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Abstract. Network Coding exploits network resources more efficiently
than plain routing. Specifically, it reduces packet delays and packet loss
rates. Such advantages are especially useful in core networks where many
different users can benefit from this at once. Hence, network coding
should be transparently integrated in technologies suitable for core net-
works. We present an extension for MPLS and RSVP-TE which can
instantiate network-coded paths in core networks. The feasibility of this
approach is demonstrated in a proof-of-concept simulation.
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1 Introduction

The technique of Network Coding (NC), as first introduced by Ahlswede et
al., has become a vivid area in current networking research. Instead of only
forwarding packets, NC permits nodes on the packets’ route to process the data,
i.e., to modify and mix up their content. These transformations are inverted at
a decoder again to deliver the original content to the destination. Depending on
where which transformations happen, various benefits can be achieved.

There is a variety of applications where users can benefit from NC. In this
paper, we concentrate on NC to use available network resources more efficiently
than with plain routing. In particular, we look at core networks where multiple
flows share physical links. In such scenarios, links are usually redundantly de-
ployed to deal with link failures or temporary overload situations. Affected flows
are switched from the broken or overloaded link to alternative links. An example
for such a scenario is depicted in Fig. 1(a) and 1(b) where the link R1→R2 gets
congested due to a failure or a load peak.

As soon as the congestion is detected, Flow 2 (blue/dotted) is redirected to
the alternative route on the right side (S2→D1→R2). Although all links are
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(c) Alternatively, NC
is applied: Encoding
is done at node R1;
decoding at D1 and
D2. Latency remains
at max(d, 3).

Fig. 1. Comparison of classic transmission via packet forwarding and NC-enabled
transmission of two data flows. The numbers next to links denote their latencies. In
contrast to routing, NC permits load shifting from link R1→R2 to lateral links while
retaining low latency.

now able to deal with the incoming load, depending on the alternative links’
properties, the rerouted flow might suffer from noticeably higher delay.

To overcome this drawback, linear NC can be applied. This technique regards
packets as vectors and allows a node to apply a linear transformation to them
before they are forwarded. Linear NC achieves optimal throughput for multicast
transmission, i.e., the maximum flow from the source to each receiving node. A
special case of such linear transformations is calculating the XOR value of two
packets. In our scenario, instead of completely redirecting one of the flows, both
of them are jointly encoded at R1 by calculating the XOR of each packet pair
of the flows. This reduces load on the bottleneck link and maintains low delay
for both flows. Decoding is done at the destinations, as shown in Fig. 1(c).

The techniques and benefits of network coding have been widely explored [1],
but the control problem – when and where to turn it on and how to signal
this – has only been addressed in wireless contexts [2,3] or on the application
layer [4]. Specifically, we are not aware of approaches trying to integrate NC
into wired systems on the link or network layer. Especially, controlling NC for
traffic flows in core networks, where many users benefit at once, is not possible
so far. To achieve this, we present a signaling protocol in Sec. 3 and 4 that
triggers and controls the instantiation of network-coded paths in networks using
Multiprotocol Label Switching (MPLS), as a typical example of a core network
technology. Our protocol is independent of the algorithm used for detecting NC
possibilities, i.e., finding suitable subtopologies [5], as well as of the algorithm
that decides when to actually activate coding. Both decisions are made on top
of our signaling protocol. The feasibility is demonstrated in a proof-of-concept
simulation in Sec. 5. Sec. 2 briefly summarizes relevant MPLS background.
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2 Background

Data transport in core networks is often realized with label switching. Instead of
evaluating hierarchical IP addresses, simple flat labels are prepended to packets.
A switch processes incoming packets solely based on their label, i.e., all packets
with the same label are treated equally.

Label switching requires two components: a data transport service which ac-
tually transports the data packets based on their labels and a label distribution
protocol which sets up the Label Switched Paths (LSPs), i.e., distributes labels
to be used among Label Switch Routers (LSRs). This determines the actual
forwarding behavior. As MPLS [6] is a practically highly relevant transport ser-
vice for label switching, we will focus on extending it by NC; in principle, the
technique should also be applicable to other label switching transport services.

Resource Reservation Protocol – Traffic Engineering (RSVP-TE) [7] is one of
several label distribution protocols that can be used with MPLS. It has been
extended multiple times to support emerging networking technologies and con-
solidates many aspects of traffic engineering in a single protocol. Besides the
wide adoption, we have chosen this protocol as base for our extension because
there is already a Point-to-Multipoint (P2MP) extension available [8] which is
necessary for applying XOR NC in a butterfly topology.

3 Extending MPLS to Support NC

To perform XOR NC in a butterfly, three issues have to be solved: packets must
be encoded (at node R1 in Fig. 1(c)), the uncoded packets must be sent to decod-
ing points (from S1/S2 to D2/D1), and the right encoded and uncoded packets
must be matched for the decoding operation (at D1/D2). When implementing
these additional functions, the following requirements have to be met:

– Using NC must not disrupt normal label switching operation.
– Modifying nodes not directly involved in NC operations, i.e., which only

forward network-coded packets, is not acceptable.

To achieve this in MPLS, two modifications are required. First, LSRs which are
responsible for en-/decoding need to be extended to support these operations
and, second, one LSR passing the flow to be encoded must be able to add packet
sequence numbers as packets must be uniquely identifiable. Hence, in contrast to
traditional label switching where all LSRs are equal and perform the same oper-
ations (packet forwarding based on labels), NC requires to distinguish between
different roles that LSRs may adopt:

– Forwarding LSRs perform traditional store-and-forward operations required
for ordinary packet forwarding. This also encompasses cloning of flows for
multicasting. The payload of forwarded packets is unchanged.

– Numbering LSRs add packet sequence numbers to MPLS flows. The packets’
payload is not altered either.
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– Encoding LSRs apply XOR coding to packets of two incoming flows. The
result is one encoded output flow.

– Decoding LSRs receive one encoded and a corresponding plain flow. After
decoding, the resulting decoded packets are forwarded.

Required modifications for implementing the different LSRs are described in the
following two subsections. Setting up paths is mostly a problem for the signaling
protocol and described separately in Sec. 4.

3.1 Encoding and Decoding

In MPLS, an LSR determines how to treat an incoming packet solely based on
its label; the concrete action is determined by a Next Hop Label Forwarding
Entry (NHLFE). NHLFEs are basically table entries which map an incoming
label/interface combination to corresponding next-hop information (outgoing
interface and next-hop address) and label manipulation instructions like label
push, pop, or swap operations.

To support XOR NC, NHLFEs must be extended to not only support simple
forwarding of packets but to also indicate to the LSR that two incoming flows
shall be combined to one single outgoing flow. This is done by feeding packets of
an incoming flow into an encoder. The partner flow for encoding is selected by
a second NHLFE which feeds another flow into the same encoder instance. This
encoder contains all functionality required for the actual encoding operation like
buffering, XOR calculation, etc. This modification is sufficient to implement an
XOR Encoding LSR, as well as the corresponding Decoding LSR.

3.2 Packet Sequence Numbers

To be able to successfully decode packets at destination LSRs, these nodes need
to know which packets from which flow were used for encoding (e.g., trying to
decode (a XOR b) from flows A and B with a packet b′ from flow B obviously gives
wrong results). Hence, packets forming an MPLS flow which is involved in any
coding operation must carry information that allows their unique identification.
The simplest way to achieve this is by adding sequence numbers to packets.

As MPLS flows usually transport an aggregate of many different flows, it is
impossible to reuse sequence numbers of upper layers for this; they have to be
explicitly generated for a given MPLS flow. This is done by Numbering LSRs
with a special NHLFE. Such coding-related sequence numbers are not required
over the whole packet lifetime. It is sufficient to add them before the flow is
multicasted. E.g., in the scenario depicted in Fig. 1(c), this is done by the LSRs
S1 and S2 at the latest. At the Encoding LSR (R1), both flows are combined
and, hence, each packet of the encoded flow must carry two sequence numbers.

Extending the MPLS header to transport the additional packet sequence num-
ber is not feasible as this breaks compatibility to standard MPLS implementa-
tions. Normal LSRs would not be able to forward packets already numbered for
NC later on, but this is an obvious deployment requirement. Therefore, we use
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Fig. 2. MPLS label stacking is exploited to transport packet sequence numbers. The
label field of the inner header contains the packet’s sequence number.

the label stacking feature of MPLS to push an additional sequence number label
on the stack, transporting the sequence numbers within the 20bit label field.
Fig. 2 shows a sample stack transporting a single packet sequence number.

Sequence numbers also allow us to treat boundary cases. For example, it could
happen that at the Encoding LSR, a packet arrives and, even after waiting some
time, no packet from the partner flow is available for joint coding. One option
would be to stall such a packet until a partner packet for encoding arrives; an
alternative is to send this packet uncoded (to avoid blocking buffers) and to
indicate from which flow a packet is missing by an empty sequence number.

4 Extending RSVP-TE to Signal NC-Enabled Paths

The modified MPLS system can realize NC operations within the network. What
is still missing is a mechanism to propagate forwarding and de-/coding configu-
rations to involved nodes to actually turn on NC. To do so, the label distribution
protocol has to be extended as well. For the design of the RSVP-TE NC protocol
extension we must meet the following requirements:

– Using NC functionality must not disrupt normal RSVP-TE operation.
– Switching an LSP from normal to coded operation must be possible without

disturbing the ongoing transmission.
– Assured QoS constraints must not be violated when using NC, i.e., RSVP-

TE must still be able to manage reservations and guarantee them.
– Although the extension was designed with XOR NC in butterfly-like topolo-

gies in mind, it is kept as flexible as possible to easily permit other coding
techniques and topologies as well.

Fulfilling these requirements guarantees a seamless integration of NC LSPs into
a running network. The actual decision if and where NC is applied within the
network and which pairs of flows should be coded together is orthogonal to the
signaling problem addressed in this paper. Our signaling scheme supports any
kind of decision algorithm on top. The decision can even be made independently
from the nodes forming a coded path. The only limitation is that the decision
must be communicated to a node on the path to start the signaling process.

Based on the presented assumptions, the next sections describe how a NC
LSP is actually set up (Sec. 4.1) and teared down again (Sec. 4.2).
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(a) Path 1 is set up first.
PATH message P1 is mod-
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(b) Path 2 is also set up.
Besides P2 being modified
to P2’ at R1, path 1 is also
refreshed using P1”.
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(c) The setup of path 2
and refreshing of path 1
is acknowledged to the
sources via RESV messages.

Fig. 3. Sample for joint setup of two network-coded LSPs. S1/S2 are ingress LSRs,
R1 is the Encoding LSR, and D1/D2 are the egress LSRs which do the decoding.
Red/dashed arrows denote signaling messages belonging to path 1; blue/dotted arrows
the signaling of path 2. The first RESV reply for path 1 is omitted. The boxes denote
the signaling messages (only NC-relevant data which has changed is shown).

4.1 Setting Up Network-Coded Paths

RSVP-TE uses end-to-end semantics to set up paths by sending a PATH message
from the ingress to the egress LSR. It is acknowledged by a RESV message. Hence,
the use of NC has to be signaled by the ingress LSRs of both flows to be encoded.

There are two possible constellations how network-coded LSPs can be set up.
In the first and simpler case, both ingress LSRs are aware that their LSPs will
be used for NC. Hence, they are both initially set up with NC enabled. In the
second case, one or both sources start without the knowledge that their LSP will
be used for NC later on. Hence, the paths are set up without NC enabled. This
means that the NC-unaware LSPs must be converted with RSVP-TE’s rerouting
mechanisms [7, Sec. 4.6.4] afterwards. This procedure is not discussed here as it
is identical to the standard behavior of RSVP-TE.
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Simultaneous Setup of Network-Coded Paths. In this scenario, both
ingress LSRs S1 and S2 know at instantiation time that their LSPs will be
encoded. This information can either be propagated automatically by the algo-
rithm which decides when and where NC is applied, or can be given manually.

The setup process is clarified in Fig. 3, which illustrates important steps of
our signaling scheme. The LSPs start at the nodes S1/S2 and end at D1/D2.
Path 1 (starting at S1) is set up first with initially no NC active. It is refreshed
after the creation of Path 2 to be jointly encoded. To transport the addition-
ally required NC parameters, the PATH and RESV messages are extended. These
modifications will be described in detail later on. Note that at points where the
path is multicast, PATH messages are copied and sent along both subpaths, akin
to the P2MP upon which we built.

The path setup starts at S1 by sending the first PATH message P1 to R1 and
D2. After R1 added itself as Coding-Group Originator and assigned a new
Coding-Group ID, the message P1’ is sent to R2 and finally to D1. As coding
is not yet activated, D1 responds with a standard RESV message (not shown).
Next, S2 also starts its path setup by sending P2. R1 receives P2 and detects
the coding possibility with the first LSP based on the DECODING POINTS. Hence,
coding is enabled in P2’ and path 1 is refreshed using a new PATH message P1”.

Signaling of label stack positions for particular sequence number labels is only
done by the Decoding LSRs when coding is actually enabled. Fig. 3(c) shows
this signaling within the RESV message after encoding has been enabled by R1.

Modified PATH message. The intention of setting up an NC-enabled path is
signaled by modifying its SENDER TEMPLATE object and by adding four additional
objects to the PATH message. These changes are discussed in the following.

SENDER TEMPLATE. Two LSPs which shall be jointly encoded must be marked
such that Numbering, Encoding, and Decoding LSRs know about this inten-
tion. Therefore, two additional fields (Coding-Group Originator ID and
Coding-Group ID) are added to the SENDER TEMPLATE object. Both are ini-
tialized with zeros by the source LSR and will be filled by the Encoding LSR.
Similar to the P2MP extension, the Originator ID specifies the ID of the
Encoding LSR (usually its IP address), whereas the ID is assigned by the
Encoding LSR for this particular encoding operation. In combination, both
IDs identify the group of LSPs which are jointly encoded on a global scope.

CODING PARTNERS. There are two ways of establishing encoded LSPs: explicit
and automatic partner flow selection. For the explicit partner selection, the
desired partner flows are specified in the CODING PARTNERS object by a list
of subobject pairs. Each pair consists of the partner flow’s SESSION and
SENDER TEMPLATE object. This uniquely identifies LSPs for joint encoding.
In case there is no CODING PARTNERS.object in the PATHmessage, an Encoding
LSR may choose any LSPs for joint encoding. The LSR’s decision is signaled
by adding a CODING PARTNERS object referencing the selected partner flow.

CODING PARAMETERS. This field is used to define the coding operation that is
actually applied at the Encoding LSR (CodingType) and transports several
status flags concerning the setup procedure of the coded path (Flags).
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The CodingType field carries a simple identifier of the coding technique that
has to be applied at Encoding LSRs. The meaning of these identifiers has to
be unique within a NC MPLS domain.
As mentioned, the flags are used to signal important parameters during the
path setup. Their meaning usually differs for different coding techniques. For
the butterfly NC we implemented the following flags:
– 0x01 Sequence numbers active. The Numbering LSR sets this flag. This

will usually be the LSR where the path is multicasted. It is required to
check whether encoding and decoding is possible and to prevent multiple
Numbering LSRs.

– 0x02 Coding active. The Encoding LSR enables this flag when the en-
coding operation is active. It is required to prevent multiple Encoding
LSRs and to signal active encoding to potential Decoding LSRs to en-
able buffering. Furthermore, intermediate LSRs, e.g., R2 in Fig. 3, re-
act on two LSPs sharing the same Coding-Group Originator ID and
Coding-Group ID which both have the active coding flag set. In this
case both paths must be merged to multicast the encoded packets.

CODING POINTS. This object contains a list of LSRs which are permitted to
take over the role of the Encoding LSR. LSRs listed in this object watch for
existing and future LSPs to enable the encoding operation whenever possible.
The decision which flows are coded depends on the LSPs’ CODING PARTNERS
objects. The format is identical to the EXPLICIT ROUTE object in RSVP-TE.

DECODING POINTS. This object has the same format as the CODING POINTS ob-
ject. It defines a list of LSRs which are able to decode data flows which have
been jointly encoded with this flow, i.e., which will receive a plain copy of
this flow. Each LSR which is contained in this list looks for other flows that
are jointly encoded to take the role of the Decoding LSR.

PATH TIME. Packets that are required for decoding traverse two different paths
through the network. As these two paths will usually have different delays,
the packets going over the faster path have to be buffered at the decoder
until the corresponding packets for decoding arrive. This difference in delay
and the available buffer size limit the maximum possible data rate.
As it is required to take this into account for resource reservations, this dif-
ference in delay has to be estimated on both branches of a coding path, e.g.,
on path S1→D2 and S2→R1→R2→D2 in the sample topology in Fig. 1(c).
This is done with the PATH TIME object. It contains two fields, a minimum
time and a maximum time. Every LSR which forwards the PATH message
adds the minimum and maximum observed latency for the link over which it
received the message. Hence, at the decoder, the maximum delay difference
of both flows is available to calculate whether the data rate requirements of
the path can be fulfilled with the available buffer space or not. If not, the
decoder must deny the path setup.

The required multicasting of a data flow is realized with the standard P2MP
extension for RSVP-TE. LSRs where the actual copying of the flow is desired
are configured in the S2L sub-LSP descriptor list [8, Section 4.5].
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Modified RESV message. When a PATH message arrives at the egress LSR,
RSVP-TE sends back a RESV message to the ingress LSR to actually set up
the LSP and distribute labels between the routers. For the NC-enabled paths,
i.e., where the coding active flag is set in the PATH message, labels carrying
the packet sequence numbers will be added to the packets. As Encoding LSRs
will receive two flows which have been augmented with sequence numbers, the
encoded output flow contains both flows’ sequence numbers (cf. Sec. 3.2). Hence,
the Decoding LSRs must be aware of which sequence number label belongs to
which flow. To signal this, the RESV message is extended with a Coding partner
list.

Coding partner list. To retain the approach of RSVP-TE to signal labels
from the destination to the source, a Decoding LSR signals the desired label
ordering to the Encoding LSR. This is done by adding a Coding partner
list to RESV messages. The list contains pairs of CODING PARTNER and
STACK POSITION objects. The CODING PARTNER objects are identical to the
ones used in the PATH message and identify the partner flow which is used
for encoding. The stack position is the expected index of the partner flow’s
sequence number labels within the label stack. For butterfly NC, the Coding
partner list will only contain one entry (for the partner flow).

Signaling costs. The number of signaling messages required to set up two NC
LSPs is analyzed in this paragraph. The setup procedure can be divided into
three phases: setup of the first LSP, setup of the second LSP, and refreshing
the first LSP to activate coding. Eq. 1 shows the set of PATH messages P1 and
Eq. 2 the set of RESV messages R1, sent during the first phase (cf. Fig. 3(a)). A
capital P stands for a PATH, an R for an RESV message. Indices denote the link
over which the message is sent.

P1 = {PS1→D2, PS1→R1, PR1→R2, PR2→D1} (1)
R1 = {RD2→S1, RD1→R2, RR2→R1, RR1→S1} (2)

As the first two phases are symmetric, they require the same amount of signaling
messages, i.e., C(P2) = C(P1) = 4 and C(R2) = C(R1) = 4, where C(X) denotes
the cardinality of the set X . This means that there are 16 signaling messages
sent in total for setting up the two initial LSPs.

For refreshing the first LSP to also activate coding, additional signaling is
necessary. The PATH and RESV messages that are used for this are listed in Eq. 3.

P3 = {PR1→R2, PR2→D1} R3 = {RD1→R2, RR2→R1, RR1→S1} (3)

This results in a total of 21 signaling messages. Although this is more than
the required 12 messages for the uncoded case, many of them are exchanged
in parallel, such that the temporal overhead is very small. Furthermore, none
of the two LSPs has to wait for the partner flow, i.e., data transfer can start
immediately after path initiation.
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4.2 Tearing Down Network-Coded Paths

Tearing down one of the jointly encoded paths is straightforward. The source
LSR of the LSP to be torn down sends a PathTear message down the path. The
Encoding LSR receives this message and stops encoding both flows from then
on. As packets of the partner path still have to reach their destination, they are
sent uncoded and the special sequence number 0 is used to signal this to the
decoder (cf. Sec. 3.2).

Using this method guarantees a disruption-free operation of paths whose part-
ners are torn down during NC operations. Depending on the application scenario,
a conversion of the multicast LSP to a unicast LSP after such an event might be
reasonable to save capacity. This is the case if the multicast capability has only
been set up to do NC and is not further required. Such a conversion is done by
the ingress LSR by additionally setting up a normal unicast LSP which uses the
already allocated network ressources. After switching the traffic to the unicast
LSP, the NC multicast LSP is torn down.

5 Evaluation

To demonstrate the feasibility of our protocol extensions, we implemented them
in a simulator. The system model and the observed results are discussed next.

5.1 System Model

We implemented the topology already presented in Fig. 1(c) using the OM-
NeT++ discrete event simulator and the MPLS and RSVP-TE models from
the INET framework. The data sources and destinations are outside the butter-
fly. All links are equal and have a capacity of 10Mbit/s and a latency of 2 ms.
The sources, connected to S1 and S2, periodically send packets of 1435byte to
the destinations, which are connected to D1 and D2, with inter-packet times of
13ms. This is the minimum possible inter-packet time before congestion occurs
at the chosen link configuration. RSVP-TE refreshes paths every 5 s.

To demonstrate NC, the following events occur at the simulated times t:

t = 0 s: S1 creates a normal LSP without coding functionality (LSP1-1). The
source at S1 starts sending packets which are transported through LSP1-1.

t = 4 s: S1 creates an NC-enabled LSP (LSP1-2) in parallel to LSP1-1.
t = 4.5 s: The data packets from S1 are switched from LSP1-1 to LSP1-2. LSP1-1

is torn down. The encoding of LSP1-2 is still inactive.
t = 5 s: S2 creates an NC-enabled LSP (LSP2-1). This triggers the joint coding

for LSP1-2 and LSP2-1 at R1.
t = 6 s: Source at S2 starts sending packets.
t = 15 s: Source at S1 stops sending packets. LSP1-2 is torn down.

During the simulation, the end-to-end delay d is measured for each packet to see
changes in the packet forwarding behavior. Furthermore, packet loss is monitored
to detect possible problems during path switching. Nevertheless, the point of
this simulation is not a stochastic performance evaluation but rather serves to
validate the protocol. Therefore, a variation of parameters is not necessary.
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5.2 Results

The end-to-end delays of both flows, measured during an example simulation
run, are plotted in Fig. 4. No packet was lost during the simulated time.

When S1 sends its packets via the uncoded LSP1-1, an end-to-end delay of
d = 56ms can be observed. This corresponds to the sum of five link delays
plus the corresponding packet transmission times. At event (1), enabling NC
for LSP1-2 causes d to raise to 69ms. The difference is exactly the maximum
buffering time of each packet at the encoder before it is sent uncoded.

At (2), data is sent via LSP2-1. LSP1-2’s latency reduces again as now packets
can be encoded before the maximum encoder buffering time elapses. Whereas
LSP2-1’s delay reduces to the minimum possible 56ms, the delay of LSP1 stays at
approximately 59ms. This offset compared to LSP2-1 results from S2’s packets
arriving slightly later at the Encoding LSR than those of S1. Hence, as both
sources send with identical rates, the packets of LSP1-2 have to wait until a
partner packet of LSP2-1 arrives. Obviously, this changes in other simulation
runs if the starting offsets of S1 and S2 are different.

The teardown of LSP1-2 happens at event (3). As from then on, packets of
LSP2-1 have to wait for the maximum encoder buffering time until they are sent
out uncoded, the delay of LSP2-1 raises to the already previously seen 69ms.
As LSP2-1 is not converted to disable the NC, the delay remains at this level.

Another phenomenon which can be seen every 5 s (at 5, 10, 15, and 20 s in
Fig. 4) is a short increase of the end-to-end delay. It is caused by the path refresh
messages (PATH and RESV) which are periodically sent and have to be queued in
addition to the data packets. This temporarily increases the delay.

The absence of any packet loss shows that our protocol was able to switch
between different operation modes without disrupting ongoing transfers. The
observed packet delay corresponds to the expected behavior and demonstrates
the operability of our approach; it behaves accordingly for different initial
conditions.
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6 Conclusion

We presented an extension to the MPLS and RSVP-TE protocols to support creat-
ing network-coded paths. The decision whether to use coding or not does not have
to be made during the paths’ initiation; seamless switching between non-coded
and coded operation is possible. Another advantage of the protocol extension is
that only those LSRs have to be modified which are actually involved in the cod-
ing operation. All others, e.g., intermediate routers which forward coded packets,
can remain untouched. Compared to traditional packet forwarding, our extension
enables new load distribution schemes which are especially useful for the operation
of core networks.
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