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Abstract. Many large-scale biometric systems operate in the identification mode
and include multimodal information. While biometric fusion is a well-studied
problem, most of the fusion schemes have been implicitly designed for the ver-
ification scenario and cannot account for missing data (missing modalities or
incomplete score lists) that is commonly encountered in multibiometric identi-
fication systems. In this paper, we show that likelihood ratio-based score fusion,
which was originally designed for verification systems, can be extended for fu-
sion in the identification scenario under certain assumptions. We further propose a
Bayesian approach for consolidating ranks and a hybrid scheme that utilizes both
ranks and scores to perform fusion in identification systems. We also demonstrate
that the proposed fusion rules can handle missing information without any ad-hoc
modifications. We observe that the recognition performance of the simplest rank
level fusion scheme, namely, the highest rank method, is comparable to the per-
formance of complex fusion strategies, especially when the goal is not to obtain
the best rank-1 accuracy but to just retrieve the top few matches.

1 Introduction

Biometric systems can operate in two modes, namely, verification and identification.
In verification, the query is compared only to the template of the claimed identity and
the identity claim is accepted as “genuine” if the degree of similarity is sufficiently
high. On the other hand, the goal in identification systems is to determine the identity
of an individual from a large set of possible identities. Here, the user’s biometric in-
put is compared with the templates of all the persons enrolled in the database and the
system outputs either the identity of the person whose template has the highest degree
of similarity with the user’s input (closed set ID) or a decision indicating that the user
presenting the input is not an enrolled user (open set ID). Many large-scale biometric
applications such as the FBI-IAFIS and US-VISIT IDENT program work in the open-
set identification mode. Since the number of enrolled users in the database can be quite
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large (e.g., more than 80 million subjects in the FBI-IAFIS system [1]), the identifica-
tion task is significantly more challenging than verification.

Since multibiometric systems provide several advantages over unimodal systems
such as increased population coverage and lower error rates, the databases in many
large scale ID systems are increasingly becoming multimodal (e.g., fingerprint, face
and palmprint in Next Generation IAFIS, multiple fingers and face in US-VISIT). Bio-
metric fusion has been extensively studied in the literature and a number of fusion
schemes have been proposed [2]. However, most of the existing fusion schemes have
been implicitly designed for the verification scenario. For instance, the density-based
and classifier-based approaches typically model biometric fusion as a two-class (gen-
uine and impostor) classification problem. Hence, such schemes cannot be directly ap-
plied to the identification scenario. In [3], Tulyakov and Govindaraju identified four
possible strategies in the context of combining multi-class classifiers and described a
method for improving the verification performance of a biometric system by utilizing
scores obtained by matching the query to all the templates in the database. However,
they fail to provide a technique for optimizing the identification performance.

Moreover, the problem of missing data is frequently encountered in large scale multi-
biometric ID systems. The missing information may be in the form missing modalities
in the template or the query or incomplete score/rank information from the individual
matchers. In many pattern classification systems, the problem of missing feature val-
ues is handled either through imputation (predicting the missing values based on the
available features) or by designing dynamic classification rules. One such example is
the approach proposed by Dinerstein et al. [4], which involves learning a separate Sup-
port Vector Machine (SVM) classifier for each possible combination of input modalities
and selecting the appropriate SVM based on the query presented during authentication.
However, such a solution is clearly inefficient and not scalable.

Our goal is to develop a biometric fusion scheme specifically for the identification
mode that can seamlessly handle partial information without any need for designing
rules on a case-by-case basis. Towards this end, we have made the following three
contributions. Firstly, we present a mathematical framework for score fusion in iden-
tification systems. Secondly, we propose a Bayesian scheme for rank-level fusion in
multibiometric systems, which can be combined with the score fusion framework to
obtain a hybrid score-rank fusion scheme. Finally, we also demonstrate the effective-
ness of the proposed schemes in handling missing information.

2 Score Fusion in Multibiometric Identification

A likelihood ratio (LR)-based framework for score level fusion was presented in [5] for
the verification scenario. This LR framework is based on the Neyman-Pearson theorem
and it maximizes the genuine accept rate (GAR) at any desired false accept rate (FAR),
provided the genuine and impostor match densities are known or can be estimated ac-
curately. By following a Bayesian approach, we now show that the likelihood ratios
computed in the LR framework can also be used for fusion in the identification scenario
provided the following three assumptions are satisfied: (i) prior probabilities are equal
for all users, (ii) the match scores for different persons are independent of one another,
and (iii) genuine (impostor) match scores of all users are identically distributed.
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Table 1. Transpose of a sample match score matrix, S, from the NIST-Multimodal database.
Since the number of enrolled users in this database is 517 and the number of modalities is 4, S
is a 517 × 4 matrix.

User # 1 2 3 4 · · · 514 515 516 517
Left Index Finger 29 17 8 8 · · · 9 6 4 9

Right Index Finger 84 7 7 5 · · · 8 5 4 7
Face Matcher 1 0.58 0.57 0.46 0.51 · · · 0.52 0.55 0.49 0.52

Face Matcher 2 73.6 73.9 65.7 65.4 · · · 66.3 66.7 66.8 72.2

Let K denote the number of matchers in the multibiometric system and N be the
number of persons enrolled in the system. Suppose for a given query, we observe the
N × K score matrix S =

[
sk

n

]
(see Table 1). Note that sk

n represents the match score
output by the kth matcher for the nth template in the database, k = 1, · · · , K; n =
1, · · · , N . Our goal is to determine the true identity I of the given query based on S.
According to the Bayes decision theory [6], the query should be assigned to the identity
In0 that maximizes the posteriori probability, i.e.,

Assign query to identity In0 if

P (In0 |S) ≥ P (In|S), ∀ n = 1, · · · , N. (1)

The above decision rule applies only to closed set identification. For open set identifica-
tion, the query is assigned to identity In0 only when equation (1) holds and P (In0 |S) ≥
τ , where τ is a threshold. We can estimate the posteriori probabilities P (In|S) in the
following manner. According to the Bayes theorem,

P (In|S) =
p(S|In)P (In)

p(S)
, (2)

where p(S|In) is the likelihood of observing the score matrix S given that the true
identity is In and P (In) is the prior probability of observing the identity In. Under the
assumption of equal priors for all users, the posteriori probability P (In|S) is propor-
tional to the likelihood p(S|In). Ideally, we would like to estimate the conditional den-
sity of S individually for each user because it captures the complete information about
dependencies between the scores assigned to the different users and the user-specific
characteristics of the match scores. However, directly estimating the conditional den-
sity of S is not practical due to the following two reasons: (i) since S is a N × K
dimensional matrix and N is usually quite large in identification scenarios, estimating
the density of S requires a significant number of training samples for each user, which
is not generally available in multibiometric databases; and (ii) the density of S needs to
be re-estimated frequently due to changes in the list of enrollees.

If match scores for different persons are independent of one another, the likelihood
p(S|In) can be simplified as

p(S|In) =
N∏

j=1

p(sj |In) = p(sn|In)
N∏

j=1,j �=n

p(sj |In). (3)
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Here, p(sn|In) represents the density of genuine match scores corresponding to user
In (denoted by fgen,n(·)) and p(sj |In), j �= n represents the densities of the impostor
scores (denoted by fimp,n(·)). However, when the genuine (impostor) match scores of
all users are assumed to be identically distributed (fgen,n(·) = fgen(·) and fimp,n(·) =
fimp(·), ∀ n), equation (3) can be further simplified as

p(S|In) = fgen(sn)
N∏

j=1,j �=n

fimp(sj) =
fgen(sn)
fimp(sn)

N∏

j=1

fimp(sj). (4)

Thus, the likelihood of observing the score matrix S given that the true identity is In

is proportional to the likelihood ratio that was used by the authors in [5] for the veri-
fication scenario. Furthermore, if we assume that the scores of different matchers are
conditionally independent, we can estimate the joint density of the genuine (impos-
tor) match scores by the product of the marginal densities. Hence, the decision rule in
equation (1) can be restated as

Assign query to identity In0 if

K∏

k=1

fk
gen(sk

n0
)

fk
imp(sk

n0
)
≥

K∏

k=1

fk
gen(sk

n)
fk

imp(sk
n)

, ∀ n = 1, · · · , N, (5)

where fk
gen(·) and fk

imp(·) are the marginal densities of the genuine and impostor match
scores, respectively, output by the kth matcher.

3 Bayesian Approach for Rank Level Fusion

When a biometric system operates in the identification mode, the output of the system
may also be a set of ranks (possible matching identities sorted in a decreasing order
of match scores). Although the ranks are derived from the match scores, the rank in-
formation captures the relative ordering of the scores corresponding to different users.
Suppose for a given query, we observe the N × K rank matrix R =

[
rk
n

]
, where rk

n

represents the rank output by the kth matcher for the nth template in the database,
k = 1, · · · , K; n = 1, · · · , N . Let r

′
n be a statistic computed for user n such that the

user with the lowest value of r
′

is assigned the highest consensus (or reordered) rank.
For example, in the highest rank method [7], each user is assigned the highest rank
(minimum r value) as computed by different matchers, i.e., the statistic for user n is

r
′
n =

K
min
k=1

rk
n. (6)

Ties are broken randomly to arrive at a strict ranking order based on the new statistic r
′
.

Ho et al. [7] proposed other methods such as Borda Count and logistic regression, which
compute the statistic r

′
as a linear combination of the ranks. Melnik et al. [8] proposed

the use of non-linear functions to combine the ranks of the individual matchers.
We now propose a new rank combination statistic based on Bayes decision the-

ory. Let Pk(r) be the probability that the identity which is assigned rank r by the kth
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matcher is the true identity, r = 1, · · · , N ; k = 1, · · · , N . Note that the cumulative dis-
tribution function of the discrete rank distribution Pk(r) is nothing but the Cumulative
Match Characteristic (CMC) curve [9], which is commonly used to depict the perfor-
mance of an identification system. Grother and Phillips [10] and Bolle et al. [11] show
that the rank distribution Pk(r) can be estimated provided the marginal genuine and
impostor match score densities fk

gen(·) and fk
imp(·) are known. This estimation again

requires two of the assumptions used in section 2, namely, (i) scores of the individual
users are independent and (ii) score distributions of different users are identical.

For a given query, suppose that the identity In is assigned the rank rk
n by the kth

matcher. From the definition of the rank distribution Pk(r), Pk(rk
n) is the posteriori

probability that In is the true identity given rk
n. Further, if we assume that the matchers

are independent, we can compute the new rank combination statistic as the product of
the posterior probabilities of the individual matchers.

r
′
n =

K∏

k=1

Pk(rk
n), for n = 1, · · · , N. (7)

For the rank statistic computed using equation (7), the user with the largest value of r
′

should be assigned the highest consensus rank. So, the rank posterior based fusion rule
can then be defined as follows.

Assign query to identity In0 if

r
′
n0

≥ r
′
n, ∀ n = 1, 2, · · · , N. (8)

Note that likelihood ratio based score fusion rule shown in equation (5) utilizes only
the match scores corresponding to a particular user, when computing the likelihood ratio
for that user. In other words, the relative information between the scores of different
users is ignored when computing the score likelihood ratio. On the other hand, the rank
posterior based fusion rule in equation (8) considers only the relative order information
between the scores of different users and the actual score values are ignored. Therefore,
we can treat the score and rank information as two different pieces of evidence and
define a hybrid fusion scheme that utilizes both the match scores and the ranks. Let R
be the combined score and rank statistic, defined as

Rn(S, R) = P (In|S)r
′
n, (9)

where the posterior probability based on the match score matrix S, P (In|S), is com-
puted by substituting equation (4) in equation (2) and the posterior probability based on
the rank matrix R is obtained using equation (7). The hybrid score-rank fusion rule can
then be defined as

Assign query to identity In0 if

Rn0 ≥ Rn, ∀ n = 1, 2, · · · , N. (10)
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4 Fusion with Missing Data

In a multibiometric ID system, three types of missing data can occur. Firstly, not all the
biometric information corresponding to an individual may be available in the database.
This leads to missing modalities (templates) for some of the users. Secondly, all the
modalities may not be available from the user during authentication, resulting in in-
complete queries. Finally, the individual matchers may output a partial list of scores or
ranks corresponding to only the top m matching identities. Missing data needs to be
accounted for, both when training the fusion algorithm and during identification.

The likelihood ratio-based score fusion technique presented in equation (5) has the
ability to handle the three kinds of missing data. Since we assume that the score distri-
butions are identical for all users and the matchers are independent, we need to estimate
only the marginal genuine and impostor match score densities for each matcher. There-
fore, even if some of the scores in the score matrix S are not available for a fraction of
the users, we can still estimate the required densities by pooling match scores from all
the users. During identification, when a match score sk

n is not available, it implies that
the kth matcher does not provide any evidence in support of the nth identity. This fact
can be easily incorporated in equation (5) by setting the corresponding likelihood ratio
fk

gen(sk
n)/fk

imp(s
k
n) to the value 1 with no change in the decision rule required.

Missing data affects the rank posterior-based fusion scheme more severely. When
there are missing templates in the database, the rank information provided by a matcher
is not quite meaningful. An incorrect identity may be assigned rank 1 (even when the
match score is very low) if the template corresponding to the true identity is not avail-
able. Hence, it is not possible to estimate the rank distribution accurately when there
are missing templates. Consequently, the rank posterior-based fusion scheme and the
hybrid score-rank fusion scheme cannot be employed in this scenario. However, in
the case of a missing modality in the query sample presented during authentication,
the rank posterior-based technique can still be used by assigning equal posterior prob-
abilities to all the users, i.e., if the kth modality is not available in the query sample,
P (In|rk

n) = 1/N, ∀ n = 1, · · · , N . Partial rank lists can be handled by randomly
assigning lower ranks to the identities that were not originally assigned a rank by the
matcher. For example, if a matcher outputs only the ranks corresponding to the top
m matching identities, the other identities can be randomly assigned the ranks from
(m + 1) to N . In most biometric matchers, the probability Pk(r) is high only for the
top few matches and is very small for large r. Therefore, the random assignment of
lower ranks does not affect the performance of the system.

5 Performance Evaluation

The identification performances of various score and rank level fusion strategies were
evaluated on the three partitions of the NIST-BSSR1 database. The first partition is
the NIST-Multimodal database, consisting of 517 users with two fingerprints (left and
right index fingers) and two face scores (obtained from two different face matchers).
The second partition of NIST-BSSR1 is the NIST-Fingerprint database, which is an
example of multi-instance(finger) biometric system. This partition consists of scores
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Fig. 1. Cumulative Match Characteristic (CMC) curve of highest rank fusion and the hybrid score-
rank fusion rules on (a) NIST-Multimodal (K = 4, N = 517), (b) NIST-Fingerprint (K =
2, N = 6, 000) and (c) NIST-Face (K = 2, N = 3, 000) databases. The CMC curves shown
here are the average recognition rates obtained over 20 cross-validation trials.

from left and right index fingerprint matches of 6, 000 individuals. The third partition
is the NIST-Face database, which consists of scores from two face matchers applied on
three frontal face images from 3, 000 individuals.

The cumulative match characteristic (CMC) curves of the individual matchers and
the highest rank and hybrid score-rank fusion rules on the NIST-BSSR1 database are
shown in Figures 1(a), 1(b) and 1(c). In each experiment, half the users were randomly
selected to be in the training set for estimating the marginal densities and the rank
distribution. The remaining half of the database was used for evaluating the fusion per-
formance. The above training-test partitioning was repeated 20 times and the reported
CMC curves correspond to the mean identification rates over the 20 trials. The Gaussian
mixture model based scheme [5] was used for estimating the score densities.

Among the various rank level fusion schemes such as highest rank, Borda count and
logistic regression, we observed that the highest rank method achieves the best rank-m
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recognition rate when m ≥ K , where K is the number of matchers. Hence, only the
recognition rates of the highest rank method are reported here. It is well-known that
the highest rank method works well when the number of users is large compared to the
number of matchers [7], which is usually the case in biometric identification systems.
This is because the highest rank method utilizes the strength of each matcher effectively.
Even if only one matcher assigns a high rank to the correct user, it is likely that the
correct user will receive a high rank after reordering. However, there can be up to K
ties at rank 1 due to conflicting decisions output by the K matchers. Since the ties
are broken randomly without considering the relative accuracies of the matchers, the
identification rates at ranks 1 to K − 1 are not very high. In fact, the rank-1 accuracy of
the highest rank method is usually less than that of the best individual matcher.

The recognition rates of likelihood ratio-based score fusion, rank posterior fusion
and hybrid score-rank fusion rules were observed to be quite similar on all the three
partitions of NIST-BSSR1. While the hybrid score-rank fusion rule achieves a marginal
improvement in the recognition rates over the other two fusion rules, the differences in
the recognition rates of the three fusion rules is less than 1% at all ranks. Therefore, only
the performance of the hybrid score-rank fusion rule is reported in Figures 1(a), 1(b)
and 1(c). In the case of the NIST-Multimodal database, the hybrid score-rank fusion rule
provides 100% rank-1 accuracy, while the rank-1 accuracy of the best single matcher
(right index finger) was only 93.7%. The hybrid score-rank fusion rule improves the
rank-1 accuracy from 88.9% for the best single matcher (right index finger) to 94% on
the NIST-Fingerprint database. Finally, on the NIST-Face database the improvement is
comparatively lower (81.2% for the best face matcher and 84.1% for the score-rank
fusion rule) due to the strong correlation between the two face matchers.

The results also indicate that the performance of the simplest rank level fusion scheme,
namely, the highest rank method, is comparable to performance of the more complex
score and rank fusion strategies for ranks greater than or equal to K , where K is the
number of matchers. Therefore, in practical multibiometric ID systems with a large num-
ber of users, it may be sufficient to use the highest rank method if the goal is to retrieve
the top few matches. However, if the best rank-1 accuracy is desired and if the score
information is available, then the hybrid score-rank fusion rule can be employed.

We have also evaluated the robustness of the fusion schemes under the missing data
scenario. We simulate missing data by randomly removing scores from the score matri-
ces obtained from NIST-BSSR1 with probability mp (whose value is set to 0.05, 0.1 or
0.25). When the template corresponding to the kth modality of user n is deemed to be
missing, only the score sk

n is removed. When the kth modality is deemed to be missing
in the query, the kth column in the score matrix S is removed (see Table 2). While sim-
ulating missing data, care is taken to ensure that each user has a template corresponding
to at least one modality and each query provides at least one modality to be used for
identification. To avoid cases where there are no common modalities between the query
and the user templates in the database (e.g., only the left index fingerprint of a user is
available in the database, whereas the query contains only the right index fingerprint)
we study the missing template and missing query scenarios separately.

Figure 2 shows the CMC curves for different fusion strategies under the missing data
scenario on the NIST-Face database (similar results were observed for the other two



Fusion in Multibiometric Identification Systems: What about the Missing Data? 751

Table 2. Transpose of a sample match score matrix with missing data (denoted by x) simulated
from the NIST-Multimodal database. In this example, the query multimodal sample does not
contain the fingerprint from the left index finger, the templates corresponding to the right index
finger are not available for users 3 and 517 and face templates are not available for user 515.

User # 1 2 3 4 · · · 514 515 516 517
Left Index Finger x x x x · · · x x x x

Right Index Finger 84 7 x 5 · · · 8 5 4 x
Face Matcher 1 0.58 0.57 0.46 0.51 · · · 0.52 x 0.49 0.52

Face Matcher 2 73.6 73.9 65.7 65.4 · · · 66.3 x 66.8 72.2

databases). As explained in section 4, the rank-posterior and hybrid score-rank fusion
schemes cannot be applied in the case of missing templates. Only the likelihood ratio
based score fusion rule is used in this scenario (see figure 2(a)). On the other hand, the
hybrid score-rank fusion rule can be used in the missing query modalities scenario (see
figure 2(b)). Similar to the case, where is there is no missing data, the performance of the
highest rank fusion rule is comparable to that of the score fusion rules for larger ranks.
However, the highest rank fusion rule has a significantly worse rank-1 recognition rate
in the case of missing templates, because the ranks assigned by the matchers are not
very meaningful when there are missing templates.
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Fig. 2. Cumulative Match Characteristic (CMC) curve of different fusion rules on the NIST-Face
databases under the missing data scenario. (a) Missing templates and (b) missing queries.

From Figure 2, we observe that there is a decrease in the recognition rates with
increasing amount of missing data. For this particular database, the reduction in the
accuracy is marginal when amount of missing data is less than 10%. However, when
the amount of missing data is set to 25%, there is a significant reduction in the accu-
racy. This decrease in accuracy can be attributed to two reasons. During training, due
to missing modalities in the template or query, there are lesser number of match scores
available for estimating the marginal score densities. During identification, the identity
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is decided based on fewer evidences compared to the case where there is no missing
data. Since the density estimation is sensitive to the number of match scores available
during training, the decrease in accuracy depends on the size of the training database.
Since the NIST-Face and NIST-Fingerprint databases have a larger number of genuine
match scores (6, 000), the densities can be reliably estimated even when 10%-15% of
the genuine scores are missing. However, the NIST-Multimodal database has only 517
genuine scores. As a result, we observed that even when 10% of the scores are unavail-
able, the decrease in the resulting recognition rate is significant.

6 Conclusions

Fusion in the multibiometric identification scenario is a critical problem in many large-
scale practical biometric systems. In this work, we have shown that the likelihood ratio-
based score fusion algorithm that was originally designed for the verification mode,
can be extended for fusion in the identification scenario. Moreover, we have shown that
the likelihood ratios computed based on the match scores can be combined with the
rank-based posterior probabilities and the hybrid rank and score level fusion scheme
achieves high recognition performance in multibiometric identification systems. The
proposed fusion rules can also easily deal with missing data that is commonly encoun-
tered multibiometric identification systems without any need for ad-hoc modifications.
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