
Choosing NTRUEncrypt Parameters in Light of

Combined Lattice Reduction and MITM
Approaches

Philip S. Hirschhorn1, Jeffrey Hoffstein2, Nick Howgrave-Graham3,
and William Whyte3

1 Wellesley College
2 Brown University

3 NTRU Cryptosystems, Inc.

Abstract. We present the new NTRUEncrypt parameter generation
algorithm, which is designed to be secure in light of recent attacks that
combine lattice reduction and meet-in-the-middle (MITM) techniques.
The parameters generated from our algorithm have been submitted to
several standard bodies and are presented at the end of the paper.

1 Introduction

Recent research [12] has demonstrated that the NTRUEncrypt parameter sets
described in [11] do not provide the claimed level of security (for example, the
parameter sets proposed in [11] for 80-bit security only provide about 64 bits
of security against the attack of [12])1. This paper proposes new parameter sets
that are secure against the attacks of [12]. In addition, we present the algorithm
used to obtain those parameter sets. Some public key cryptosystems are known
to be vulnerable to maliciously chosen parameters [20]; the publication of a
parameter generation algorithm greatly reduces the risk that parameters have
been “cooked”.

The basic framework of NTRUEncrypt allows for great variation in the types
of parameter sets generated. For example, polynomials used in the system may
be binary, trinary, or “product-form” [8]. This paper focuses on parameter sets
for trinary polynomials, as opposed to the binary polynomials of [11], because
they generally offer a better trade-off between security and efficiency2. We make
1 The security function used in this paper is simply the processor time required to

break an instance of the algorithm. Memory is assumed to be free to the attack,
although in fact the attack of [12] requires substantial amounts of memory. This
approach is consistent with that recommended by the ASC X9 standard committee.

2 Previous papers used binary parameters mainly to keep the parameter q at 256 or
less, as this made the calculations more suitable for an 8-bit microcontroller; we do
not currently believe it is realistic to keep q down to this level, and as such the
advantages of trinary polynomials outweigh the advantages of binary polynomials.
The “product-form” polynomials of [8] promise to be more efficient even than the
trinary polynomials, but the analysis of the security of product-form polynomials
against the attack of [12] is considerably more complicated than the analysis of
trinary or binary and is not yet complete.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 437–455, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

438 P.S. Hirschhorn et al.

various other choices to restrict the space that parameters are chosen from. These
choices are explained and motivated in Section 1.1.

The original contributions of this paper include:

– Explain in detail the parameter generation algorithm (because its publication
helps justify that there are no “backdoors” in the chosen NTRU parameters)

– Explicitly state any underlying assumptions we use to find optimal parame-
ters (because it is important to understand which parts of the NTRU param-
eters rely on provable statements and which rely on reasonable assumptions)

– Provide an exact calculation of the probability ps that a correct guess in the
meet-in-the-middle stage of the attack will be recognized as such (this was
only experimentally calculated in [12])

– Provide exact calculations of various other quantities involved in the hybrid
attack when applied to trinary parameters. This includes a mathematically
based formula for the probability of a decryption failure with trinary poly-
nomials

– State the standardized NTRU parameters, and their estimated security.

The algorithm has been fully implemented in an object-oriented fashion in
C++. The resulting parameter sets are given in Section 7, and a discussion of
future issues is given in Section 8.

NTRU parameters are also dependent on the expected running time of lattice
reduction algorithms, which can be modeled by extrapolating data achieved
in practice. We state the NTRU parameter generation algorithm generically,
i.e. the extrapolation line is given as input to the algorithm. When calculating
explicit parameter sets we use specific extrapolation lines, which are justified in
Appendix A. The accuracy of these extrapolation lines is stated as an explicit
assumption, since they have been generated from extensive experimentation with
practical lattice reduction techniques. The extrapolation lines in this paper have
been obtained using a novel lattice reduction method known as isodual lattice
reduction, which appears to give considerably better results in practice than
previous lattice reduction methods. The isodual lattice reduction method will
be the subject of a separate paper.

1.1 NTRU Background

Since we are describing a parameter generation function we must first define what
we mean by NTRUEncrypt parameters. Let R denote the ring Z[X]/(XN −1, q),
for some suitable integers q, N . Let Td1,d2 denote the set of trinary elements of
R with d1 entries equal to one, d2 entries equal to minus one, and the remaining
N − d1 − d2 equal to zero. Let a ∈R A denote the process of picking an element
a from the set A uniformly at random.

The NTRUEncrypt parameters, as described in [6], are integers (q, p, N , df ,
dg, dr) where the private key is F ∈R Tdf ,df

3 and the public key is h = g/f in
3 We take d1 = d2 here because, for a given value of d1 +d2, taking d1 = d2 maximizes

the work for an attacker, and because the efficiency depends only on d1 + d2, not on
the individual values of d1 and d2.

Choosing NTRUEncrypt Parameters 439

the ring R where g ∈R Tdg+1,dg
4 and f = 1 + pF is invertible for most choices

of F . N is necessarily a prime [5], and p is necessarily coprime to q. For any
value of q, we denote the factors of q by {qi} and require each qi to have order
≥ (N − 1)/2 mod N to avoid attacks based on the factorization of h (or other
polynomials) in the ring. This eliminates some values of N from consideration.
We denote by P the set of allowable primes for N .

The encryption primitive forms the ciphertext e = m′ + r ∗ h in R, where
m′ and r ∈R Tdr,dr are derived from the message m with a randomized padding
scheme [9,10,11]. We can write this primitive as a trapdoor one-way function
(OWF), which is made more precise in [10,11].

OWF (m′, r) = m′ + r ∗ h

The NTRUEncrypt cryptosystem can alternatively be seen as a lattice based
cryptosystem [15] in the lattice generated by the row of the following (2N)×(2N)
matrix.

LNTRU =
(

qIN 0N

H IN

)
,

where H denotes a (N) × (N) circulant matrix generated from h, i.e. Hi,j =
hi−j mod N . This lattice is also useful in cryptanalyzing NTRUEncrypt.

For all the parameter sets in this paper we will use the values q = 2048,
p = 3, and dr = df , dg = �N/3�5. Thus the NTRUEncrypt parameter family we
are concerned with can be parametrized by just two parameters: N and df .

1.2 Attacks on NTRUEncrypt

At a high level there are two distinct but related attacks known on NTRUEncrypt:
an attack based on knowledge of valid (plaintext,ciphertext) pairs which cause
decryption failures [10], and an attack based on reversing the one-way function
used for key generation and encryption [12].

The notion of decryption failures is slightly uncommon in cryptography, namely
that there is a small probability pdec that a valid message can fail to decrypt prop-
erly. If an attacker is aware of when this happens in NTRUEncrypt it has been no-
ticed that they can mount an attack on the cryptosystem to recover the private
key [10]. Thus in designing parameters for a security level k we ensure that this
probability is less than 2−k for a randomly chosen preimage (m′, r) of the NTRU-
Encrypt OWF. The encryption scheme used [11] then provides random (m′, r),
allowing a proof of security in the random oracle model.
4 g is unbalanced in this way to increase the chance that g will be invertible in R.
5 q = 2048 is the only value of q for which we have enough lattice reduction experi-

ments to reliably extrapolate lattice reduction times. Further lattice experiments are
underway at the moment. Taking q to be a power of 2 allows for efficient reduction
modq. We take dr = df for convenience, although the result of this is that it is very
slightly easier to recover plaintext from ciphertext than private keys from public
keys. We take dg = �N/3� because the thickness of g does not affect efficiency and
for security reasons it is sensible to take it to be as thick as possible.

440 P.S. Hirschhorn et al.

Remaining at a high level, and recalling that our NTRUEncrypt parameter
family is parametrized only by N and df , the consequence of requiring that
decryption failures occur with small probability is that df cannot get too large
compared to N .

Conversely the attacks based on reversing the one-way function used for key
generation and encryption work better when df is small compared to N . The
challenge facing parameter generation is thus to balance the size of df compared
to N , whilst keeping N relatively small for efficiency.

The best known attack on reversing the NTRUEncrypt OWF is a combination
of the two previously known attacks on NTRUEncrypt, namely Odlykzo’s MITM
attack, and standard lattice reduction. It is shown in [12] that these can be
combined in to one (more efficient) hybrid attack.

The attack consists of two consecutive stages: the first stage is to reduce the ini-
tial rowsof thepublicNTRUlatticebasisLNTRU with thebestknown lattice reduc-
tion scheme, and the second stage is to store partial key guesses in boxes dependent
on the output of the first stage. The attack is successful if two partial key guesses
that collide in the same box can be combined to recover the entire private key.

This paper is written from the perspective of justifying the new parameter
generation algorithm which is secure in light of this hybrid attack6, not from the
perspective of explaining the hybrid attack further (the reader is referred to [12]
for this). However, to help the reader, informative comments about the attack
are embedded in to the paper whenever they are applicable.

2 An Overview of Parameter Generation

2.1 The Criteria for Valid Parameters

As explained in Sections 1.1 and 1.2 the challenge of generating NTRUEncrypt
parameters suitable for a security level k is in choosing (N, df) such that:

1. The probability of decryption failures, PfailDec, is at most 2−k for randomly
chosen preimages of the NTRU OWF, and

2. The expected work to recover the private key f from the public key h, Wkey,
is at least 2k, and

3. The expected work to recover a plaintext m from the ciphertext c, Wmsg, is
at least 2k.

There is an implicit assumption here, namely:

Assumption 1. If decryption failures occur with probability less than 2−k then
there is no attack with expected work less than 2k which exploits the phenomenon
of decryption failures.

One possible line of attack to circumvent Assumption 1 is to find weaknesses
in the hash functions such that one can sample preimages (m′, r) to the NTRU-
Encrypt OWF which have decryption failures with a higher probability than
6 And the decryption failure attacks.

Choosing NTRUEncrypt Parameters 441

randomly chosen preimages. Whilst such an avenue is theoretically possible it
seems a daunting task for an attacker, and would likely require an unfeasibly
large number of calls to the decryption oracle. We also note that since the hash
functions take the public key as input, an attacker will with high probability need
to find a separate set of preimages for each key under attack, preventing them
from leveraging a single decryption-failure-causing preimage to attack multiple
keys.

We also remark that there has been some work done [16] on linking require-
ments 2 and 3 above, i.e. in showing that if one has an oracle that can recover
NTRUEncrypt messages, then it can be used to recover the NTRUEncrypt pri-
vate key [16]. Such reductions are typically highly dependent on the structure
of the key and OWF preimages so typically do not form tight arguments. In the
proposed NTRUEncrypt parameters we have not looked for a provable correspon-
dence between message and key recovery. Instead we independently consider the
problem of message recovery in Section 6.

2.2 The Space of Valid Parameters

The space of valid (N, df) for q = 2048, p = 3, dr = df , dg = �N/3� is depicted
in the Figure 1.

The curved solid lines denote “k-isopleths”; parameters (N, df) for which
Wmsg, the expected work of the hybrid attack is 2k. The security levels shown
corresponds to k = 112, 128, 192 and 256 bits of security. Notice that df is
necessarily at most �N/3� since F is a trinary vector, and this constraint is
shown by the (leftmost) straight dashed line. The other constraint on df is

Wmsg ≤ P−1
decFail .

The (central) curved dashed line corresponds to Wmsg = P−1
decFail. Valid NTRU-

Encrypt parameters (N, df) are below both of these lines.

d f

N

112
128

d = N/3 f

192

256

Fig. 1. k-isopleths for df vs. N

442 P.S. Hirschhorn et al.

The exact location of the isopleths of the expected work of the hybrid attack
depends on how we are measuring this work. In this report we have two ways of
measuring the hybrid cost:

– a conservative estimate (which involves being conservative about both lattice
running times, and conservative about the expected running time of the
MITM component).

– a current estimate (which involves more realistic estimates of how quickly
the attack can be mounted, with our current knowledge).

Once the isopleths of the expected work of the hybrid attack are fixed, one
can apply a “cost” function to each of the (N, df) on a k-isopleth and potentially
find an “optimal” one. In this report we consider three ways of measuring the
cost of a parameter set:

– a space metric (trying to optimize the size of the ciphertexts and public key),
– a speed metric (trying to optimize the time to perform decryption), and
– a trade-off metric (combining the two other metrics).

2.3 The Algorithm

The parameter generation algorithm takes as input a security parameter k and
outputs the parameter set corresponding to that security level. At a high level
it can simply be described as the following: (a) pick a way to measure cost and
a way to measure security, (b) find an initial (N, df) on the dashed line which
corresponds to a security level of k, and (c) traverse the k-isopleth until the cost
metric is optimized. This is made more precise in Algorithm 1.

3 Decryption Failure Probability

The decryption failure probability can be conservatively bounded by the proba-
bility that one or more coefficients of r ∗ g + F ∗m has an absolute value greater
than c = (q − 2)/(2p).

For trinary polynomials chosen subject to the constraints in this paper, this
probability is

pdec = N ∗ erfc(c/(σ
√

2N)), (1)

where σ2 = 4(dr + df)/(3N).
We now justify this statement. In the following calculation we will make the

following explicit assumption:

Assumption 2. The coefficients of r are independent random variables taking
the value 1 with probability dr/N , −1 with probability dr/N and 0 with probability
(N−2dr)/N . We make corresponding assumptions about g, dg, F, df and m′, dm′ .

Choosing NTRUEncrypt Parameters 443

Algorithm 1. NTRUEncrypt Parameter Generation
1: i← 1 {The variable i is used to index the set of acceptable primes P}
2: i∗ ← 0 {This will become the first index which can achieve the required security}
3: repeat
4: N ← Pi

5: df ← �N/3� {We will try each df from �N/3� down to 1}
6: repeat
7: k1 ← hybridSecurityEstimate(N, df) {This is dependent on the chosen secu-

rity metric}
8: k2 ← log2(decryptionFailureProb(N, df))
9: if (k1 ≥ k and k2 < −k) then

10: (i∗, d∗
f)← (i, df) {Record the first acceptable index i and the value of df}

11: end if
12: df ← df − 1
13: until (i∗ > 0 or df < 1)
14: i← i + 1
15: until i∗ > 0
16: c∗ ← cost(Pi∗ , d∗

f) {This is dependent on the chosen cost metric}
17: while an increase in N can potentially lower the cost do
18: N ← Pi

19: df ← d∗
f {Note that when N increases the cost must be worse for all df ≥ d∗

f ,
and that the decryption probability is decreased both by an increase in N and
a decrease in df}

20: repeat
21: k1 ← hybridSecurityEstimate(N, df)
22: c← cost(N, df)
23: if (k1 ≥ k and c < c∗) then
24: (c∗, i∗, d∗

f) ← (c, i, df) {Record the improvement in cost and the corre-
sponding i, df}

25: end if
26: df ← df − 1
27: until df < 0
28: i← i + 1
29: end while
30: return (Pi∗ , d∗

f)

– Note that line 17 is not specified precisely because it depends on the cost() function
used (see Section 4 for a discussion of the possible cost metrics and end-conditions).

– Note that the call to decryptionFailureProb() on line 8 simply uses Equation 1,
and the calls to hybridSecurityEstimate() use Algorithm 2.

In order for decryption to succeed, the coefficients of

a = p ∗ (r ∗ g + m′ ∗ F) + m.

must have absolute value less than q/2. In fact, it would suffice to know that these
coefficients lay in an interval of length less than q in order to do first a trans-
lation, then a decryption. Shortly after NTRU was first introduced this second

444 P.S. Hirschhorn et al.

method was viewed as preferential, as it increased the probability of successful
decryption. However, theoretically predicting the likelihood of decryption failure
by this method was a particularly unwieldy problem, due to the fact that the
sizes of the maximum and minimum coefficients were not independent random
variables.

The somewhat weaker question of estimating from above the probability

pdec(c) = Prob (a given coefficient of r ∗ g + m′ ∗ F has absolute value ≥ c)
(2)

can, however, be analyzed quite accurately by a simple application of the central
limit theorem, making the assumption described above.

If Xj denotes a coefficient of r ∗ g +m′ ∗F , then Xj is a sum of N terms, that
is,

Xj =
N∑

i=1

(yi + zi) ,

where each yi = rkgl and zi = msFt for some k, l, s, t. It is then easily checked
that

σ2 = E(X2
j) =

N∑
i=1

(
E(y2

i) + E(z2
i)

)
=

4drdg + 4dfdm′

N
.

Assuming that N is large, we apply the central limit theorem to Xj , (normalized
to have variance equal to 1). Applying the theorem twice, to account for the
negative or positive extremes of Xj, we find that

Prob (|Xj | ≥ Cσ) <
2√
2π

∫ ∞

C

e−x2/2dx.

Writing c = Cσ we have

Prob (|Xj | ≥ c) <
2√
2π

∫ ∞

c/σ

e−x2/2dx.

Translating this into the notation of the complementary error function, we get

Prob (|Xj | ≥ c) < erfc(c/(σ
√

2)),

with σ as above.
The decryption failure probability can be conservatively bounded by the prob-

ability that one or more coefficients of r ∗g+F ∗m has an absolute value greater
than c = (q − 2)/(2p). Thus, repeating the experiment of selecting a coefficient
N times, we finally have the probability of decryption failure bounded above by

pdec(c) = Nerfc(c/(σ
√

2)),

with c = (q−2)/(2p). For trinary polynomials chosen subject to the constraints in
this paper, σ2 = 4(dr +df)/3. Experiments with on the order of 109 polynomials,
with different values for the d’s, have shown that this model gives an accurate,
while conservative, description of reality.

Choosing NTRUEncrypt Parameters 445

4 Cost Functions

As explained in Section 2.2 there are three cost metrics of interest:

The space metric. The space metric corresponds to the bit-size of the public
key and ciphertexts, i.e. costspace = N log2 q. Since, for constant q, this is
independent of df , one does not have to traverse the k-isopleth looking to
minimize it; it is simply minimized for the least N on the k-isopleth.

The speed metric. The speed metric is derived from the convolution times for
a parameter set, i.e. costspeed = Ndf .

When trying to minimize this cost notice that an increase in N is offset
by a decrease in df , thus if N∗, d∗f corresponds to the current minima on
the k-isopleth then one can stop searching the k-isopleth when N increases
beyond N∗d∗f/(d∗f − 1) without a drop in df .

The trade-off metric. In particular environments neither the space metric nor
the speed metric may be the natural way to measure cost, but some other
metric. We introduce a trade-off metric: costtrade-off = cost2space × costspeed,
which does not have an obvious intrinsic interest, but allows us to show how
to handle different metrics.

The criteria for knowing when to stop searching the k-isopleth for this
metric can be the same as the speed metric.

5 Hybrid Security

5.1 Overview

The hybrid security function aims to find optimal attack parameters, i.e. pa-
rameters such the maximum of lattice security and MITM security is minimized
over all attack parameters.

As explained in [12], the hybrid security of a parameter set (N, df) is the
minimum security over all attack strategies on that parameter set. An attack
strategy is defined by the following three values:

– an integer y2, N ≤ y2 ≤ 2N which corresponds to the number of initial rows
of the lattice LNTRU which will be reduced

– a real number α, which roughly corresponds to the quality of the reduced
part of the lattice; a larger α corresponds to a better reduced lattice (which
takes more time to achieve).

– an integer c which corresponds to the expected number of ±1’s in the last
2N−y2 entries of F which we will mount the MITM attack on (note that these
entries affect the last 2N − y2 rows of LNTRU). By definition, 0 ≤ c ≤ df .

In performing our analysis we have assumed that the number of +1’s and
−1’s in the last 2N − y2 rows is the same. For clarity we make this assumption
explicit:

446 P.S. Hirschhorn et al.

Assumption 3. An attacker cannot do substantially better by assuming that
the number of 1 coefficients in the last 2N −y2 rows is different from the number
of −1 coefficients.

A simple way to enumerate the space and hence find the optimal attack strat-
egy is given in Algorithm 2.

Algorithm 2. Optimal Attack Strategy and Hybrid Security Estimation
1: for y2 = N to 2N do
2: for c = 0 to df do
3: Find α such that:

latticeRunningTime(y2, α)−MITMRunningTime(y2, c, α) ≈ 0.
4: w ← max(latticeRunningTime(y2, α), MITMRunningTime(y2, c, α))
5: if (w∗ is undefined or w < w∗) then
6: (w∗, y∗

2 , c∗, α∗) ← (w, y2, c, α) {Record the improved attack strategy, and
implied attacker work}

7: end if
8: end for
9: end for

10: return the optimal attack strategy (y∗
2 , c∗, α∗) and the estimated work w∗

– Notice that the call to latticeRunningTime() is independent of c and simply re-
turns Equation 3. The call to MITMRunningTime() returns tN/psplit where these
quantities are defined as in Section 5.3.

– The calculation of α in step 3 can be done by standard root finding techniques.

5.2 Lattice Security

In order to find optimal attack parameters, we need to be able to estimate the
work it takes to reduce the first y2 rows of the lattice LNTRU with “quality” α.

In Appendix A we discuss what it means for lattice to have “quality” α, and
we present the lattice experiments we have conducted to approximate this time.
To extrapolate beyond the end of the experimental data we model running time
as exponentially dependent on the GSA slope as defined in [19], and cubically
dependent on the dimension7. This model gives the estimates of running time
as 2w where

w =
2m(y2 − N)

(1 − α)2
+ 3 log

2(y2 − N)
1 − α

+ c (3)

for some constant m, c.
Extrapolating lattice reduction times is far from a science, but the data seems

to support, with reasonable assurance, that practical lattice reduction times
exceed the above formula with m = 0.45, c = −110.

7 This cubic dependency is heuristic but does not greatly affect the results.

Choosing NTRUEncrypt Parameters 447

As mentioned in Section 2.2 we allow the parameters sets to be generated with
either current security assurances, or conservative security assurances. For the
conservative security assurance we use the constants m = 0.2, c = −50, which
hopefully give ample room for improvements in lattice reduction, without re-
quiring that the NTRUEncrypt parameter sets change. We make this assumption
explicit below:

Assumption 4. We assume lattice reduction of the first y2 elements of the lat-
tice LNTRU with quality α takes time at least 2w where w is given by Equation 3,
with m = 0.2, c = −50.

5.3 MITM Security

In order to find optimal attack parameters we need to be able to estimate the
expected work it takes to perform the MITM attack, for a given y2, α and c.

The following events need to happen for a successful MITM attack:

– The c value must correctly hold how many 1s and −1s are in the last 2N−y2

entries of F . The probability of this event is called psplit.
– The attacker must enumerate through a large number of guesses of “halves”

of the end of F .
– For each one he must apply a CVP reduction algorithm.
– A pair of half-guesses must collide after the CVP algorithm. This probability

is referred to as ps in [12].

We now go through the expected work for each of these events. If a necessary
event happens only with a probability p then the expected work is divided by p.

Let
(

n
r1,r2

)
denote a “trinomial” quantity, i.e. the number of ways of choosing

r1 positions of one kind, and r2 positions of another kind in a vector of length n.
It is simple to confirm the following relationship between trinomial and binomial
quantities:

(
n

r1,r2

)
=

(
n
r1

)(
n−r1

r2

)
.

The probability psplit. The probability that the number of 1s and −1s in the
last 2N − y2 entries of F is equal to c is given by

psplit =
(

y2 − N

df − c, df − c

)(
2N − y2

c, c

)(
N

df , df

)−1

If the NTRUEncrypt public key was h = g/F then any of the rotations of F
would be suitable for the MITM attack, so this probability should be increased
to

p′split = 1 − (1 − psplit)N ,

assuming the N rotations behave like independent trials.
In the case when the NTRUEncrypt public key is h = g/f then we do not

see a way to exploit the cyclic symmetry, so when assessing the MITM work in
the current security case we will be using the probability psplit. However, when
assessing the MITM work in the conservative security case we will assume that
the rotations can still somehow be exploited and use the probability p′split.

448 P.S. Hirschhorn et al.

The probability ps. In [12] the probability ps was experimentally calculated,
whereas for parameter generation we must calculate this probability mathemat-
ically. To make this possible we make the following assumption (which very
closely models reality).

Assumption 5. We assume the orthonormal matrix Y defined in [12] (which
is an output of the lattice reduction stage) is suitably random so that the error
vector (g|f1)Y can be modeled by a normal distribution with mean zero, and
variance σ2 = |g|2 + |f1|2 = 2dg + 2(df − c).

As explained in [12] the probability ps denotes the probability that an “error
vector” e is such that BabaiB(v) = BabaiB(v + e) where BabaiB(v) denotes
applying Babai’s nearest plane CVP algorithm to the point v with respect to
the basis B, i.e. the addition of the error vector e does not change the returned
close lattice vector.

In NTRUEncrypt the error vector e results from the multiplication of a trinary
vector (of norm-squared 2dg+2(df−c)) with an orthonormal matrix, Y , resulting
from lattice reduction. Under the assumption that Y is “suitably random”, we
can model the error vector e as (y2−y1) coefficients drawn independently from a
normal distribution with mean 0 and variance σ2 = 2dg + 2(df − c). This model
fits extremely closely with experimental results from 109 separate convolution
calculations.

Let v be a vector of length y2 − y1 with coefficients satisfying 0 ≤ vi ≤
qα+i(1−α)/(y2−y1), i.e. v is weakly reduced with respect to a basis that satisfies
the GSA. In this case ps is the probability that the vector w = v + e satisfies the
conditions 0 ≤ wi ≤ qα+i(1−α)/(y2−y1) for every i. We now show how to calculate
ps exactly, assuming the above model of the error vector e.

Let D = qβ for some α ≤ β ≤ 1. We assume any given coefficient is uniform
in the range [0, D) and is subject to the addition of an error term drawn from a
normal distribution with variance σ2 and mean 0. For any given x ∈ [0, D) the
probability that this sum is no longer in the range [0, D) – in other words, the
probability that a particular coefficient will be reduced incorrectly – is given by:

fD,σ(x) =
1
2

(
erfc

(
x

σ
√

2

)
+ erfc

(
D − x

σ
√

2

))

= 1 − 1
2

(
erf

(
x

σ
√

2

)
+ erf

(
D − x

σ
√

2

))

See Figure 2(a) for an example of this function. Note that, so long as σ2 < D,
we have fD,σ(0) = 0.5 and fD,σ(D) = 0.5 as the values of ei will be positive or
negative with probability 0.5. The expected value of f when x is chosen uniformly
from [0, D) is given by:

fD,σ =
1
D

∫ D

0

fD,σ(x)dx.

This value is also plotted in Figure 2(a).

Choosing NTRUEncrypt Parameters 449

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

(erfc(x/(s*sqrt(2))) + erfc((D-x)/(s*sqrt(2))))/2
erfc(D/(s*sqrt(2)))-s*sqrt(2)*(exp(-D**2/(2*s**2))-1)/(D*sqrt(pi))

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

erfc(2048**x/(s*sqrt(2)))-s*sqrt(2)*(exp(-2048**(2*x)/(2*s**2))-1)/(2048**x*sqrt(pi))

Fig. 2. (a) fD,σ(x) and fD,σ when D = 20481/4, σ2 = 2/3, 0 ≤ x ≤ D; (b) fqβ ,σ when
q = 2048, σ2 = 2/3, −1 ≤ β ≤ 1

Now we can analyze the behavior of fD,σ with D. From well known properties
about the error function erf () we know that:

∫ D

0

erf
(

x

σ
√

2

)
dx = σ

√
2
∫ D

σ
√

2

0

erf (y) dy

= σ
√

2

[
y erf (y) +

e−y2

√
π

] D
σ
√

2

0

= D erf
(

D

σ
√

2

)
+

σ
√

2√
π

(
e−

D2

2σ2 − 1
)

and ∫ D

0

erf
(

D − x

σ
√

2

)
dx =

∫ D

0

erf
(

x

σ
√

2

)
dx.

Thus we have

fD,σ = erfc
(

D

σ
√

2

)
− σ

√
2

D
√

π

(
e−

D2

2σ2 − 1
)

.

This function is sketched in Figure 2(b) with D = qβ , −1 ≤ β ≤ 1.
Now we can calculate ps(y2, α, q, σ) which is the probability that none of the

coefficients in the middle y2 − y1 coefficients of γ are reduced incorrectly (note
that y1 is related to y2 and α by (4)):

ps =
(

1 − 2
3q

)y1 y2−y1∏
i=0

(
1 − f

q
α(y2−y1)+i(1−α)

y2−y1 ,σ

)

=
(

1 − 2
3q

) 2N−y2(1+α)
1−α

2(y2−N)
1−α∏
i=0

(
1 − f

q
2α(y2−N)+i(1−α)2

2(y2−N) ,σ

)

The time for the CVP algorithm. Each step in the MITM search phase
involves a reduction against a (y2) × (y2) matrix. In this paper we assume the

450 P.S. Hirschhorn et al.

reduction is performed by Babai’s method [1]. Babai’s reduction is experimen-
tally found to take about t = y2

2/21.06 operations where bit operations are defined
as in [14].

For conservative estimates, we assume that since the MITM phase involves
multiple reductions against the same reduced matrix, there will be some opti-
mization involving precomputation that reduces the running time by a factor of
y2 to t′ = y2/21.06.

We note that there may be other means of carrying out this weak-CVP reduc-
tion phase. Babai’s reduction is likely to be the most efficient when measured
purely in terms of the time for the reduction. However, it is conceivable that
a slower reduction algorithm exists which results in higher values for ps, and
that this algorithm might give better results for an attacker than the current
approach.

Assumption 6. We assume that Babai’s nearest plane algorithm is the most ef-
fective CVP approach to use in the hybrid attack (in terms of collision probability
divided by time).

We note that contradicting this assumption does not necessarily mean that the
proposed NTRUEncrypt parameters are weak, since conservative security esti-
mates have been made in many other areas. However it is an interesting open
question to know whether or not there is a more efficient CVP approach to be
used in the hybrid attack.

The expected number of half-guesses required. It is explained in [12] that
the hybrid attack works by choosing a linear combination of the last 2N − y2

rows of LNTRU with c/2 1s and c/2 −1s. The number of such combinations is
given by

N0 =
(

2N − y2

c/2, c/2

)(
c

c/2, c/2

)−1

.

However since we require the two halves to collide after the CVP stage the
probability of picking such a “good” combination is only psN−1

0 .
Moreover in [12] it is argued that, by the birthday paradox, one should ex-

pect to try
√

ps

(
c

c/2,c/2

)
samples before finding two halves that actually match.

Thus the number of trials before a collision will occur for the current security is
approximated by

N =
(

2N − y2

c/2, c/2

) ((
c

c/2, c/2

)
ps

)−1/2

In estimating the number of trials before collision with occur with conservative
security we assume that generalized birthday methods can be applied so just
one8 “good” combination is sufficient to find a collision, i.e. we use the estimate
N ′ = N0/ps. This conservative assumption may be close to reality as indicated
by the work in [13].
8 Or more realistically a small constant number of good combinations.

Choosing NTRUEncrypt Parameters 451

6 Message Recovery

One can estimate the hardness of message recovery as opposed to key recovery
in a similar way to the above. The ciphertext point (c, 0) is only (m′,−r) away
from a lattice point of LNTRU . In our family of NTRU parameters we know
dr = df , but m′ is a random trinary vector, with an un-fixed number of 0s,
1s and −1s. If m′ is very sparse for example, then message recovery could be
easier than key recovery. We also note that the value of m′(1) is leaked by each
ciphertext since c(1) = m′(1) + r(1)h(1) mod q.

Clearly an encrypter cannot leak the private key in a public-key encryption
scheme (since they know no more information than an attacker), but they might
leak their message m. However we observe that the encrypter does see m′, r, so
she can re-encrypt if she wants. We note that the probability of re-encryption
depends on the parameter set, and parameters may be rejected if this probability
is too high for comfort.

In this report we make the following simplifying assumption:

Assumption 7. An encrypter that re-encrypts whenever the number of 1s or
−1s in m′ falls below df does not make message recovery fall below the required
security level.

When comparing the message recovery problem to the key recovery problem
there are two factors to take in to consideration: one that is good for an attacker,
and one that is bad. Firstly if an attacker knows m′ only has df 1s and −1s, the
message recovery lattice problem is actually slightly easier than the key recovery
problem since ps will be larger in this case (due to the fact that g is thicker
than m′). However the second factor is that m′ is unknown to an attacker, so
the probability of a sparse m′ should be factored in to an attackers strategy. We
note that the probability of a random trinary N -vector having dm ones and dm

minus ones is given by
(

N
dm,dm

)
.

To garner belief in Assumption 7 we compared the expected ps for message
security to the ps for key security (in the case of ciphertexts satisfying m′(1) = 0)
for each of the optimal attack parameters given in Section 7. The expected ps

probability for the message recovery problem was improved by at most 0.1 bits
from the key recovery ps probability, which suggests that message recovery is
very closely tied to key security, and hence Assumption 7 is realistic.

7 Parameter Sets

The results of running the parameter generation algorithm under conservative
assumptions about the strength of lattice attacks and MITM attacks is given in
Table 1. For each security level k we give the optimized parameter sets (N, df)
for each of the three cost metrics.

We also assess the strength, k′, of parameter sets under current assumptions
about the strength of lattice attacks, and MITM attacks, to show the safety
margin “built-in” to the parameters.

452 P.S. Hirschhorn et al.

Table 1. Standardized NTRU Parameters (conservative)

space trade-off speed
k (N, df), k′ (N, df), k′ (N, df), k′

112 (401, 113), 154.88 (541, 49), 141.766 (659, 38), 137.861

128 (449, 134), 179.899 (613, 55), 162.385 (761, 42), 157.191

192 (677, 157), 269.93 (887, 81), 245.126 (1087, 63), 236.586

256 (1087, 120), 334.85 (1171, 106), 327.881 (1499, 79), 312.949

Table 2. Optimal attack parameters

space trade-off speed

k (N, df), (y2, c, α) (N, df), (y2, c, α) (N, df), (y2, c, α)
(y1, ps, psplit, Y, t) (y1, ps, psplit, Y, t) (y1, ps, psplit, Y, t)

112 (401, 113), (693, 27, 0.095) (541, 49), (800, 15, 0.149) (659, 38), (902, 13, 0.175)
(48,−45.4,−0.6, 57.7, 8.4) (192,−26.9,−13.1, 63.6, 8.6) (313,−21.9,−17.7, 63.7, 8.8)

128 (449, 134), (770, 35, 0.100) (613, 55), (905, 17, 0.142) (761, 42), (1026, 15, 0.183)
(57,−49.0,−0.3, 70.2, 8.5) (225,−31.5,−14.9, 72.9, 8.8) (378,−23.1,−20.9, 75.2, 8.9)

192 (677, 157), (1129, 45, 0.096) (887, 81), (1294, 27, 0.143) (1087, 63), (1464, 23, 0.175)
(129,−67.4,−2.0, 113.6, 9.1) (345,−43.9,−21.9, 117.0, 9.3) (550,−34.2,−31.9, 116.7, 9.5)

256 (1087, 120), (1630, 39, 0.127) (1171, 106), (1693, 37, 0.144) (1499, 79), (1984, 29, 0.174)
(386,−64.1,−24.9, 157.9, 9.6) (474,−56.0,−28.7, 161.8, 9.7) (809,−44.4,−47.8, 153.9, 9.9)

For the reader that is interested in knowing the exact attack parameters which
match lattice security and MITM security (and hence give the security level), we
give this information in Table 2. In this table Y denotes the number of iterations
of the MITM attack, and t denotes the bit-security per iteration (i.e. the cost of
Babai’s CVP algorithm).

8 Conclusions

We have introduced a family of NTRU parameters parametrized by (N, df) and
shown how to estimate their strength. We have used this algorithm to generate
parameters sets for the k = 112, 128, 192 and 256-bit security levels under
conservative assumptions about the effectiveness of lattice reduction algorithms
and the MITM attack. To highlight the safety margin we have built in to the
new parameters we have also estimated how hard the parameters are to attack
under more current assumptions.

A future line of work may be in expanding the size of the NTRU family
of parameters to allow for even better optimized parameters. For example the
family we have defined uses a fixed q = 2048, whereas a smaller q could reduce
the bandwidth and public key-size used in the cryptosystem. To propose such
parameters more lattice experiments would have to be run at lower values of
q, and one would need to ensure that the decryption failure probability is still
small enough.

Choosing NTRUEncrypt Parameters 453

References

1. Babai, L.: On Lovasz’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

2. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy,
B., te Riele, H.J.J., et al.: Factorization of a 512-bit RSA modulus. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 1–17. Springer, Heidelberg (2000)

3. Coppersmith, D., Shamir, A.: Lattice Attack on NTRU. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

4. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

5. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 182. Springer, Heidelberg (2001)

6. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A new high speed public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

7. Hoffstein, J., Silverman, J.H.: Invertibility in truncated polynomial rings. Technical
report, NTRU Cryptosystems, Report #009, version 1 (October 1998), http://
www.ntru.com

8. Hoffstein, J., Silverman, J.H.: Random small hamming weight products with ap-
plications to cryptography. Discrete Applied Mathematics 130(1), 37–49 (2003)

9. Howgrave-Graham, N., Nguyen, P., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The Impact of Decryption Failures on the Security of
NTRU Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–
246. Springer, Heidelberg (2003)

10. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NAEP: Provable
Security in the Presence of Decryption Failures IACR ePrint Archive, Report 2003-
172, http://eprint.iacr.org/2003/172/

11. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing Parameter Sets for
NTRUEncrypt with NAEP and SVES-3 CT-RSA, pp. 118–135 (2005)

12. Howgrave-Graham, N.: A hybrid meet-in-the-middle and lattice reduction attack
on NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169.
Springer, Heidelberg (2007)

13. Joux, A., Howgrave-Graham, N.: Generalized birthday problems applied to subset
sum (manuscript)

14. Lenstra, A., Verheul, E.: Selecting Cryptographic Key Sizes. Journal of Cryptol-
ogy 14(4), 255–293 (2001)

15. Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal
Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

16. Mol, P., Yung, M.: Recovering NTRU Secret Key from Inversion Oracles. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 18–36. Springer, Heidelberg
(2008)

17. Rivest, R., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

18. RSA Laboratories, RSAES-OAEP Encryption Scheme, ftp://ftp.rsasecurity.
com/pub/rsalabs/rsa/_algorithm/rsa-oaep_spec.pdf

19. Schnorr, C.P.: Lattice Reduction by Random Sampling and Birthday Methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003)

http://www.ntru.com
http://www.ntru.com
http://eprint.iacr.org/2003/172/
ftp://ftp.rsasecurity.com/pub/rsalabs/rsa/_algorithm/rsa-oaep_spec.pdf
ftp://ftp.rsasecurity.com/pub/rsalabs/rsa/_algorithm/rsa-oaep_spec.pdf

454 P.S. Hirschhorn et al.

20. Vaudenay, S.: Hidden Collisions on DSS. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 83–88. Springer, Heidelberg (1996)

A Lattice Experiments

In this section we aim to give plausible estimates for the running time to reduce
the first y2 rows of the NTRU lattice LNTRU with “quality” α.

It would be nice if there were standard ways to do this is the academic lit-
erature, but unfortunately no such work has been done. The paper [4] sounds
promising but, despite the title, it does not allow us to predict lattice reduc-
tion times for a given quality of reduced basis if we, say, had computing power
equivalent to 280 operations.

We note that our notion of the reduction quality α is not strictly a traditional
notion9 of the quality of reduction of a lattice, but it is the most natural measure
for the MITM attack.

We define the profile of an NTRU basis {b1, b2, . . . , b2N} to be a plot of the
logq |b∗i |. As in [12] we assume that the profile after lattice reduction has taken
place looks like Figure 3, that is there is an initial flat portion, followed by
an almost linear reduction in the |b∗i |, as predicted by the Geometric Series
Assumption (GSA) first stated in [19].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

’prof502.txt’

Fig. 3. log197 |b∗i | for i = 1, . . . , 502, with y2 = 302

The final 2N − y2 rows are shown in Figure 3 are not touched by lattice
reduction (so the logq |b∗i | remain 0). We define y1 to be the number of the initial
“reduced” vectors satisfying logq |b∗i | = 1. These initial y1 vectors are also not
really touched by lattice reduction, so we look on this as a y2 − y1 dimensional
lattice problem. Indeed, as explained in [12], the reduced basis may be produced
by extracting and reducing a (y2 − y1)× (y2 − y1) submatrix from LNTRU , and
then applying some simple matrix operations.

We define α = |b∗y2
| to be the size of the last b∗i in the reduced portion, and

we note that spending more time on lattice reduction will increase this value.
9 Traditional notions typically involve the ratio of the smallest vector found to the

smallest vector in the lattice, but they are closely related to our notion since such
bounds generally come from bounding the last |b∗i | achieved by lattice reduction.

Choosing NTRUEncrypt Parameters 455

Note that, by the invariance of the determinant, and assuming the GSA, all
such profiles satisfy y1 + (1/2)(y2 − y1)(1 + α) = N , so we have:

y1 =
2N − y2(1 + α)

1 − α
, (4)

which implies the dimension of the lattice problem is n = y2 − y1 = 2(y2 −
N)/(1 − α).

We define the “GSA-slope” δ to be the average of δi = log |b∗i | − log |b∗i+1| for
y1 < i ≤ y2. Assuming the GSA we have δ = (1 − α)2/(2(y2 − N)).

A reasonable way to model10 lattice reduction running times is to expect a
small polynomial dependency on the lattice dimension (i.e. n3), and a singly
exponential11 dependency on δ−1.

As part of research for this paper we have developed a new and very effective
lattice reduction technique, which we refer to as “isodual lattice reduction”. We
will describe this technique more fully in a separate paper. The effectiveness
of this technique is shown by the fact that we have achieved reduced bases in
time about 243 which if one had simply increased the BKZ blocksize would have
needed about 2100 work. The isodual running times are broadly in line with the
model of running times presented in this paper.

We suggest two levels of the asymptotic hardness of lattice reduction on NTRU
lattices with q = 2048. One generated by extrapolating the (end of the) best
known running times in low dimension (Equation 5), and the other (Equation 6)
is proposed as a more aggressive challenge for lattice reduction:

log2 t = 0.2δ−1 + 3 log n − 50 = 0.4
y2 − N

(1 − α)2
+ 3 log

2(y2 − N)
1 − α

− 50, or (5)

log2 t = 0.45δ−1 + 3 logn − 110 = 0.9
y2 − N

(1 − α)2
+ 3 log

2(y2 − N)
1 − α

− 110. (6)

Figure 4 shows the number of initial q-vectors which were removed for various
lattice strategies, and the asymptotes with α = 0.

 34

 36

 38

 40

 42

 44

 46

 120 130 140 150 160 170 180

f3(x)
LLL_10
LLL_20
LLL_30
LLL_40
LLL_50
LLL_60
LLL_70
LLL_80
LLL_90

BKZ_210_2
BKZ_210_10
BKZ_210_15
BKZ_210_18

recur_168_4_18
recur_168_4_19
recur_168_4_20
recur_168_4_21
recur_168_4_22
reps_168_4_23
reps_168_4_24
reps_168_4_25
reps_168_4_26

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

f3(x)
f1(x)

LLL_10
LLL_20
LLL_30
LLL_40
LLL_50
LLL_60
LLL_70
LLL_80
LLL_90

BKZ_210_2
BKZ_210_10
BKZ_210_15
BKZ_210_18

recur_168_4_18
recur_168_4_19
recur_168_4_20
recur_168_4_21
recur_168_4_22
reps_168_4_23
reps_168_4_24
reps_168_4_25
reps_168_4_26

Fig. 4. Best known lattice running times

10 The veracity of this model should be examined further, especially when α > 0, but
it does seem a reasonable model.

11 It can be no “more secure” that this asymptotically since an NTRU-lattice can be
fully searched in time qN .

	Choosing NTRUEncrypt Parameters in Light of Combined Lattice Reduction and MITM Approaches
	Introduction
	NTRU Background
	Attacks on {\it NTRUEncrypt}

	An Overview of Parameter Generation
	The Criteria for Valid Parameters
	The Space of Valid Parameters
	The Algorithm

	Decryption Failure Probability
	Cost Functions
	Hybrid Security
	Overview
	Lattice Security
	MITM Security

	Message Recovery
	Parameter Sets
	Conclusions
	References
	A Lattice Experiments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

