
Collaboration in BitTorrent Systems

Rafit Izhak-Ratzin

Computer Science Department, University of California - Los Angeles
(310) 825-3886, 4732 Boelter Hall, Los Angeles, CA 90095

rafiti@cs.ucla.edu

Abstract. Recent research efforts have shown that the popular Bit-
Torrent protocol does not strictly enforce fairness and allows free-riding,
mainly via optimistic unchokes.

This paper proposes a BitTorrent-like protocol, that encourages peers
of similar upload bandwidth to be buddies— peers collaborating for mu-
tual benefit. Buddy peers mostly satisfy their download needs through
their buddies and perform optimistic unchokes only when absolutely nec-
essary. As a result, the buddy protocol improves fairness via explicit
cooperation between buddies, and limits bandwidth spent on random
optimistic unchokes, leading to a system more robust against free-riders.

We implemented the buddy protocol on top of an existing BitTorrent
implementation and ran experiments on a controlled PlanetLab testbed
to evaluate its impact. Our results show that the buddy protocol pro-
motes fairness, discourages free-riding, and improves the robustness of
the system as compared to regular BitTorrent. It also provides incentives
to be adopted by all the peers in the system.

Keywords: BitTorrent, Buddies, fairness, incentives.

1 Introduction

The BitTorrent protocol [1], one of the most popular protocol for peer-to-peer
content distribution, aims to provide fairness among peers by applying the tit-
for-tat (TFT) unchoking mechanism to incentivize contribution and discourage
free-riding. Despite this, previous studies [2,3,4] showed that BitTorrent suffers
from unfairness, particularly for high capacity leechers. Other studies [5, 6, 7]
showed that free-riding opportunity exists in BitTorrent. One of the main con-
tributor to this lack of fairness is the optimistic unchokes mechanism, another
unchoking mechanism that is used in BitTorrent. As this mechanism facilitates
continuous discovery of better peers to interact with, it also facilitates upload
imbalance, dynamically creates a major opportunity for peers to obtain data
without uploading in exchange. However, it is also been shown to greatly con-
tribute to the robustness of the protocol [5], making it hard to be replaced.

In this paper we propose an alternative mechanism that dynamically creates
buddies—pairs of peers having similar upload bandwidth that collaborate for
mutual benefit. The buddy relation is based on the upload history during the

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 338–351, 2009.
c© IFIP International Federation for Information Processing 2009

Collaboration in BitTorrent Systems 339

relation existence, and not only on the last round of contribution as in reg-
ular BitTorrent’s TFT mechanism. Peers in buddy mode aim to satisfy their
download needs through their buddies and perform optimistic unchokes only
if absolutely necessary. Hence, the buddy mechanism mostly obviates the need
for optimistic unchokes, while at the same time improves fairness and system
robustness.

We implemented our buddy protocol on top of an existing BitTorrent im-
plementation. We ran experiments with different configurations on controlled
PlanetLab testbed in order to evaluate the impact of the buddy protocol on
different level of contributing leechers and free-riders in comparison to the reg-
ular BitTorrent. In the experiments, our buddy protocol exhibits the following
properties:

1. It promotes fairness as high capacity leechers who suffer from the unfairness
in regular BitTorrent improve their download rate, and low capacity leechers
who used to benefit from this unfairness are slowed down.

2. It provides a clear incentive for all level of contributing leechers to adopt it,
even to those low capacity leechers who are slowed down due to it.

3. It discourages free-riding by limiting the optimistic unchokes, in comparison
to the regular BitTorrent, thus directly hurting free-riders performance.

4. It improves the system robustness as increasing free-riding has less impact
on the contributors performance, as compared to the regular BitTorrent.

We develop an analytical model that explains leechers interactions in the pres-
ence of the buddy protocol and justifies our design choices. Based on this model
and game theory, we prove the existence of Nash Equilibrium when all the con-
tributing leechers adopt the buddy protocol.

The rest of this paper is structured as follows. In section 2 we provide a
brief description of BitTorrent. In section 3 we present the design of our buddy
protocol, while in section 4 we describe the analytical model that has guided this
design. Implementation details are discussed in Section 5, and then the results
of our PlanetLab experiments are presented in Section 6. Finally, section 7 sets
our approach in the context of related work, and section 8 concludes.

2 BitTorrent Overview

The BitTorrent protocol is a popular peer-to-peer content distribution protocol
that has been demonstrated to scale well with many participating clients.

Before the distribution process, the content provider divides the data con-
tent into multiple pieces which further divided into multiple subpieces. It then
creates a metainfo file, containing information necessary for initiating the down-
load process. This information includes the address of the tracker, a centralized
coordinator that facilitates peer discovery.

In order to join a torrent(or swarm)—a group of peers participating in down-
load of a content—a client downloads the metainfo file. It then connects the tracker
from which it receives a peer set of randomly selected peers currently transferring

340 R. Izhak-Ratzin

the content pieces. These might include both leechers, who are still in the down-
loading process, and seeds, who have the entire content and are providing it to
others. The new client can then connect peers in this set and request pieces.

The decision to whom to upload data is made independently by the leecher via
the choking algorithm, applying the tit-for-tat mechanism that gives preference
to those leechers who upload data to the given leecher at the highest rate. More
specifically, once every rechoke period, typically 10 seconds, a leecher checks the
current download rates of all leechers in its peer set. Then it selects the fastest
uploaders and only uploads to those, while choking the rest for the duration of
the rechoke period. This unchoking mechanism is called regular unchoke. The
number of unchoked peers (slots) depends on the implementation and might be
fixed or changed dynamically as a function of the available upload bandwidth. A
different unchoke strategy is followed by seeds since they do not need to download
any pieces. The most common one is unchoke leechers in a round-robin aiming
to distribute data uniformly. We used this strategy in our experiments.

Beside the regular unchokes, leechers reserve a portion of their available band-
width for sending pieces to random peers, a so-called optimistic unchoke mech-
anism. This mechanism enables the continuous discovery of better partners, and
it also enables newcomer leechers, to download some data and start exchanging
pieces. Optimistic unchokes are rotated randomly among the peer set typically
once every three rechoke periods allowing enough time for leechers to demon-
strate cooperative behavior.

2.1 Motivation

In this section we look at some problems in BitTorrent that motivate our design.
Figure 1 shows the impact of optimistic unchokes on the expected download rate
as a function of the P2P observed bandwidth distribution given in [2]. We assume
that one unchoke slot is used by the optimistic unchokes mechanism, and that
the regular unchoke mechanism works perfectly, i.e. the download rate and the
upload rate through regular unchoke are equal. Clearly, we can see that the
sub linear behavior of the expected download rate leads to unfairness for high
capacity leechers, where low capacity leechers benefit from this unfairness. Note
that in the observed bandwidth distribution the majority of the leechers are
low capacity leechers with 88% of the leechers having less than 300KB/s upload
capacity. This result motivates us to look for a replacement for the optimistic
unchoke mechanism.

As for the regular unchoke mechanism, the number of unchoke slots that
a leecher uses for regular unchoke can be fixed or dynamic as a function of
the leecher’s ability to saturate its upload capacity. This again might lead to
unfairness, since typically, in real torrents, the download capacity of a leecher
might be greater than the upload capacity. Thus, high capacity leechers might
upload in full capacity, but not be able to download as much due to upload
constraints of the downloading leechers and limited number of unchoke slots.

In addition, the choking decision in based on leechers’ upload rate from the
last rechoke period only, ignoring longer history that is available.

Collaboration in BitTorrent Systems 341

200 400 600 800 1000 1200

200

400

600

800

1000

1200

Upload capacity (KB/sec)

E
xp

ec
te

d
do

w
nl

oa
d

ra
te

 (
K

B
/s

ec
)

optimal download rate
expected download rate

Fig. 1. Expected download rate vs. upload
capacity for partial bandwidth spectrum

Buddy Request

 Negative Buddy Response

No

P

P looks for
a potential

buddy

1

Needs more
buddies?

Yes

P is a
potential
buddy?

Negative Buddy Response

No

YesPositive Buddy Response
Add Q to
the buddy

list

Add P to the
buddy list

2

3

4

5

Q, P's potential buddy

Fig. 2. Buddy formation mechanism

3 Design

We now turn to describe the design of our buddy protocol, which augments Bit-
Torrent with the notion of buddies—pairs of peers having similar upload capacity,
collaborating for mutual benefit. The main goals of the protocol are reducing
the unfairness that BitTorrent suffers from, and discouraging free-riding. The
protocol achieves these goals via explicit cooperation, as well as the tit-for-tat
choking mechanism already employed by BitTorrent. In addition, it significantly
limits the optimistic unchokes, where high capacity clients are forced to peer
with those with low capacity while searching for better peers, an acknowledged
opportunity for free-riding in BitTorrent [7].

The protocol comprises three main parts: the process by which buddy rela-
tions are formed, the process by which buddy relations are monitored, and the
algorithm peers use to decide who to unchoke. We describe these in turn.

3.1 Buddy Formation

A leecher P that is running in buddy mode, is willing to maximize the number
of buddies, who make it their priority to serve P , as P serves them in return.
P reserves an unchoked slot to each buddy it can upload data to in order to
minimize buddy chokes, which can lead to termination of buddy relation. At the
same time, P reserves one unchoke slot for regular unchoke in order to avoid
isolating group of buddies from the rest of the swarm. Therefore, P can have
maximum ns − 1 buddies, given that ns is the number of unchoke slots in P .

Figure 2 shows the buddy formation process. P will run this process once ev-
ery rechoke period, only if it has not reached the maximum number of buddies.

Step 1. Aiming to find a potential buddy with similar upload as its own, P
will estimates the upload bandwidth of peers it interacted with, that are not
its buddies, using its own history about past download interactions with these
peers. If P is not able to find a potential buddy Q due to its upload capac-
ity that is too high(low) compared to the leechers it has interacted with, it may

342 R. Izhak-Ratzin

gradually increase(decrease) the number of unchoke slots ns, while keeping max-
imum(minimum) ns size constraints satisfied.
Step 2. Once P has found a potential buddy Q, P sends a buddy request to Q,
asking Q to be its buddy.
Step 3. Upon receiving a buddy request from P , Q checks that it has not reached
the maximum number of buddies, otherwise it sends a negative buddy response.
Step 4. If Q can have more buddies, it estimates P upload capacity. If it finds
that P has similar upload capacity as its own, Q sends a positive buddy response
to P and tags P as buddy. Otherwise it sends a negative buddy response to P .
Step 5. Upon receiving a positive buddy response from Q, P tags Q as buddy.

In order to keep the design simple the look-up for buddies does not require a
view of all the network peers, thus, we expect the improvement to be suboptimal.

3.2 Monitoring Buddies

Every rechoke period, a peer in buddy mode checks the upload rate of its buddies.
It looks separately at the history of each buddy, since the buddy connection was
established, and checks that the estimated upload rate of the buddy remains
similar to its own. If this is not the case, the peer removes the buddy that
uploads slower than expected from its buddy list. Thus the longer the connection
the more reliable it is in comparison to the regular unchoke mechanism. A buddy
can not gain much from cheating by uploading less than agreed, since it will be
disconnected quickly. Thus, it will not be able to download much before being
caught, and will lose an established buddy connection. Notice that a stronger
punishment can be considered by keeping the cheating buddies’ history and
banning them from download or have a buddy relation for a time.

3.3 Unchoking Decisions

During the uploading process, a leecher decides periodically which peers to un-
choke. In regular BitTorrent protocol, this unchoking decision is made using
two separate mechanisms, the regular unchoke mechanisms and the optimistic
unchoke mechanism. The former guides a leecher to unchoke those peers that
upload data to the given peer at the highest rates, while the latter selects the
unchoked peers at random, independently of their contributions.

Our buddy protocol extends the two given mechanisms with a third, buddy
unchoke mechanism, which dictates that a leecher always unchokes all its bud-
dies. The rationale is that a leecher that has buddies should opt for uploading
to its buddies whenever possible, expecting its buddies to do the same. Hence,
since buddies have similar upload rate, this guarantees similar upload as down-
load rate. At the same time, it performs at least one regular unchoke to a peer
that is not its buddy to avoid isolating group of buddies from the rest of the
swarm. Uploading via optimistic unchokes is performed only as a last resort,
and it may happen only when a leecher has no data other buddies are missing
or does not reach the maximum number of buddies. The combined unchoke de-
cision algorithm is as follows.

Collaboration in BitTorrent Systems 343

Step 1 (buddy unchokes). A leecher in buddy mode strives to satisfy as many
of its buddies as possible. We denote the number of unchoke slots reserved for
buddies as a function of time with nB(t), where 0 ≤ nB(t) ≤ ns − 1, nB(t) is
bounded by ns − 1 devoting at least one slot for regular unchokes.
Step 2 (optimistic unchokes). Given that P0 is the probability to perform
optimistic unchokes in regular BitTorrent, a leecher in buddy mode performs
optimistic unchokes with probability:

PB(t) = P0
ns − nB(t) − 1

ns − 1
(1)

Step 3 (Regular unchokes). nO(t) denotes the number of optimistic unchokes
slots. Thus, for the remaining (ns−nB(t)−nO(t)) unchoke slots, a leecher selects
those peers that were not selected already, having the highest uploading rates.

Note that for independent leechers that run the regular BitTorrent PB = P0,
since nB = 0. However, PB decreases for buddies as more buddies are served.
Those peers who serve ns − 1 buddies perform no optimistic unchokes (nB =
ns − 1 → PT = 0). They do not need to continue peers discovery.

Based on this unchoking algorithm design, we expect the following effects:

1. High capacity buddy peers’ performance should be improved, as there are
now other high capacity peers who make it their priority to serve them.

2. Reduction in the total number of optimistic unchokes, thus directly hurting
the free-riders, who critically depend on these unchokes to obtain data.

These hypotheses validated by our experimental evaluation results. In a sense,
BitTorrent’s optimistic unchoke mechanism is mostly replaced by buddies as the
means of discovering better partners. Hence, buddies no longer need to explore
the network as much, having the guarantee of other leechers with similar upload
capacity willing to upload to them.

4 Analytical Model

This section presents an analytical model that guides the protocol design pre-
sented in the previous section. It describes peer interactions in the presence
of buddies as a game with rational players, and shows that there is a Nash-
Equilibrium when all the peers in the system are contributing buddies.

4.1 The Game

We model the process of distributing a given content between incentive leechers
in the P2P system as an infinitely repeated game [8], with rational participants.
To simplify this process, we do not consider long-term punishment, although
this is a design issue that is part of future work. The players repeatedly engage
in rounds. In each round they choose their actions simultaneously, where the
actions are determined by the players’ strategy choices. A player can choose one
of the three following strategies.

344 R. Izhak-Ratzin

1. an independent peer: a contributor who runs the regular BitTorrent
2. a free-rider: a player who does not upload data to others
3. a buddy-aware peer: a player who follows the buddy-enhanced protocol

4.2 Leecher Utility Function

The leecher utility function is defined as the average download rate from all other
leechers, thus leecher i’s utility function is Ui = di. We will ignore the download
from the seeds in the analysis, since a seed upload process does not depend on
the existence of buddies.

In [9], Fan et al. have already expressed the leecher utility function for the
regular BitTorrent protocol as a combination of the average download rate that
is obtained through the regular unchoke and the optimistic unchoke mechanisms.
The buddy-enhanced BitTorrent protocol adds yet another term for the average
download rate that is obtained through the buddy unchoke policy. Thus, the
utility function of a leecher in the buddy-enhanced BitTorrent will be

U i = di(regular) + di(buddies) + di(optimistic) (2)

We assume that all peer i’s buddies have a similar upload rate of ui

ns
to i, given

that ui is i’s upload rate. That is due to the way the buddy connections are
created and maintained. In addition, we assume that the download bandwidth
of a leecher is at least as much as its own upload bandwidth; this is typically the
case in real torrents.

Each peer that has nB buddies enjoys a download rate of ui

ns
from each of its

buddies. As a result, the buddy policy yield will be

di(buddy) ≈ nB · ui

ns
(3)

Pdb = nB

ns
describes the download rate a peer enjoys from its buddies, as it also

represents the percentage of upload bandwidth it spends on those buddies.
In [9], Fan et al. have shown mathematically that the download bandwidth of

a leecher is approximately equal to its upload bandwidth, for regular unchokes,
i.e., di ≈ ui. The percentage of the upload bandwidth dedicated to regular
unchokes is 1 − Pdb − PB . Thus, the regular unchoke yield will be

di(regular) ≈ (1 − Pdb − PB) · ui (4)

Therefore, from Equations (2), (3), and (4), the utility function of buddy i is:

Ui ≈ (1 − PB) · ui + di(optimistic). (5)

The utility function of a free-rider who uploads nothing is:

UFR = dFR(optimistic) (6)

The utility function of an independent peer who runs the regular BitTorrent is:

UIL ≈ (1 − P0) · ui + dIL(optimistic). (7)

Collaboration in BitTorrent Systems 345

Note that since the download through optimistic unchokes can be received from
any peer in i’s peer set as it is based on random selection among all peers, the
optimistic unchokes yield is not sensitive to the strategy choice of peer i. Hence,
the unfairness in the regular BitTorrent is a function of the upload capacity
and P0, and it appears when the amount of upload that is given to optimistic
unchokes is not the same as the amount of download that is received through
optimistic unchokes, i.e., P0 · ui �= di(optimistic).

In the buddy-enhanced BitTorrent, the unfairness is a function of the upload
capacity, and PB . PB gets closer to 0, as the number of buddy connections
increases, which leads to reduction in optimistic unchokes upload. Thus, peers
will benefit more by maximizing the number of buddy connections. Morover,
increasing in number of buddy connections in the system will reduce the average
download that is received through optimistic unchokes. As for the system, if every
peer will choose the buddy-aware strategy, thus minimizing PB and devoting less
upload to the unfairness inequality, the unfairness in the system will decrease.

4.3 Nash Equilibrium

Theorem 1. The game in a buddy-enhanced BitTorrent system has a Nash
Equilibrium when all the rational leechers in the game are buddy-aware peers.

Proof. In order to prove this, we need to show that the utility of a buddy-
aware peer is not lower than any other strategy’s utility. Thus, if all the peers
choose the buddy-aware strategy, none of the peers have the incentive to change
their strategy. Equation 1 shows that PB ≤ PO. Therefore, Ui(IL) ≤ Ui(buddy-
aware). Both utilities are equal when the buddy-aware peer is not able to find
any matching buddy through the whole downloading process. Otherwise, the
utility of the buddy-aware peer will be always greater than the utility of an
independent peer. A free-rider’s utility will be Ui(FR) ≤ Ui(buddy-aware). The
utility of a free-rider will be equal to the utility of a buddy-aware i only in the
case when all the peers in the network do not upload to i through the regular
unchokes or the buddy unchokes policies, during the whole downloading process.

We can thus conclude that the buddy-enhanced system has a Nash Equilibrium
when all the rational peers are buddy-aware peers.

5 Implementation

The analytical model shows that the buddy-enhanced protocol has the potential
to reduce unfairness and free-riding in a BitTorrent system. In order to examine
this claim, we modified an existing open-source BitTorrent client to implement
our buddy protocol. This section discusses interesting aspects of our prototype.

Our buddy-enhanced BitTorrent client was implemented on top of Enhanced
CTorrent, version 3.2 [10]. The modified client can run in buddy mode, or in
regular mode, in which it simply runs the regular BitTorrent. We also added
functionality for a buddy peer to maintain state about its buddies.

346 R. Izhak-Ratzin

Rechoke period in Enhanced CTorrent takes 10 seconds, and optimistic un-
chokes are rotated every 3 rechoke periods. The number of unchoke slots is
dynamic with a minimum of 4 slots. This number may increase if a client does
not saturate its capacity. In buddy mode, this number might change also if the
upload capacity of a peer is too low/high compared to the peers it interacts with.
We did not limit the maximum number of slots.

In regular mode, one unchoke slot is always devoted to optimistic unchokes,
while in buddy mode, our unchoking mechanism determines the number of op-
timistic unchokes. In particular, every 3 rechoke periods a single optimistic un-
choke is performed with probability given by Equation 1.

Before running in buddy-mode, a peer needs to collect information about
the upload rate of itself and other peers in its peer set. The first 3 minutes (6
optimistic unchoke periods) after a client starts uploading are used for that, only
after this period the peer is able to start running in buddy mode.

No changes were required for the tracker.

6 Experimental Evaluation

We ran extensive experiments on a controlled testbed, validating our protocol
properties. Here we discuss our experimental methodology and results.

6.1 Methodology

All our experiments were ran on the PlanetLab experimental platform [11], uti-
lizing nodes that are located across the globe. We executed all experiment runs
consecutively in time on the same set of machines. Unless otherwise specified,
we use the default BitTorrent client and seeding behavior.

All peers started the downloading process simultaneously, emulating a flash
crowd scenario. The initial seeds stayed connected through the whole experiment.
Leechers left the network once they have downloaded the entire content.

We artificially constrained the upload capacity of the nodes according to the
bandwidth distribution for typical BitTorrent leechers as presented in [2]. This
distribution is based on empirical measurements of BitTorrent swarms including
more than 300,000 unique BitTorrent IPs. Not all nodes were capable of match-
ing the required upload capacity that drawn from the empirical distribution.
Thus, we scaled by 1/20th the upload capacity and other relevant experimental
parameters such as file size. We did not define any download limits.

Unless otherwise specified, the experiments host 104 PlanetLab nodes, 100
leechers and 4 seeds with combined capacity of 128 KB/s serving a 30 MB file.

6.2 Results

We look at comparative results for leechers with different contribution levels, in
order to validate our design.

Leecher Performance - System without free-riders. In this subsection
we discuss two aspects that have been raised in this study: (1) Does the

Collaboration in BitTorrent Systems 347

buddy-enhanced protocol indeed promote fairness? (2) Do all strategic leechers
(having different upload capacity) have incentives to adopt the buddy-enhanced
protocol.

Figure 3 shows leechers’ download completion time comparing a regular Bit-
Torrent system to a buddy-enhanced system where all leechers run in buddy
mode. For each group of leechers having similar upload capacity, we draw sep-
arate boxplots [12] for the different scenarios. The top and the bottom of the
box represent respectively the 75th and the 25th percentile download rates over
all 7 runs of the experiment. The marker inside the box represents the median,
while the vertical lines extending above and below the box represent respec-
tively, the maximum and minimum values within the ranges of 1.5 time the box
height from the box boarder. Potential outliers are marked individually with
“+” sign.

We observe a clear difference between high capacity leechers which are the
fastest 40% leechers and low capacity leechers which are the slowest 60% leechers.
High capacity leechers improved their download time tremendously. Leechers
with upload capacity of at least 5kB/sec improved their download time by 9%-
35% as measured by the median. This happened due to downloading consistently
from leechers with similar upload rate, as well as limiting in optimistic unchokes,
and increasing number of unchoke slots for high capacity leechers.

10 100

1000

2000

3000

4000

5000

Upload cap (KB/sec)

D
ow

nl
oa

d
tim

e
(s

ec
on

ds
) regular BitTorrent

buddy−enhanced BitTorrent

Fig. 3. Download completion time for leechers

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time since starting downloading(seconds)

probability to run optimistic unchokes
percentage of peers in the system

Fig. 4. The probability for optimistic un-
chokes in buddy-enhanced system

0 20 40 60 80 100
4

5

6

7

8

9

10

11

av
er

ag
e

nu
m

be
r

of
 u

nc
ho

ke
 s

lo
ts

index of peers (ordered by upload capability)

regular BitTorrent
buddy−enhanced BitTorrent

Fig. 5. The average unchoke slots for
leechers ordered by upload capacity

348 R. Izhak-Ratzin

10 100

1000

2000

3000

4000

5000

Upload cap (KB/sec)

D
ow

nl
oa

d
tim

e
(s

ec
on

ds
)

regular BitTorrent
buddy−enhanced BitTorrent
mixed strategies

Fig. 6. Download completion time for leechers

Figure 4 confirms the reduction in optimistic unchokes by showing the average
percentage of optimistic unchokes performed in the buddy enhanced system as
a function of optimistic unchokes time periods. In regular BitTorrent, leechers
run the optimistic unchokes mechanism every optimistic unchokes period, thus,
this percentage value always equal to 1. In the buddy enhanced protocol, the
optimistic unchokes reduced by ∼ 60% for most of the downloading process.
Figure 5 confirms the increasing number of unchoke slots for the fastest 10%
leechers in the buddy-enhanced protocol.

As a result of the aforementioned, low capacity leechers downloaded less from
high capacity leechers, slowing down by 9%-32% as shown in Figure 3.

In summary, we see that the buddy-enhanced protocol indeed promotes fairness
and provides clear incentives for high capacity leechers to run in buddy mode, as
a high capacity buddy leecher achieves improved performance compared to an
independent one. However, it is not clear that the low capacity leechers have the
same incentives, since their download time performance suffers.

Hence, we ran another experiment, where low capacity peers ran in independent
mode, and high capacity peers ran in buddy mode. Figure 6 that compares our
previous results with the “mixed strategies” results shows that by changing strat-
egy to independent, low capacity peers suffered even more, since as independents
they were also losing part of their bandwidth for optimistic unchokes without get-
ting anything in return. Moreover, the high capacity peers performance were not

1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

Free−rider index

P
er

ce
nt

ag
e

of
 th

e
do

w
nl

oa
d

fr
om

 le
ec

he
rs

(%
)

regular BitTorrent
buddy−enhanced BitTorrent

Fig. 7. FRs’ download from leechers

1 2 3 4 5 6 7 8

1000

2000

3000

4000

5000

6000

Free−rider index

D
ow

nl
oa

d
tim

e
(s

ec
on

ds
)

regular BitTorrent
buddy−enhanced BitTorrent

Fig. 8. FRs download time

Collaboration in BitTorrent Systems 349

very sensitive to the change, most of them slightly improved their performance
in comparison to all are buddies results. This is because in the mixed strategies
experiment high capacity peers enjoy increasing amount of optimistic unchokes
from low capacity peers needing to give nothing in return.

The experiments validate our hypothesis in section 4 showing that it is to the
benefit of all the leechers to run in buddy mode. Furthermore, running in buddy
mode motivates leechers to contribute and improves fairness in the network.

Leecher Performance - System with Free-rider. As this section focuses on
the impact of free-riders, we added 8 free-riders , having a total of 112 peers in the
experiment: 100 contributors and 4 seeds as described in previous experiments
and 8 free-riders that download as much as possible, but do not upload any data.

With free-riders in the network high capacity leechers in buddy mode im-
proved their download time performance by 17%-54% as measured by the me-
dian in comparison to regular BitTorrent, while low capacity leechers were slowed
down by 16%-59%. We got similar results to those shown in Figure 6, however,
the different between the two protocols performance is more pronounce. That is
since contributors in buddy mode limit the optimistic unchokes, hence limit the
possibility to be affected by free-riders. Figure 7 validates this hypothesis, show-
ing that the percentage of content free-riders download from leechers decreases
from ∼ 45% in regular BitTorrent to ∼ 25% in buddy-enhanced system.

Figure 8 shows the download completion times of free-riders, showing that the
existence of buddies slowed down free-riders by 29-56%. As in Figure 7, this is
because free-riders can not take advantage of optimistic unchokes as in regular
BitTorrent and thus have to depend mainly on the seeds for downloading data.

These results also indicate the increased robustness of the system to free-
riding. We also investigate the system robustness by increasing the number of
free-riders in the system to 16, 20, 24, however, due to lack of space we can not
present in detail these results. In summary, these results show that the buddy
enhanced system is less sensitive to the increasing number of free-riders, an
indication to a more robust system.

7 Related Work

There is large amount of works that model the behavior and analyze the perfor-
mance of BitTorrent, since Bram Cohen, the protocol’s creator, first described
the protocol’s main mechanisms and their design rationale [1].

In [13], Qiu et al. presented a fluid analytical model of BitTorrent systems.
They studied the choking algorithm and its effect on peer performance. They
indicated that the optimistic unchokes mechanism may provide a way for leechers
to free-ride. More recently, in [9], Fan et al. model BitTorrent capturing the
fundamental trade-off between performance and fairness. Our analytical model
is inspired by their work. Furthermore, in [14], Legout et al. observed that the
incentives of tit-for-tat tend to cause leechers to cluster together with other
similar upload bandwidth leechers. Our protocol facilitates this explicitly by
having buddies, peers with similar bandwidth to collaborate.

350 R. Izhak-Ratzin

Other researchers have studied the feasibility of free-riding behavior, when
peers download without uploading, attempting to deceive the protocol mecha-
nisms. The first to pinpoint that effective free-riding in BitTorrent is feasible
were Shneidman et al. [15]. Liogkas et al. [5] designed and implemented 3 ex-
ploits that allow free-riders to obtain high download rates under specific cir-
cumstances. Sirivianos et al. [7] showed that maintaining a larger-than-normal
view of the system, provides a free-rider a much higher probability to receive
data from seeds and via optimistic unchokes. Finally, in [2], Piatek et al. also
observed the unfairness. They proposed a new choking mechanism that reallo-
cates upload bandwidth and aims to maximize peer download rates. The afore-
mentioned studies identify one of the most important vulnerabilities that our
work directly addresses, namely exploiting optimistic unchokes to download data
for free.

Researchers [16, 17, 18, 19] have recognized the value of peers cooperating to
download content. However all these works do not address the incentives of the
volunteer peers to voluntarily download popular content pieces and upload them
to others. Our proposed protocol, on the other hand, addresses this by providing
a clear incentive for leechers to increase their buddy connections and upload to
their buddies. This leads to reduction in enforced altruism and therefore improves
fairness, and limits free-riding.

The most related protocol to our proposed protocol is the protocol that em-
beds teams [20], groups of peers that collaborate to improve their upload rate.
There is a trade-off between the team protocol and the presented buddy proto-
col, which is a simplicity for the price of less improvement. The main different
is that teams are formed and managed by the tracker, a centralized authority,
therefore it achieves a faster convergence and a larger improvement in fairness
and free-riding reduction. However, in the presented work the tracker does not
involve in the buddy related part of the protocol. Hence, here we suggest a
more distributed protocol, involves less management overhead, and is simpler to
implement, which make it more realistic to be adopted.

8 Conclusion

In this paper we present an extension to the BitTorrent protocol, an alternative
buddy mechanism that relies on continuous history to match similar upload
capacity peers. It mostly replaces the optimistic unchokes, partially replaces the
original TFT mechanism, and add more dynamic to the number of unchoke
slots. Experimental results on a controlled testbed demonstrate that our buddy
protocol promotes fairness compared to the regular BitTorrent, and provides
clear incentives to be adopted, even by those low capacity peers that were slowed
down due to the presence of buddies. In the presence of buddies, free-riders
achieve lower download rates, compared to the regular BitTorrent. Furthermore,
the system with buddies is more robust being less sensitive to increasing number
of free-riders in the network.

Collaboration in BitTorrent Systems 351

Acknowledgments

We thank Nikitas Liogkas, Rupak Majumdar, Mihaela van der Schaar, Giovanni
Pau, and Cesar Marcondes for helpful discussions and comments.

References

1. Cohen, B.: Incentives Build Robustness in BitTorrent. In: P2PEcon 2003 (2003)
2. Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A.: Do

incentives build robustness in BitTorrent?. In: NSDI 2007 (2007)
3. Bharambe, A., Herley, C., Padmanabhan, V.: Analyzing and improving a bittorrent

network’s performance mechanisms. In: INFOCOM (2006)
4. Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measurements, analysis,

and modeling of BitTorrent-like systems. In: IMC 2005 (2005)
5. Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting BitTorrent For Fun (But

Not Profit). In: IPTPS 2006 (2006)
6. Locher, T., Moor, P., Schmid, S., Wattenhofer, R.: Free Riding in BitTorrent is

Cheap. In: HotNets-V (2006)
7. Sirivianos, M., Park, J.H., Chen, R., Yang, X.: Free-riding in BitTorrent Networks

with the Large View Exploit. In: IPTPS 2007 (2007)
8. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
9. Fan, B., Chiu, D.M., Lui, J.C.: The Delicate Tradeoffs in BitTorrent-like File Shar-

ing Protocol Design. In: ICNP 2006 (2006)
10. Enhanced CTorrent: http://www.rahul.net/dholmes/ctorrent:
11. Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L.,

Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating System Support for Planetary-
Scale Network Services. In: NSDI 2004 (2004)

12. Robert McGill, J.W.T., Larsen, W.A.: Variations of box plots. The American
Statistician 32, 12–16 (1978)

13. Qiu, D., Srikant, R.: Modeling and Performance Analysis of BitTorrent-Like Peer-
to-Peer Networks. In: SIGCOMM 2004 (2004)

14. Legout, A., Liogkas, N., Kohler, E., Zhang, L.: Clustering and Sharing Incentives
in BitTorrent Systems. In: SIGMETRICS (2007)

15. Shneidman, J., Parkes, D.C., Massouliè, L.: Faithfulness in Internet Algorithms.
In: PINS 2004 (2004)

16. Wang, J., Yeo, C., Prabhakaran, V., Ramchandran, K.: On the role of helpers in
peer-to-peer file download systems: design, analysis, and simulation. In: IPTPS
2007 (2007)

17. Wong, J.H.T.: Enhancing Collaborative Content Delivery with Helpers. M.sc the-
sis, University of British Columbia (September 2004)

18. Garbacki, P., Iosup, A., Epema, D., van Steen, M.: 2Fast: Collaborative downloads
in P2P networks. In: P2P 2006 (2006)

19. BTSlave protocol page, http://btslave.sourceforge.net
20. Izhak-Razin, R., Liogkas, N., Majumdar, R.: Team incentives in bittorrent systems.

In: TR 090002, UCLA CSD

http://www.rahul.net/dholmes/ctorrent:
http://btslave.sourceforge.net

	Collaboration in BitTorrent Systems
	Introduction
	BitTorrent Overview
	Motivation

	Design
	Buddy Formation
	Monitoring Buddies
	Unchoking Decisions

	Analytical Model
	The Game
	Leecher Utility Function
	Nash Equilibrium

	Implementation
	Experimental Evaluation
	Methodology
	Results

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

