
Data-Driven Impostor Selection for T-Norm

Score Normalisation and the Background
Dataset in SVM-Based Speaker Verification

Mitchell McLaren, Robbie Vogt, Brendan Baker, and Sridha Sridharan

Speech and Audio Research Laboratory, QUT, Brisbane, Australia
{m.mclaren,r.vogt,bj.baker,s.sridharan}@qut.edu.au

Abstract. A data-driven background dataset refinement technique was
recently proposed for SVM based speaker verification. This method se-
lects a refined SVM background dataset from a set of candidate impostor
examples after individually ranking examples by their relevance. This
paper extends this technique to the refinement of the T-norm dataset
for SVM-based speaker verification. The independent refinement of the
background and T-norm datasets provides a means of investigating the
sensitivity of SVM-based speaker verification performance to the selec-
tion of each of these datasets. Using refined datasets provided improve-
ments of 13% in min. DCF and 9% in EER over the full set of impostor
examples on the 2006 SRE corpus with the majority of these gains due
to refinement of the T-norm dataset. Similar trends were observed for
the unseen data of the NIST 2008 SRE.

1 Introduction

An issue commonly faced in the development of speaker verification systems is
the selection of suitable datasets. Several recent studies have highlighted the
importance of selecting appropriate training, development or impostor data for
SVM-based speaker verification to match the evaluation conditions [1,2]. Two
datasets fundamental to SVM-based classification that must be appropriately
selected to maximise classification performance are the background dataset and
the dataset used for test score normalisation (T-norm) [3].

The background dataset is a collection of negative or impostor observations
used in the training of an SVM in which discrimination between the background
dataset and the speaker examples is maximised [4]. Often, the number of impos-
tor observations significantly outweighs that of speaker examples such that the
SVM system relies heavily on the background observations to provide most of the
observable discriminatory information. The background dataset must, therefore,
consist of suitable impostor examples to ensure good classification performance.

Similar to the background dataset, the T-norm dataset is a collection of im-
postor examples from which a set of T-norm models are trained. T-normalisation
uses these models during testing to estimate an impostor score distribution with
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which classification scores are normalised [3]. Consequently, the reliable estima-
tion of impostor score distributions, and ultimately, the potential gains offered
through T-norm are dependent on the appropriate selection of T-norm dataset.

Data-driven background dataset refinement [5] was a recently proposed tech-
nique to individually assess the suitability of each candidate impostor example,
from a large and diverse dataset, for use in the background dataset. The support
vector frequency of an example was used as a measure of its relative importance
in the background dataset to rank the set of impostor examples. The top N
examples from this ranked set were then used as a refined background dataset
to provide improved classification performance. The system configuration in this
study refined a single dataset to be used as both the background and the T-norm
dataset. Of interest, however, is the way in which classification performance is af-
fected when the size of the refined background and T-norm datasets are allowed
to vary independently.

The following study investigates how sensitive SVM-based classification per-
formance is to the selection of a suitable T-norm dataset compared to the selec-
tion of the background dataset. This is analysed by observing performance when
independently varying the number of highest-ranking candidate impostor exam-
ples in the refined background and T-norm datasets. The ranking of candidate
impostor examples is performed using the same refinement procedure outlined
in [5].

The recently proposed data-driven background dataset refinement technique
is presented in Section 2 followed by a discussion in Section 3 on T-norm score
normalisation in SVM-based classification. Section 4 details the experimental
protocol with results presented in Section 5.

2 Data-Driven Background Dataset Selection

Data-driven background dataset refinement [5] was recently shown to be an ef-
fective method for the selection of a highly informative background dataset from
a set of candidate impostor examples such that it exhibited performance gains
over the best heuristically-selected background from the same initial resources.
The technique makes use of a development dataset to systematically drive the
selection of the impostor dataset based on the relevance of each example in the
background dataset. In this approach, the ranking of impostor observations is
performed using a criterion that involves exploiting the information possessed
by the support vectors of a trained SVM.

2.1 Support Vector Frequency

The support vector machine is a discriminative classifier trained to separate
classes in a high-dimensional space. A kernel is used to project input vectors
into this high-dimensional space where a separating hyperplane is positioned to
maximise the margin between the classes [4]. The training of a speaker SVM re-
sults in the selection of a subset of both positive and negative examples from the
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training dataset termed support vectors that are used to construct the separating
hyperplane. Examples that were selected as support vectors in the SVM hold
a common property of being the most difficult to classify, lying on, or within,
the margin between classes. In contrast, those training examples that were not
selected as support vectors provided no information in the training of the SVM.

The process of determining a subset of support vectors during SVM training
can be considered a data selection process in which the most informative ex-
amples are chosen from the training dataset. In light of this, it can be stated
that the impostor support vectors are the most informative set of background
examples with respect to the client data.

Based on this observation, the support vector frequency of an example provides
a measure of its relative importance in the background dataset. The support
vector frequency of an example is defined as the number of times that it is
selected as a support vector while training a set of SVMs on a development
dataset.

2.2 Background Dataset Refinement

Given a diverse set of vectors B, compiled from a number of available resources,
this dataset can be refined into a suitable background dataset using a set of
development client vectors S. The speakers and vectors in the set S should be
disjoint from those in B.

1. Using the full set of impostors B as the background dataset, train SVMs for
each vector in the set of development client models S.

2. Calculate the support vector frequency of each impostor example in B as
the total number of instances in which it was selected as a support vector
for the development client models.

3. The refined impostor dataset RN is chosen as the top N subset of B ranked
by the support vector frequency (RN ⊂ B).

4. For several values of N , use RN in the evaluation of a development corpus
to determine the optimal number of examples to be included in the refined
background dataset.

It is important to note that the support vector frequencies are likely to be
heavily dependent on the characteristics found in the development set S. For this
reason, S should be selected based on the knowledge of the broad characteristics
(such as gender, language and audio conditions) expected to exist in the corpus
for which the impostor dataset is intended to be used.

3 Test Score Normalisation

Test score normalisation (T-norm) [3] is a technique used to counteract the sta-
tistical variations that occur in classification scores and was found to be an
integral part of most speaker verification systems submitted to the recent NIST
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speaker recognition evaluations (SRE) [6]. T-norm aims to normalise the score
distributions of all test segments to a single scale so as to improve performance
when applying a global threshold to test classification scores. This involves scor-
ing each test utterance on a set of impostor models, trained from the T-norm
dataset, producing an impostor score distribution with mean μI and standard
deviation σI . The score s, obtained when comparing the test segment to a client
model, is then normalised using,

s =
s − μI

σI
(1)

The reliable estimation of the normalisation parameters μI and σI is dependent
on the observable characteristics of the T-norm dataset. Consequently, the objec-
tive of normalising scores to a global scale will be more attainable if the selection
of the T-norm dataset is tailored toward the expected evaluation conditions.

3.1 T-Norm Dataset Selection for SVM-Based Classification

The desired characteristics of the T-norm dataset closely match those wanted
of a background dataset, in being a set of examples that appropriately repre-
sents the impostor population. Campbell et al. demonstrated this commonality
of requirements by comparing the use of a single dataset for both the back-
ground and T-norm datasets to the use of disjoint datasets [7]. It was found that
performing T-norm using the background dataset provided an improvement in
performance over unnormalised scores, while the disjoint T-norm dataset re-
sulted in somewhat degraded performance. It is unclear why this degradation
occured, however, possible explanations include mismatch between the T-norm
and evaluation conditions and also the limited size of the T-norm dataset.

The use of a single impostor dataset for the background and T-norm datasets
was further explored in the recent study on data-driven background dataset re-
finement [5]. The evaluation of a development corpus demonstrated consistent
performance gains as the large and diverse background dataset was more exten-
sively refined. Corresponding gains were also observed in the evaluation of an
unseen corpus.

The following study extends on the research in [5] by investigating the degree
that classification performance depends on the suitable selection of the T-norm
dataset compared to that of the background dataset. In contrast to the selection
of a single dataset, intersecting datasets will be formed through the independent
selection of the top N examples for the T-norm and background datasets from a
single, ranked impostor dataset. In this way, the smaller dataset will be a subset
of the other. Analysis of performance over a range of dataset sizes is expected
to provide insight as to how sensitive SVM classification performance is to the
selection of each of these datasets and whether the characteristics of the best
refined background dataset are in fact similar those of the best T-norm dataset.

While this study will focus on the data-driven selection of intersecting back-
ground and T-norm datasets, the use of refined, disjoint datasets will also be
evaluated for completeness.
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4 Experimental Protocol

4.1 GMM-SVM System

SVM classification in the following experiments was based on GMM mean su-
pervectors using the associated GMM mean supervector kernel [8]. The GMM
system used in this study was based on 512-component models and was previ-
ously described in [9].

The SVM implementation uses the open source LIA MISTRAL package [10]
based on the libSVM library [11]. Nuisance attribute projection (NAP) [8] was
employed to reduce session variation with the 50 dimensions of greatest session
variation being removed from all supervectors.

4.2 Evaluation Datasets

Gender-dependent background datasets were collected from NIST 2004 and
NIST 2005 databases and a random selection of 2000 utterances1 from each
of Fisher and Switchboard 2 corpora giving a total of 6444 male and 7766 fe-
male observations. The number of impostor examples from each of these data
sources can be found in Table 1. The limited amount of data from the NIST 2005
corpus is due to the intentional exclusion of utterances from any speakers that
also appear in the NIST 2006 corpus. For this study, these datasets consisted
only of telephony data. Conversations were spoken in a range of languages with
the majority in English. Large gender-dependent background datasets B were
compiled from all available resources as listed in Table 1.

The gender-dependent development client dataset S used to calculate support
vector frequencies was compiled from the training and testing utterances in the
all-language, 1conv4w condition of the NIST 2006 SRE. Consisting of 1950 male
and 2556 female client vectors, this provided a moderate degree of resolution in
the support vector frequency statistic.

The NIST 2008 SRE corpus was used to observe how well the refined back-
ground and T-norm datasets generalised to unseen data. All NIST 2008 results
were derived from condition 6 as specified in the official evaluation protocol [12]
which includes trials spoken in all-languages while being restricted to telephony
data, matching the conditions found in the development dataset S.

5 Results

5.1 Development Evaluations

Figure 1 depicts 3-D plots of the min. DCF and EER obtained on the NIST
2006 development corpus when using a range of refined T-norm and background
dataset sizes selected as the highest-ranking impostor observations from the full
dataset B. The darker peaks in the plots designate improved performance.

Figure 1(a) indicates that the min. DCF was more sensitive to the selection of a
suitable T-norm dataset than the backgrounddataset. This is evident in the higher
1 Selected randomly due to memory limitations restricting the full dataset size.
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Table 1. Number of impostor examples from each data source

Gender Fisher SWB2 NIST04 NIST05

Male 2000 2000 1901 543
Female 2000 2000 2651 1115

performance variation along the dimension corresponding to the size of the T-norm
dataset compared to that of the background dataset. In contrast to the min. DCF,
the EER plot in Figure 1(b) appears to exhibit less consistent dataset dependen-
cies. As the background dataset is increasingly refined, however, the sensitivity of
performance to the selection of the T-norm dataset appears to become clearer. In-
terestingly, the EER begins to degrade quicker than the min. DCF as the T-norm
and background datasets are refined too extensively.

Maximum classification performance was found when using the top 1000 rank-
ing impostor examples as the T-norm dataset and the subset of the top 250 ob-
servations as the background dataset. These datasets will be designated by the
notation Bkg=B250 and T-norm=B1000. Results from development evaluations
using these refined datasets and the full impostor set B are detailed in Table 2.
The use of both refined datasets provided a relative gain of 13% in min. DCF and
9% in EER over the full dataset B which is a statistically significant improve-
ment at the 99% and 95% confidence level2, respectively. With T-norm=B, the
refined background dataset offered performance improvements over the full back-
ground, however, superior gains were observed from the refined T-norm dataset
over the full T-norm set when Bck=B. These results demonstrate, firstly, that
background dataset refinement can sucessfully be applied to the task of T-norm
dataset selection, and secondly, that SVM-based classification is more dependent
on the selection of a suitable T-norm dataset than the background dataset.

5.2 NIST 2008 Evaluations

The objective of this section was to determine whether the dataset-dependent
performance trends, observed in the previous section (Section 5.1), were also
reflected in the evaluation of the unseen data of the NIST 2008 SRE. Figure 2
depicts the 3-D plot of the min. DCF from these evaluations as the full set of
impostor examples B was refined after being ranked using the NIST 2006 SRE
corpus as development data.

Figure 2 indicates that the NIST 2008 SRE min. DCF performance was more
sensitive to the selection of a suitable T-norm dataset than that of background
dataset selection, thus supporting the observations from development evalua-
tions in Section 5.1. In contrast to the background dataset, the T-norm dataset
appears to provide relatively high gains through increased refinement as observed
by the darker regions of the plot.

Results from NIST 2008 SRE when using the datasets selected based on NIST
2006 development evaluations (Bkg=B250 and T-norm=B1000) are detailed in
Table 3 along with results obtained using the full impostor set. The use of the
2 Based on the proposed method in [13] (independent case).
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(a) Min. DCF

(b) EER

Fig. 1. Min DCF. and EER on NIST 2006 SRE when performing data-driven impostor
selection of intersecting background and T-norm datasets

refined T-norm dataset offers substantial improvements over the full dataset
while, surprisingly, the refined background dataset achieves comparable perfor-
mance to the full dataset. These results demonstrate that the selection of a
suitable T-norm dataset can have more impact on potential classification per-
formance than the background dataset in the evaluation of an unseen corpus.
When using both the refined datasets, a statistically significant improvement of
8% was observed in the min. DCF at the 99% confidence level2 over the full
datasets, however, no gain was found in EER.
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Table 2. Performance on NIST 2006 SRE when using full dataset B and best refined
intersecting T-norm and background datasets

Config. (Bck / T-norm) Bck T-norm Min. DCF EER

Full / Full B B .0234 5.06%
Full / Refined B B1000 .0215 4.70%
Refined / Full B250 B .0223 4.84%
Refined / Refined B250 B1000 .0203 4.59%

(a) Min. DCF

Fig. 2. Min DCF. on NIST 2008 SRE when using refined intersecting background and
T-norm datasets ranked using NIST 2006 data

Table 3. Performance from NIST 2008 SRE using full and best refined T-norm and
background datasets selected based on NIST 2006 evaluations

Config. (Bck / T-norm) Bck T-norm Min. DCF EER

Full / Full B B .0435 8.34%
Full / Refined B B1000 .0408 8.18%
Refined / Full B250 B .0421 8.57%
Refined / Refined B250 B1000 .0399 8.35%

5.3 Refinement of Disjoint Datasets

The refinement of a single dataset to form intersecting background and T-norm
datasets provided a suitable means of investigating the dependence of SVM-
based classification performance to their selection. The most common dataset
configuration, however, involves the use of disjoint datasets as observed in re-
cent NIST SRE submissions [6]. This section endeavours to determine firstly,
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Table 4. Performance on NIST 2006 and NIST 2008 SRE using full and best refined
disjoint T-norm and background datasets

Config. 2006 SRE 2008 SRE
(Bck / T-norm) Bck T-norm DCF EER DCF EER

Full / Full I T .0230 4.93% .0432 8.34%
Full / Refined I T750 .0214 4.73% .0408 8.44%
Refined / Full I250 T .0222 4.86% .0428 8.37%
Refined / Refined I250 T750 .0202 4.48% .0394 8.30%

whether similar T-norm-dependence trends are observed when using disjoint
datasets, and secondly, whether refined disjoint datasets provide performance
improvements over refined intersecting datasets.

The full set of impostor examples B was divided to form the unrefined disjoint
T-norm and background datasets T and I respectively, such that the speakers
and vectors in these sets were separate. These disjoint subsets contained similar
proportions of examples from each of the data sources listed in Table 1. Ranking
of these sets was performed independently using the NIST 2006 corpus.

The refined disjoint datasets providing maximum performance in the NIST
2006 development evaluations were Bkg=I250 and T-norm=T750. Results from
trials on both NIST 2006 and NIST 2008 SRE using these datasets are de-
tailed in Table 4. In the evaluation of both corpora, the refined T-norm dataset
demonstrated substantial improvements over the full T-norm dataset. In con-
trast, the refined background provided somewhat improved results in the devel-
opment evaluations, however, these benefits were only reflected in the NIST 2008
SRE when used in conjunction with the refined T-norm dataset. These results
demonstrate that, even in the case of disjoint datasets, SVM-based speaker ver-
ification performance is more dependent on the suitable selection of the T-norm
dataset than that of the background dataset.

Comparing the results in Table 4 to those detailed in Tables 2 and 3,
the refined disjoint datasets (Bkg=I250 and T-norm=T750) were found to pro-
vide marginal performance improvements over the refined intersecting datasets
(Bkg=B250 and T-norm=B1000). This performance gain may also bring to light
an underlying characteristic of background dataset refinement in that ranking of
impostor examples may become more robust as the ratio of development SVMs
in set S to the size of the full impostor set B is increase. Future work will
investigate the impact that the size of B has on dataset refinement.

6 Conclusion

This study investigated the dependence of SVM-based classification performance
to the selection of suitable background and T-norm datasets. The recently pro-
posed background dataset refinement technique [5] was used to rank a large set of
candidate impostor examples from which the top N highest-ranking observations
were independently selected to form refined intersecting background and T-norm
datasets. Evaluations were performed on both the NIST 2006 SRE development
corpus and the unseen NIST 2008 SRE using a range of refined dataset sizes.



Data-Driven Impostor Selection for T-Norm Score Normalisation 483

It was determined that SVM-based speaker verification classification perfor-
mance is more sensitive to the selection of a suitable T-norm dataset than of
background dataset selection. The best refined T-norm dataset, as determined by
NIST 2006 development evaluations, provided substantial gains in both NIST
2006 and 2008 SRE irrespective of background choice. In contrast, the best
refined background dataset offered only marginal performance improvements
unless used in conjunction with the refined T-norm dataset, in which case maxi-
mum performance was obtained. Likewise, the refinement of disjoint background
and T-norm datasets further demonstrated the high dependence of SVM-based
speaker verification performance on the choice of T-norm dataset.
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