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Abstract. 3D face recognition is a very active biometric research field.
Due to the 3D data’s insensitivity to illumination and pose variations, 3D
face recognition has the potential to perform better than 2D face recog-
nition. In this paper, we focus on local feature based 3D face recognition,
and propose a novel Faceprint method. SIFT features are extracted from
texture and range images and matched, the matching number of key
points together with geodesic distance ratios between models are used
as three kinds of matching scores, likelihood ratio based score level fu-
sion is conducted to calculate the final matching score. Thanks to the
robustness of SIFT, shape index, and geodesic distance against various
changes of geometric transformation, illumination, pose and expression,
the Faceprint method is inherently insensitive to these variations. Exper-
imental results indicate that Faceprint method achieves consistently high
performance comparing with commonly used SIFT on texture images.
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1 Introduction

As an important biometrics face recognition has a long history, and enormous
amount of face recognition algorithms have been proposed. Most of these algo-
rithms are 2D-image-based, that is to identify or verify subjects through their
face images captured by cameras or video recorders. A literature survey of these
methods can be found in [1]. Despite its popularity, 2D face recognition is sensi-
tive to illumination, pose and expression variations. In order to deal with these
limitations, researchers are paying more and more attentions to 3D face recogni-
tion [2], as 3D model captures the exact shape of facial surface, thus is invariant
to illumination and pose variations. But 3D-based methods are more sensitive
to expression variations than 2D-based, and influenced by occlusion. Actually
2D images and 3D models are two different modalities, they are complementary,
and fusion of these two modalities may benefit face recognition [2].

Zhao et al. [1] divided still 2D face recognition techniques into holistic, feature-
based, and hybrid categories. This categorization can also be extended to 3D
face recognition. Holistic method uses the whole face region as the input to face
recognition algorithm. Typical holistic methods include PCA [3] and LDA [4]
based methods. Most of these popular 2D face recognition methods were also
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extended to 3D face recognition. Many 3D face recognition methods such as
ICP-based matching [22], annotated deformable model [23], isometry-invariant
representation [17] also belong to this category. In feature-based methods, local
(geometric or appearance) features are extracted from facial feature points or re-
gions such as eyes, nose, and mouth, and fed into classifiers. Many earlier works
are feature-based face recognition [5]. They measured distances and angles be-
tween fiducial points to do matching. The most successful feature-based method
is graph matching [6], which is based on Dynamic Link Architecture (DLA).
It’s also extended to 3D recognition [7]. Point signature method proposed by
Chua et al. [8] belongs to this category. Hybrid methods use both local features
and the whole face region to do recognition. Typical methods include modular
eigenfaces [10], component-based [11] et al.

Among these three categories, we pay special attention to feature-based meth-
ods. This kind of methods extracts features from local points or regions, and has
the potential to deal with expression variations and occlusion. As no matter
when expression variation or occlusion occurs, there always exists some local
points or regions remain invariant. If we can match these invariant points or
regions, recognition is done. SIFT is used in this paper to extract robust local
features from feature points. SIFT proposed by Lowe [12] is a robust feature
extraction and matching method against image scaling, translation, and rota-
tion, and partially invariant to illumination changes and affine or 3D projection.
Because of its great property, SIFT spreads rapidly into various applications
since proposed, including face recognition. M. Bicego et al [9] first utilized SIFT
on 2D face recognition, matching scores of feature descriptors was used for ver-
ification. The method was further improved by incorporating graph composed
of the detected SIFT points [16]. Mian et al [13] utilized SIFT on 2D texture
images together with SFR (Spherical Face Representation) on 3D data to form
a rejection classifier. As far as we know, all the proposed method of using SIFT
for face recognition are performed on 2D domain (texture images), and none of
the results reported in the above publications is very high. We think the main
reason for the unsatisfying performance is that, unlike artificial objects such as
buildings, face is a smooth surface, and there are not so many distinctive feature
points. As reported in [13], the average number of detected feature points is 80.
Another reason is that images change greatly with illumination variations, while
SIFT is only partially insensitive to illumination variations.

In order to deal with the limitations of utilizing SIFT for face recognition,
we resort to 3D data, and shape index is extracted from range images, as shape
index is derived from 3D curvatures, so it’s invariant to illumination and pose
variations. Compared with 2D texture images, shape index images have much
more details as shown in Fig. 2(c), thus more feature points can be extracted
from them. In order to deal with sensitivity of 3D data to expression varia-
tions, geodesic distances in between matched feature points are also computed
and matched. The final matching score is obtained by fusion of the number
of matched 2D and 3D SIFT feature points, and geodesic distance ratio be-
tween matched models using likelihood ratio test strategy. We call this proposed
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method ”Faceprint”. Just like minutia in fingerprint, Faceprint describes local
facial features, and is robust against many kinds of variations.

The paper is organized as follows. SIFT, shape index and geodesic features
are briefly introduced in section 2, and then Faceprint method is described in
detail in section 3. Experiments are carried out on FRGC v2.0 database [24],
and results are shown in section 4. Section 5 concludes the paper.

2 SIFT, Shape Index and Geodesic distance

2.1 Scale Invariant Feature Transform

SIFT (Scale Invariant Feature Transform) was proposed by Lowe [12], [14] for
object recognition. The original image is repeatedly convolved with Gaussians
of different scales separated by a constant factor k to produce an octave in
scale space. Once an octave is processed, the coarsest image of this octave is
down sampled by 4 to be the start image of next octave. After convolution
with Gaussian, neighboring images in each octave are subtracted to get DOGs
(Difference of Gaussian). DOG function provides a close approximation to scale-
normalized Laplacian of Gaussian [15]. Extremas are detected by comparing a
pixel with its 26 neighbors in 3 ∗ 3 regions at the current and adjacent scales.

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G (1)

After detection of extremas, a threshold is used to eliminate key points with
low contrast. Later key points that have a ratio between the principle curvatures
greater than a threshold are removed, because these points are located along
edges and poorly defined.

For each key point, an orientation histogram is calculated from the gradi-
ent orientations of its neighboring sample points. Each sample is weighted by
its gradient magnitude and a Gaussian-weighted circular window. Highest lo-
cal peak and peak that’s within 80% of the highest peak are detected, and the
corresponding orientations are assigned to the key point.

For each orientation of a key point, a feature vector is extracted as a de-
scriptor from the gradients of its neighboring sample points. In order to achieve
orientation invariance, the coordinates and gradient orientations or neighboring
points are rotated relative to the key point orientation. Then a Gaussian func-
tion is used to assign a weight to the gradient magnitude of each point. Points
that are close to the key point are given more emphasis than those far from it.
Orientation histograms of 4 ∗ 4 sample regions are calculated, each with eight
orientation bins. Thus a feature vector with dimension of 4 ∗ 4 ∗ 8 = 128 is
formed. To achieve illumination insensitive, the feature vector is normalized to
unit length and thresholded such that no element is larger than 0.2, and nor-
malized to unit length again. This normalized feature vector is the descriptor of
the central key point.

Given the descriptors, matching between key points on two images can be
done. A matching of one key point to another is only accepted if the matching
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distance is less than a threshold t times the distance to the second closest match,
t is set to 0.6 in this work. The SIFT based key point detection and matching is
done with the help of Lowe’s code.

2.2 Shape Index

Shape Index feature was proposed by Dorai et al. [25] to represent surface con-
cave and convex attributes. The Shape Index at point p is defined as:

S(p) =
1
2
− 1

π
arctan

κ1(p) + κ2(p)
κ1(p) − κ2(p)

(2)

where k1 and k2 represent maximum and minimum principal curvatures respec-
tively. As principal curvatures are invariant to pose variations, so is Shape index.

The value of Shape Index lies in the range of [0, 1]. Local shape at point p is a
spherical cup when S(p) = 0, and a spherical cap when S(p) = 1. When Shape
Index changes from 0 to 1, local shape changes from spherical cup to spherical
cap.

Fig. 2(c) shows an example of shape index image, in which dark pixels repre-
sent lower shape index, while bright pixels represent higher shape index.

2.3 Geodesic Distance

In the specific case of 3D mesh, geodesic distance between two vertices is de-
fined as the shortest path connecting them. As shown in [17], geodesic distance is
invariant to deformation of 3D model caused by expression variations. A numer-
ically consistent algorithm for distance computation on triangulated mesh was
proposed by Kimmel and Sethian [18] as a generalization of the fast marching
method [19]. Using this method, the geodesic distances between a surface vertex
and the rest of the n surface vertices can be computed in O(n) operations. We
use this method for computing geodesic distances between SIFT key points on
3D mesh.

3 Faceprint

The flow chart of Faceprint method is shown in Fig. 1. A 3D model of one subject
contains one texture image and one range image, which are densely registered.
Unlike the careful normalization including face pose correction, resampling, and
segmentation performed in reference [13], faces are simply cropped out of the
background using a bounding box on both texture and range images, by which
computational complexity is reserved. As SIFT is very robust to image scaling,
translation and rotation, we can fully benefit from advantages of SIFT, and do
not need to do pose correction and resampling. After normalization, the size of
the texture and range images is different from one model to another. Histogram
equalization is carried out on normalized texture images.
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Fig. 1. Flow chart of Faceprint method

Fig. 2. SIFT features extracted from (a) texture images, (b) histogram equalized tex-
ture images, and (c) shape index images

From range images, shape index images as shown in Fig. 2(c) are calculated,
SIFT is performed not only on texture images but also on shape index images.
Shape index images provide robust features against pose and illuminations, thus
repeatability is guaranteed, and these features are more sufficient and with more
diversity than those of texture images. In our experiments, the average number
of descriptors extracted from shape index images is 862, while that from texture
images is 37, and that from histogram equalized texture images is 128. Fig. 2
shows the SIFT features extracted from texture images, histogram equalized
texture images, and shape index images, all of which were captured at the same
time for the same subject. From Fig. 2, we can see that compared with texture
and histogram equalized texture images, shape index image provides the most
evenly spaced and largest number of descriptors.

Then the range image is triangulated and mesh is reconstructed. Triangulation
is done by dividing each square in the image grid with the shortest diagonal
edge. As texture and range images are densely registered, so each detected SIFT
key point on texture image corresponds to a vertex on the generated mesh,
unless those located in regions such as eyes where no range data is captured.
Fast marching is performed for each key point on the mesh, and the geodesic
distances between key points are obtained after that.

On matching, detected SIFT key points from texture images and shape index
images are matched separately, and the matching number of key points is treated
as matching score. The other matching score is the ratio of geodesic distance
between corresponding pairs of matched points.
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Given a set of key points {pi|i = 1, · · · , N} on mesh X , there is a set of
corresponding matching points {p′i|i = 1, · · · , N} on mesh X ′, then the geodesic
distance ratio GDR(X, X ′) between X and X ′ is defined as below.

GDR(X, X ′) =
1

N(N − 1)/2

N−1∑

i=1

N∑

j=i+1

min(gd(pi, pj), gd(p′i, p
′
j))

max(gd(pi, pj), gd(p′i, p
′
j))

(3)

where gd(pi, pj) means the geodesic distance between points pi and pj . According
to its definition, the geodesic distance ratio lies in the range of [0, 1].

Therefore, after the above process, we get three kinds of matching scores,
namely, the matching number of key points from texture images MNT and shape
index images MNS, and the geodesic distance ratio GDR between models. The
final matching score is obtained by fusion of these three kinds of matching scores.

Score level fusion can be divided into three categories [20]: transformation-
based, classifier-based, and density-based fusion. A comparison of eight biometric
fusion methods conducted by NIST [21] favors the density-based fusion, specif-
ically the likelihood ratio based fusion. In order to reduce the computational
complexity, Gaussian Mixture Model (GMM) is used in [20] instead of kernel
density estimator (KDE) for density estimation during likelihood ratio based
fusion. However, in our case, the matching scores MNT and MNS are both
of discrete values, which are inconvenient to be modeled with GMM. For the
models with no matching key points, the GDR is set to be zero, and as a result
there are many zero valued GDR, mostly for those matching between different
subjects’ models, which is also hard to be handled by GMM. Considering these
inconvenience, we choose KDE for density estimation instead of GMM.

The likelihood ratio based fusion is formulated as below. Given a vector of K
matching scores s = [s1, s2, · · · , sK ], and estimated genuine density f̂gen(s) and
impostor density f̂imp(s), compute the likelihood ratio LR(s) = f̂gen(s)/f̂imp(s),
assign s to the genuine class if LR(s) ≥ η. We assume the independence of the
three matching scores, therefore the density function f̂ =

∏3
k=1 f̂k(sk).

4 Experiments and Results

4.1 Dataset

Experiments are conducted on FRGC v2.0 database [24], which contains 4007
3D models of 466 subjects, and each model contains a pair of registered texture
image and range image. Among these subjects, 57% are male and 43% are female,
with the age distribution: 65% 18-22 years old, 18% 23-27 and 17% 28 years or
over. The database was collected during 2003-2004 academic year, thus contains
time variations. It also contains neutral and non-neutral expression variations.

All the texture and range images are simply cropped using a bounding box
determined by two eye-outer corners and chin point, so that faces are separated
from the background. These simply cropped images have pose, illumination,
resolution, and expression variations, and also contain occlusions and holes.
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Fig. 3. ROC curves of All vs. All experiment

The database is divided into a training set and a testing set. The training
set contains 977 models of randomly selected 100 subjects, and 3030 models of
the rest 366 subjects form the testing set. The training set is used to estimate
densities for likelihood ratio based fusion.

Four experiments are carried out, namely, All vs. All, and Neutral vs. Neu-
tral, Neutral vs. Non-Neutral, and Neutral vs. All. All vs. All experiments are
conducted to be consistent with FRGC experiment 3. All possible pairs of 3D
models int the testing set are compared, so that a 3030*3030 similarity matrix
is calculated. In Neutral vs. Neutral, Neutral vs. Non-Neutral, and Neutral vs.
All experiments, 366 neutral expression faces are selected as the gallery set. The
rest 2664 images are treated as probe set in Neutral vs. All experiment, while
only neutral and non-neutral face models are used in Neutral vs. Neutral and
Neutral vs. Non-Neutral experiments respectively. The reason to do Neutral vs.
Neutral, Neutral vs. Non-Neutral, and Neutral vs. All experiments is to analyze
robustness against expression variations.

4.2 All vs. All

As described above, in the All vs. All experiment, Faceprint method is used to
match all possible pairs of 3030 3D models, and a 3030*3030 similarity matrix is
obtained. From the similarity matrix ROC curves can be derived. We compare
the ROC curves of the proposed Faceprint (fusion) method with those of MNT ,
MNS, and GDR in Fig. 3.

From Fig. 3, we can see that the proposed Faceprint method performs the
best, verification rate of 82.3% is achieved at false accept rate of 0.1%. MNS
performs much better than MNT which demonstrates the robustness of Shape
index images is better than that of texture images. GDR performs not so well,
but still shows some distinguishability.
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Fig. 4. ROC curves of experiments (a) Neutral vs. Neutral, (b) Neutral vs. Non-
Neutral, and (c) Neutral vs. All

4.3 Neutral vs. Neutral, Non-Neutral, and All

In order to evaluate the robustness against expression variations, three experi-
ments are conducted, namely, Neutral vs. Neutral, Neutral vs. Non-Neutral, and
Neutral vs. All. ROC curves of these three experiments are shown in Fig. 4.

As can be seen from Fig. 4, no matter with or without expression variations,
the order of the performance of Faceprint, MNT , MNS, and GDR remains the
same. The performance degradation when non-neutral expressions are included
in the experiment is calculated, and shown in Table 1. From Table 1, we can see
that performance of MNT degrades most seriously (34.3%), followed by MNS
(20.2%), and Faceprint (18.3%), while performance of GDR degrades by only
11.5%. To be noted, as it’s hard and unreasonable to get the verification rate
at FAR of 0.1%, the performance degradation of GDR is calculated at FAR of
1%, which is different from the other three matching scores. The results show
that SIFT features extracted from shape index images are more robust than
those from texture images, and geodesic distance ratio is most insensitive to
expression variations. Fusion of these three kinds of matching scores increases the
performance while retaining most of the robustness against expression variations.

Table 1. Performance degradation of Faceprint, MNT , MNS, and GDR when ex-
pression variations are included in the experiments

Faceprint MNT MNS GDR
FAR=0.1% FAR=0.1% FAR=0.1% FAR=1%

Neutral vs. Neutral 93.6% 77.0% 87.2% 62.6%

Neutral vs. Non-Neutral 76.5% 50.6% 69.6% 55.4%

Performance degradation 18.3% 34.3% 20.2% 11.5%

From all the above four experiments, we can see that SIFT features extracted
from shape index images (MNS) perform much better than the commonly used
texture SIFT features (MNT ), and the proposed Faceprint method performs
the best by fusion the three kinds of matching scores.
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5 Conclusions

In this paper, we pay special attention to local feature based 3D face recogni-
tion, and propose a novel Faceprint method. SIFT features are extracted from
texture and range images and matched, the matching number of key points to-
gether with geodesic distance ratios between models are used as three kinds of
matching scores, likelihood ratio based score level fusion is conducted to calcu-
late the final matching score. Because of the invariance of SIFT to image scaling,
translation and rotation, the robustness of shape index against illumination and
pose changes, and the insensitivity of geodesic distance to expression variations,
the Faceprint method is inherently robust against all these variations. Systemat-
ical experiments are carried out on FRGC v2.0 database, and the experimental
results indicate that Faceprint method achieves consistently high performance
comparing with commonly used SIFT on texture images.

Acknowledgements

This work was supported by Program of New Century Excellent Talents in Uni-
versity, National Natural Science Foundation of China (No. 60575003, 60332010,
60873158), Joint Project supported by National Science Foundation of China
and Royal Society of UK (60710059), and Hi-Tech Research and Development
Program of China (2006AA01Z133).

References

1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Liter-
ature Survey. ACM Computing Surveys, 399–458 (2003)

2. Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in 3D
and multi-modal 3D + 2D face recognition. Computer Vision and Image Under-
standing 101(1), 1–15 (2006)

3. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuro-
science 3(1), 71–86 (1991)

4. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection. IEEE Transactions on pattern analysis and
machine intelligence 19(7), 711 (1997)

5. Kanade, T.: Computer Recognition of Human Faces. Interdisciplinary Systems
Research 47 (1977)

6. Wiskott, L., Fellous, J., Kruger, N., von der Malsburg, C.: Face Recognition by
Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 19(7), 775–779 (1997)

7. Husken, M., Brauckmann, M., Gehlen, S., von der Malsburg, C.: Strategies and
benefits of fusion of 2D and 3D face recognition. In: IEEE Workshop on Face
Recognition Grand Challenge Experiments (2005)

8. Chua, C., Han, F., Ho, Y.K.: 3D human face recognition using point signature. In:
Proc. IEEE International Conference on Automatic Face and Gesture Recognition,
pp. 233–238 (2000)



Faceprint: Fusion of Local Features for 3D Face Recognition 403

9. Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the use of SIFT features for
face authentication. In: Proc. IEEE International Conference on Computer Vision
and Pattern Recognition Workshop, pp. 35–41 (2006)

10. Pentland, A., Moghaddam, B., Starner, T.: View-Based and modular eigenspaces
for face recognition. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 84–91 (1994)

11. Huang, J., Heisele, B.: Blanz. V.: Component-based Face Recognition with 3D
Morphable Models. In: Proc. of the 4th International Conference on Audio- and
Video-Based Biometric Person Authentication, pp. 27–34 (2003)

12. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the
International Conference on Computer Vision 1999, pp. 1150–1157 (1999)

13. Mian, A.S., Bennamoun, M., Owens, R.A.: An Efficient Multimodal 2D-3D Hybrid
Approach to Automatic Face Recognition. IEEE Transactions on pattern analysis
and machine intelligence 29(11), 1927–1943 (2007)

14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(4), 91–110 (2004)

15. Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different
scales. Journal of Applied Statistics 21(2), 224–270 (1994)

16. Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face Identification by SIFT-
based Complete Graph Topology. In: 5th IEEE Workshop on Automatic Identifi-
cation Advanced Technologies, Alghero, Italy (2007)

17. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recogni-
tion. International Journal of Computer Vision 64(1), 5–30 (2005)

18. Kimmel, R., Sethian, J.A.: Computing geodesic on manifolds. Proc. US National
Academy of Science 95, 8431–8435 (1998)

19. Sethian, J.A.: A review of the theory, algorithms, and applications of level set
method for propagating surfaces. Acta numerica (1996)

20. Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.K.: Likelihood Ratio Based Bio-
metric Score Fusion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 30(2), 342–347 (2008)

21. Ulery, B., Hicklin, A.R., Watson, C., Fellner, W., Hallinan, P.: Studies of Biometric
Fusion. NIST, Tech. Rep. IR 7346. (2006)

22. Lu, X., Jain, A.K., Colbry, D.: Matching 2.5D Face Scans to 3D Models. IEEE
Transactions on pattern analysis and machine intelligence 28(1), 31–43 (2006)

23. Kakadiaris, I.A., Passalis, G., Toderici, G., Murtuza, N., Lu, Y., Karampatziakis,
N., Theoharis, T.: Three-Dimensional Face Recognition in the Presence of Facial
Expressions: An Annotated Deformable Model Approach. IEEE Transactions on
pattern analysis and machine intelligence 29(4), 640–649 (2007)

24. Phillips, P.J., et al.: Overview of the Face Recognition Grand Challenge. In: Proc.
Of IEEE Conf. on Computer Vision and Pattern Recognition, pp. I:947–954 (2005)

25. Dorai, C., Jain, A.K.: COSMOS - A Representation Scheme for 3D Free- Form
Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(10),
1115–1130 (1997)


	Faceprint: Fusion of Local Features for 3D Face Recognition
	Introduction
	SIFT, Shape Index and Geodesic distance
	Scale Invariant Feature Transform
	Shape Index
	Geodesic Distance

	Faceprint
	Experiments and Results
	Dataset
	All vs. All
	Neutral vs. Neutral, Non-Neutral, and All

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




