutions, if h is less than zero, then for that δ1, δ2, CRT-RSA will be insecure.

Let us assume that for balanced dp, dq, CRT-RSA is insecure when dp, dq <
N δ. On the other hand, consider that CRT-RSA is insecure for the unbalanced
case when dp < N δ1 , dp < N δ2 . This situation is worth investigating when
2δ < δ1 + δ2. We find that this indeed happens. In [16], it has been shown that
when e is O(N), then CRT-RSA is insecure when δ = 0.073. In Table 2, we find
the cases when δ1 + δ2 is greater than 2δ = 0.146.

Table 2. Values for which CRT-RSA with unbalanced decryption exponents is insecure

δ1 0.06 0.05 0.04 0.03

δ2 0.087 0.099 0.111 0.126

δ1 + δ2 0.147 0.149 0.151 0.156

Thus considering the total amount of bits in the decryption exponents, CRT-
RSA is less secure when the decryption exponents are of different bit size than
the case when they are of same bit size.

In Table 3 we present the numerical results for partial key exposure attack.
We consider dp < dq and no information is available regarding the bits of dp.
Thus, we have γ1 = δ1 and (δ2 − γ2) log2 N MSBs of dq need to be known for
the attack. Moreover, we consider two cases: (i) when no information regarding
p is known and (ii) when 0.01 log2 N MSBs of p are known. As a particular
instance, when dp < N0.06, then one may attack CRT-RSA with dq < N0.097,
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Table 3. Numerical results following Theorem 3

δ1 δ2 γ2, when β = 1
2

γ2, when β = 1
2
− 0.01

0.03 0.136 0.102 0.122
0.04 0.121 0.091 0.107
0.05 0.109 0.078 0.093
0.06 0.097 0.068 0.082

when (0.097 − 0.082) log2 N = 0.015 log2 N MSBs of dq are exposed and also
0.01 log2 N MSBs of p is available.

For experimental results, one needs to use limited lattice dimensions and it
may not be possible to reach these bounds in practice.

4 Conclusion

Using the idea of [16], we have studied the cryptanalysis of CRT-RSA when
certain amount of the MSBs of the decryption exponents dp, dq are exposed. The
attack becomes sharper with the knowledge of a few MSBs of p. The results work
for any e of O(N) and primes of the same bit size. Our results demonstrate that
the upper bounds of insecure decryption exponents increase with the exposure
of certain amounts of their MSBs. We also study the case when the decryption
exponents are of different bit size. Our results show that CRT-RSA is more
insecure in this case (considering the sum of bits in the decryption exponents)
than when the decryption exponents are of the same bit size.
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