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Abstract. Recently, random linear network coding has been widely applied in 
peer-to-peer network applications. Instead of sharing the raw data with each 
other, peers in the network produce and send encoded data to each other. As a 
result, the communication protocols have been greatly simplified, and the appli-
cations experience higher end-to-end throughput and better robustness to net-
work churns. Since it is difficult to verify the integrity of the encoded data, 
such systems can suffer from the famous pollution attack, in which a malicious 
node can send bad encoded blocks that consist of bogus data. Consequently, the 
bogus data will be propagated into the whole network at an exponential rate. 
Homomorphic hash functions (HHFs) have been designed to defend systems 
from such pollution attacks, but with a new challenge: HHFs require that 
network coding must be performed in GF(q), where q is a very large prime 
number. This greatly increases the computational cost of network coding, in ad-
dition to the already computational expensive HHFs. This paper exploits the po-
tential of the huge computing power of Graphic Processing Units (GPUs) to 
reduce the computational cost of network coding and homomorphic hashing. 
With our network coding and HHF implementation on GPU, we observed 
significant computational speedup in comparison with the best CPU implemen-
tation. This implementation can lead to a practical solution for defending 
against the pollution attacks in distributed systems. 

Keywords: applications and services, network coding, pollution attack, GPU 
computing. 

1   Introduction 

In recent years, peer-to-peer (P2P) content distribution applications (e.g., BitTorrent) 
and video streaming applications (e.g., ppLive) have become popular and constitute 
more than 30% of today's Internet traffic. The new coding technique, random linear 
network coding, is recently adopted by P2P applications [6-12], leading to simpler 
communication protocols, higher throughput, better resilience to network churns, and 
many more benefits to be discovered [6-12]. With network coding, the source 
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segments the to-be-distributed content into n data blocks of equal size. Each peer (in-
cluding the source) sends out encoded data blocks, each of which is a linear combina-
tion of the original data blocks. After receiving n linearly independent encoded data 
blocks, a peer is able to decode the original data blocks by solving n linear equations 
with n variables. Since it is difficult to verify the integrity of the encoded data, such 
systems can suffer from the famous pollution attack, in which a malicious node can 
send bad encoded blocks that consist of bogus data. Consequently, the bogus data will 
be propagated into the whole network at an exponential rate. To defend against such 
attacks, homomorphic hash functions (HHFs) have been proposed to provide a 
mechanism for verifying the integrity of the encoded data blocks received from the 
network.  In a nutshell, HHFs offer a nice property that the hash value of any encoded 
data block can be derived from the hash values of the original data blocks, based on 
which we can identify the bad encoded data blocks without decoding them [14] [15]. 
Hence, it can effectively prevent the propagation of the bogus data blocks.  

The theoretical property of HHFs is very attractive to practical P2P applications. 
Unfortunately, the computational complexity posed by HHF is the stumbling stone to 
this realization. First, HHF itself is computationally expensive.  On a contemporary 
CPU, say 3.0GHz Pentium 4 PC, we can only hash hundreds of kilobit per second 
[13]. Second, Homomorphic hashing requires extensive modular exponentiation op-
erations over a very larger prime modulus p (e.g., 1024 bit). This require that the data 
must be encoded in large finite field, GF(q), where q is a large prime number (e.g., 
257 bit). This greatly increases the computational cost of network coding, nearly im-
practical on CPUs. Our imperative goal is to remove the barrier by reducing the com-
putational cost. The key enabling technologies here are the modern GPUs and the 
CUDA programming model for non-graphical application development on GPUs. 

On the hardware level, recent advances in GPUs open a new era of GPU comput-
ing [20]. For instance, NVIDIA’s GTX 280 can achieve 933 GFLOPS of computing 
power, about 8 times faster than the Intel Harpertown 3.2GHz CPU. However, using 
GPU for non-graphic applications has been considered very difficult, mostly due to 
the limited API support. Nonetheless, the introduction of CUDA programming model 
makes it easier for software developers to develop non-graphic applications on GPUs 
[1]. In CUDA, GPU is treated as a dedicated coprocessor to the CPU, and multiple 
threads based on the same code can run simultaneously on the GPU, working on dif-
ferent data set. With supports from CUDA, it is now possible to implement network 
coding and HHFs on GPUs. In this paper, we propose to use GPU to accelerate ran-
dom linear network coding as well as homomorphic hashing. We designed and devel-
oped massively parallel network encoding and decoding algorithms and homomorphic 
hashing. By carefully applying optimization techniques, we successfully achieved a 
significant performance boost: 95x speedup for network encoding, 33x speedup for 
network decoding, and 15x speedup for homomorphic hashing on a contemporary 
GPU. This makes network coding and HHF a practical solution for pollution attacks 
in P2P systems. 

The rest of the paper is organized as follows. Sec. 2 provides background informa-
tion on network coding, homomorphic hashing, the GPU architecture, and the CUDA 
programming model. Sec. 3 presents the parallel algorithms for random linear net-
work coding in GF(q). Sec. 4 presents the parallel homomorphic hash algorithm. Our 
experimental results are presented in Sec. 5, followed by the conclusions in Sec. 6. 



 Practical Random Linear Network Coding on GPUs 575 

2   Background and Related Work 

This section provides the necessary background knowledge of network coding, 
homomorphic hash function, the GPU architecture, and the CUDA programming 
model. 

2.1   Network Coding 

Network coding has been originally proposed in information theory to achieve the op-
timal throughput in a multicast session [6]. Since then, it has been applied in various 
communication networks for better throughput and robustness to network dynamics.  
The essence of network coding is a paradigm shift to allow coding at intermediate 
nodes between the source and the receivers in one or multiple communication ses-
sions.  The seminal work of network coding has been studied in [6] [7] [9], which has 
shown that a multicast session can achieve the data rate of multicast upper bound if 
network nodes are allowed to perform coding.  The framework of random network 
coding was proposed in [8], which makes network coding theory applicable to practi-
cal applications.  Since then, there are quite a number of proposal to apply network 
coding in practical systems for performance enhancement. The Avalanche project by 
Microsoft Research applied random linear network coding in a P2P content distribu-
tion application [10]. Similarly, Lava incorporates random linear network coding into 
a live multimedia streaming system [12]. Network coding has also been applied in 
other fields, such as distributed storage systems [11] and wireless networks [21].  

In network coding, each data block is treated as a vector of elements in the finite 
field, and an encoded block is simply a vector representing the linear combination of a 
set of data blocks (vectors) with randomly generated coefficients in the finite field. 
The network coding operations, encoding and decoding, are implemented in finite 
fields, i.e., prime fields GF(q) or extension fields GF(qr), where q is a prime number 
and r is a positive integer. The computational performance of random linear network 
coding in GF(2r) has been previously studied in [17]. In [18] [22], GPUs have been 
used to accelerate the performance of network coding in GF(2r). To the best of our 
knowledge, this is the first paper studying the computational performance of random 
linear network coding in prime field GF(q), which has a much higher demand of 
computing power than that of network coding in GF(2r). 

2.2   Homomorphic Hashing 

As discussed in Sec. 1, network coding enabled P2P applications are prone to the pollu-
tion attacks, in which a malicious peer can easily inject bogus data blocks into an en-
coded block without being noticed. When network coding is not deployed, peers will 
receive original data blocks from each other. Hence it is possible to use normal hash 
functions, such as SHA1, to verify the correctness of a data block by comparing the 
hash of each received data block to the corresponding hash provided by the source. With 
network coding, the effect of pollution attack becomes more serious and harder to detect 
[14] [15] [16] for two reasons: First, each bogus block can be encoded with regular data 
blocks before being propagated in the network. Second, the traditional hash functions, 
e.g., SHA1, are no longer practical since the encoded blocks received by each peer can-
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not be predetermined by the source. Some workarounds have been proposed to address 
these issues. In [14], a cooperative scheme is proposed, in which peers perform prob-
abilistically block verification and inform others when a malicious node has been identi-
fied. However, this scheme cannot detect the bogus blocks at the earliest stage and 
could potentially have false alarms. 

To this end, homomorphic hash functions (HHFs) are currently the best solution to 
address this security issue with network coding. HHFs have the property that the hash 
value of an encoded block can be constructed by the hash values of the original 
blocks. In other words, a peer only need to get the hash values of the original blocks 
from the source, it then can easily verify the integrity of an encoded block immedi-
ately after receiving the encoded block. Although the HHFs can theoretically resolve 
the pollution attack problem, it is technically not practical on today’s desktop CPUs. 
A 3 GHz Pentium 4 CPU can only achieve around 300 Kbps of hashing throughput 
[13]. Furthermore, it requires network coding to be performed in GF(q) with large 
value for q, which makes it computationally expensive.  

2.3   GPU Computing and CUDA 

GPUs are dedicated hardware for manipulating computer graphics. Due to the huge 
demand for computing for real-time applications and high-definition 3D graphics, 
GPUs have been evolved into highly paralleled multi-core processors. The NVIDIA 
GeForce GTX260 has 24 Streaming Multiprocessors (SMs), and each SM has 8 Sca-
lar Processors (SPs). At any given clock cycle, all SPs of the same SM must execute 
the same instruction, but can operate on different data. Each SM has four different 
types of on-chip memory: constant cache, texture cache, registers, and shared mem-
ory. The properties of the different types of memories have been summarized in [1] 
[19]. A general optimization principle is that registers and shared memory should be 
carefully utilized to amortize the global memory latency cost. 

The exceptional GPU computing power is very attractive to general-purpose sys-
tem development. The first generation of GPU computing (namely GPGPU) requires 
that non-graphics application must be mapped through the graphics application pro-
gramming interfaces, which is very challenging. In early 2007, one of the major GPU 
vendors, NVIDIA, announced a new general-purpose parallel programming model, 
Compute Unified Device Architecture (CUDA) [1], which extends the C program-
ming language for general-purpose application development. Meanwhile, another 
GPU vendor AMD introduced Close To Metal (CTM) programming model that pro-
vides an assembly language for application development [2]. Intel is also planning to 
release Larrabee [3], a new multi-core GPU architecture specially designed for GPU 
computing. Currently, CUDA is the best available programming model, and is the 
most well accepted model by the research and development community. Since the 
release of CUDA, it has been used for speeding up a large number of applications 
[18-20] [22] [23]. For these reasons, we chose to use CUDA in our research. Never-
theless, out algorithms can be easily implemented on other GPU computing models. 

In the CUDA model, the GPU is regarded as a coprocessor capable of executing a 
great number of threads in parallel.  A single program consists of host code to be exe-
cuted on CPU and kernel code to be executed on GPU. The kernel code is usually 
computational-intensive, data-parallel and multi-threaded. Threads are organized into 
thread blocks, where each block is associated with one SM. Threads belonging to the 
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same thread block can share data through the shared memory and can perform barrier 
synchronization. CUDA does not provide any direct synchronization methods be-
tween threads that belong to different thread blocks, however. When a thread block 
terminates, a new thread block can be launched on the vacant SM. 

3   Parallel Network Coding on GPUs 

To facilitate the development of network coding, we have implemented a set of library 
functions of multiple-precision modular arithmetic on the CUDA platform. These li-
brary functions simplify the development of the network coding system and homomor-
phic hash functions. Our multiple-precision library includes the following functions: 
comparison, subtraction, modular addition, modular subtraction, multiplication, divi-
sion, multiplicative inversion, Montgomery reduction, Montgomery multiplication. 

Assume the original data to be distributed is divided into n equally sized data 
blocks (b1, b2, …, bn), where each data block bi contains m codewords bi,k, 
k∈{1,…,m}. An encoded block ej is a linear combination of the n original blocks and 
it also contains m codewords ej,k, k∈{1,…,m}. The linear relationship between ej and 
the original n blocks is described by ej’s global coefficient vector ),,,( ,2,1, njjj ccc … : 

, ,1,

n

j i i kij k c be
=

⋅=∑ , k∈{1,…,m}. Obviously the encoding process is a vector-matrix 

multiplication. A peer can decode the original n data blocks as soon as it has received 
n linearly independent encoded data blocks (e1, e2, …, en), by solving the set of linear 

equations , ,1,

n

j i i kij k c be
=

⋅=∑ , k ∈ {1,…,m}, j∈ {1,…,n}. In a P2P application with 

network coding, a peer receives encoded data blocks from upstream peers, and also 
creates new encoded data blocks by randomly and linearly combining its received en-
coded blocks, and then disseminates the new encoded blocks to its downstream peers. 

3.1   Network Encoding in GF(q) 

When network coding is performed in GF(q) where q is a predefined large prime num-
ber, the encoding process will creates a sequence of encoded blocks ej, each of which 
contains m codewords ej,k. ej is generated based on a random coefficient vector 

j
c =

,1 , 2 ,
( , , ..., )

j j j n
c c c : 

, , ,1

n

j k j i i ki
e c b

=
= ⋅∑  mod q, k∈ {1,…,m}. Here cj,i are positive 

32-bit integers. The encoding process includes two steps: (1) generating the coefficient 
vector cj; (2) modular vector-matrix multiplication. The CUDA library provides a very 
high efficient random number generator using Mersenne Twister method, which can 
generate tens of millions of random numbers per second using GPU. As the time of 
generating n random numbers are negligible as compared with the encoding time, we 
will focus on the vector-matrix multiplication operation, as shown in Figure 1(a). We 
implement the computing of each codeword ej,k by a CUDA thread. Hence encoding a 
single block requires m threads. Each thread computes a dot product and then performs 
a modular operation, using our multiple-precision CUDA library. In order to fully ex-
ploit the computing power of GPUs, thousands of threads are a normal requirement. 
Therefore we propose a batched encoding approach for small values of m, which en-
codes K blocks simultaneously, as shown in Figure 1(b). In this case, the number of 
threads equals mK. 
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Fig. 1. Network encoding: (a) Encode a single block (b) Encode multiple blocks in a batch 

3.2   Network Decoding in GF(q) 

The decoding process includes two steps: (1) matrix inversion; and (2) matrix multi-
plication. Matrix inversion for floating-point numbers on GPU has been recently stud-
ied in [23]. Our problem is very different because we are operating in GF(q). We use 
Gauss-Jordan elimination for the matrix inversion, which brings a matrix to its re-
duced row echelon form. There is no stability issue because we are operating in finite 
field. To overcome the synchronization challenge, our parallel matrix inversion algo-
rithm uses both CPU and GPU, as shown in Table 1. The non-parallel parts, e.g., find-
ing the multiplicative inverse, are done by the CPU, whilst the parallel parts, e.g., 
reducing to row echelon form, are done by GPU. 

The matrix multiplication can be implemented in a similar way as the vector-
matrix multiplication. Each element in the output matrix is computed by one thread; 
hence the total number of threads is n2, which is sufficient to fill the GPU cores since 
n is normally no less than 64 in practice. Difference from the encoding process, the 
integer multiplications here are performed between two large integers, since the cor-
responding values of the coefficients grow as the blocks are being re-encoded at each 
peer. In this case, a straightforward parallel implementation cannot achieve satisfac-
tory performance due to the global memory latency. GPU’s on-chip shared memory 
can be exploited to amortize the global memory latency, and we propose to use a ti-
tled version of matrix multiplication, in which the matrix is divided into a number of 
sub-blocks [1] [19]. As illustrated in Figure 2, the computing of sub-block Bsub is done 
by a thread block. The threads in this block cooperatively load the data from the two 
tiles in coefficient matrix and ET into shared memory. These threads compute the par-
tial dot product in shared memory, and then continue with the next tile. The size of 
the tile should be controlled such that two tiles can be accommodated by the shared 
memory of a SM. 
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Table 1. Algorithm of Matrix Inversion in GF(q) 

Algorithm 1. Matrix Inversion in GF(q) 
INPUT: An n x n non-singular matrix M, an n x n unit matrix U 
OUTPUT: the inverse of M 
1:    lead ←  0;  
2:    row ←  n; col ←  n; 
3:    for ( r = 0 to row - 1) 
4:        i ←  r; 
5:        while M[i, lead] equals 0 
6:             i++; 
7:        Swap rows i and r of M and U; 
8:        t ← multiplicative inverse of M[r, r];  /* on CPU */ 
9:        Multiply row r of M and U by t;            /* on GPU */ 
10:      for all rows j except row r of M and U 
11:          For M, subtract M[j, lead] multiplied by row r from row j; /* on GPU */ 
12:          For U, subtract M[j, lead] multiplied by row r from row j; /* on GPU */ 
13:      end for 
14:      lead++; 
15:  end for 
16:  return U 

k: tile size

n m

n

n

ET

Bsub

Bcoefficient matrix

 

Fig. 2. Decoding: tiled matrix multiplication 

4   Parallel Homomorphic Hashing on GPUs 

The homomorphic hash function, ( )h ⋅ , proposed in [13] requires a set of hash pa-

rameters G = (p, q, g). The parameters p and q are large prime numbers of order λp 
and λq chosen such that q | p - 1. The parameter g is a vector of m numbers, each of 
which can be written as x(p-1)/q mod p where x∈Zq and 1x ≠ . The method of creating 
the parameter set can be found in [13]. Typical values of the parameters are summa-

rized in Table 2. The homomorphic hash of a data block 
i

b is then calculated as 
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satisfy the following condition: ,

1
( ) ( ) modj i
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j ii

h e h b  p
=

= ∏ . This property can be 

used to verify the integrity of an encoded block, as illustrated in Figure 3. The content 
publisher first calculates the homomorphic hash values for each of the data blocks. 
The downloaders need to download a copy of these hash values for the purpose of 
verifying every single encoded data block. 

b1 b2 bn

h(b2) h(bn)

Content
Publisher

Random Linear
Network Coding

ej

h(ej)

(cj,1, cj,2, ... , cj,n) +

Downloaded

Ph
cj,i

(bi) mod p =?

Downloader

h(b1)

 
Fig. 3. Data verification using homomorphic hashing in network coded P2P applications 

Table 2. Homomorphic hash function parameters 

Name Description Typical Value 

p
λ  Discrete log security parameter 1024 bit 

q
λ  Discrete log security parameter 257 bit 

p, q Random primes, | |
p

p λ= , | |
q

q λ= , | 1q p −   

m Number of codewords per data block 512 

n Number of data blocks 128 

As shown earlier, homomorphic hashing, i.e., ,

1
( ) k i

m b

kki gh b
=

= ∏  mod p, involves m 

modular exponentiations and m-1 modular multiplications. The m-1 modular multipli-
cations can be easily parallelized by a regular reduction process. The m modular 
exponentiations can be very time consuming. We distribute the m modular exponen-
tiations to the GPU processing cores. The challenge is to implement modular expo-
nentiation on GPU in the most efficient way. On the current CUDA platform, integer 
division and modulo operations are very costly. Therefore we choose to use the 
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Montgomery exponentiation algorithm (as shown in Table 3) which can decrease the 
number of division operations significantly. 

Table 3. Algorithm of multiple-precision Montgomery exponentiation 

Algorithm 2. Multiple-precision Montgomery Exponentiation 

INPUT: integer m with n radix b digits and gcd(m, b) = 1,  nbR = , positive integer x with 
n radix b digits and mx < , and positive integer e = 20 )( eet  . 

OUTPUT: ex  mod m. 

1:    
2

( , )x Mont x R  mod m← ;  

2:    RA ←  mod m; 
3:    for ( i from n down to 0) 
4:        ( , )A Mont A  A← ; 

5:        if 1==ie   

6:        then ( , )A Mont A  x← ; 
7:    end for 
8:   ( , 1)A Mont A  ← ; 
9:    return A; 

5   Experimental Results 

We have implemented the proposed network encoding/decoding and parallel homo-
morphic hashing algorithm using CUDA. For comparison purpose, we also imple-
mented network coding and homomorphic hash function for CPU in C language, by 
utilizing the GNU MP arithmetic library, version 4.2.3 [4].  These implementations are 
running on an Intel Core2 CPU 1.6 GHz. We tested all our algorithms on XFX 
GTX280 graphic card with an NVIDIA GeForce GTX280,  which has 240 processing 
cores. On GTX280, there are 30 Streaming Multiprocessors (SMs), and each SM has 8 
Scalar Processors (SPs), 16384 32-bit registers and 16KB shared memory. 

5.1   Performance of Encoding in GF(q) 

The throughput of encoding process is shown in Figure 4(a) in log-scale. In theory, 
the encoding time complexity is linear to the size of n. This is in accordance with our 
experimental results. The throughput of network encoding on CPU is very poor: only 
10.3 Mbps for n = 128. The GPU performance is very impressive: around 800 Mbps 
can be achieved for n = 128 with a small batch size K of 32. We observe that larger 
batch sizes can lead to better performance, until some threshold value has been met. 
In our testing environment, K = 128 is the optimal setting. The speedup of GPU over 
CPU has been plotted in Figure 4(b), for different batch sizes and n. With a batch size 
larger than 32, the speedup is greater than 66x. The highest speedup of 95x is ob-
tained when n = 128 and K = 128.  
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Fig. 4. Performance of network encoding: (a) Encoding throughput (b) Speedup over CPU 

5.2   Performance of Decoding 

As mentioned before, the decoding process includes two steps: (1) matrix inversion; (2) 
matrix multiplication. The time used for matrix inversion is shown in Figure 5(a) using 
log-scale, and the speedups on GPU over CPU are plotted in Figure 5(b). It is a well 
known fact that matrix inverse using Gauss-Jordan elimination has a time complexity of 
O(n3). Our experimental results on CPU follow this pattern as well. The performance of 
parallel matrix inversion on GPU is a bit more complicated due to the kernel loading 
overhead and communication overhead between the CPU and GPU. Figure 5(b) shows 
that the speedup on GPU grows as the number of blocks, n, increase: 17 for n = 128 and 
24 for n = 256. This is where the benefit of GPU manifests itself, i.e., the overheads are 
amortized by the increasing parallelism in the computation. 
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Fig. 5. Performance of matrix inversion: (a) Matrix inversion time in ms (b) Speedup over CPU 

The performance of the matrix multiplication process is shown in Figure 6. As ex-
pected, the throughput is much slower than the encoding process. Even so, the GPU 
can achieve 243 Mbps of throughput for n = 128 when shared memory is utilized. The 
speedup on GPU over CPU ranges from 64x to 75x for n = 64, 128, 256 respectively 
when shared memory is used. 

The performance of the whole decoding process is shown in Figure 7, for m = 512. 
Since the speedup of matrix multiplication is much larger than the speedup of matrix 
inversion, the speedup of the overall decoding process is limited by the performance 
of matrix inversion. The overall decoding throughput when n = 128 is 58 Mbps which 
includes the matrix inversion and matrix multiplication. The decoding performance 
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can be further enhanced by using a larger value of m, because the same matrix inverse 
operation is now used for a larger data volume. The speedup ranges from 15x to 33x 
for different values of n. 
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Fig. 6. Performance of matrix multiplication: (a) Throughput (b) Speedup over CPU 
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Fig. 7. Performance of network decoding. (a) Throughput of decoding (b) Speedup over CPU. 

5.3   Performance of Homomorphic Hashing 

Our CPU version of homomorphic hashing achieves 130 Kbps of throughput, which 
is relatively lower than the results reported by [13] [14] due to our relatively lower 
CPU frequency. 

The parallel homomorphic hashing uses Algorithm 2 to calculate exponentiations. 
The CUDA architecture requires a large number of threads to hide the memory la-
tency and to fully utilize the computing power. The number of threads per thread 
block (denoted by TB), and also the number of thread blocks (denoted by NB), are the 
two main factors that affect the hashing throughput. We plot the throughput for dif-
ferent configurations in Figure 8. It is easy to observe that more threads per block can 
generally achieve better throughput. When the number of threads per block is fixed, 
the throughput can be improved by creating more thread blocks, until some threshold 
has been reached. Since our GPU has 30 SMs, the number of thread blocks should be 
a multiple of 30. Better throughput can be achieved if the following conditions are 
satisfied: (1) TB is a multiple of 32 (i.e., the warp size [1] [19]). In CUDA, a warp is 
formed by 32 parallel threads and is the scheduling unit of each SM. If the number of 
threads in a block is not a multiple of warp size, the remaining instruction cycles will 
be wasted. (2) NB is a multiple of 30 (i.e., the number of SMs); (3) TB x NB > 6144. 
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For example, if m = 512, we should perform the homomorphic hashing for 12 differ-
ent data blocks simultaneously. The highest throughput of 1.9 Mbps is obtained when 
TB = 128 and NB = 90, which is 15 times faster than the CPU implementation. 
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Fig. 8. Throughput of homomorphic hashing on GPU 

6   Conclusions 

Network coding has been shown as a powerful technique to enhance the throughput 
and robustness of P2P systems; and homomorphic hash functions are a supplementary 
tool for defending against the pollution attack. The remaining challenges are the com-
putational requirement of network coding in prime field and the homomorphic hash-
ing. This paper demonstrates a practical parallel implementation of network coding 
and homomorphic hashing using GPUs. Our experimental results show that the com-
putational obstacle of network coding and homomorphic hashing can be overcome by 
designing efficient parallel algorithms and fully exploiting the computing power of 
contemporary GPUs that are widely available on today’s desktop PCs. 
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