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Abstract. In this paper, we study a quite simple deterministic random-
ness extractor from random Diffie-Hellman elements defined over a prime
order multiplicative subgroup G of a finite field Zp (the truncation), and
over a group of points of an elliptic curve (the truncation of the abscissa).
Informally speaking, we show that the least significant bits of a random
element in G ⊂ Z∗

p or of the abscissa of a random point in E(Fp) are
indistinguishable from a uniform bit-string. Such an operation is quite
efficient, and is a good randomness extractor, since we show that it can
extract nearly the same number of bits as the Leftover Hash Lemma can
do for most Elliptic Curve parameters and for large subgroups of finite
fields. To this aim, we develop a new technique to bound exponential
sums that allows us to double the number of extracted bits compared
with previous known results proposed at ICALP’06 by Fouque et al. It
can also be used to improve previous bounds proposed by Canetti et al.
One of the main application of this extractor is to mathematically prove
an assumption proposed at Crypto ’07 and used in the security proof
of the Elliptic Curve Pseudo Random Generator proposed by the NIST.
The second most obvious application is to perform efficient key derivation
given Diffie-Hellman elements.

1 Introduction
Since Diffie and Hellman’s seminal paper [10], many cryptographic schemes are
based on the Diffie-Hellman technique: key exchange protocols [10] of course,
but also encryption schemes, such as ElGamal [12] and Cramer-Shoup [9] ones,
or pseudo-random generators, as the Naor-Reingold PRNG [23]. More precisely,
the security of these schemes relies on the Decisional Diffie-Hellman assumption
(DDH) [4], which means that there is no efficient algorithm that can distinguish
the two distributions in G3, (ga, gb, gab) and (ga, gb, gc), where a, b and c are
chosen at random in �1, q�, and G = 〈g〉 is a cyclic group, generated by g of
prime order q. For many of the schemes whose security is based on the DDH
assumption, the DH element is used as a shared random element of G. How-
ever, a perfectly random element of G is not a perfectly random bit string and
sometimes, as in key derivation for example, it can be useful to derive a uniform
bit string which could be used as a symmetric key. Therefore, from this random
element of G, one has to find a way to generate a random bit string.
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1.1 Related Work

One classical solution to derive a random-looking bit-string from the DH element
is to use a hash function. One indeed gets a uniform bit-string, but in the random
oracle model [2].

Another solution, secure in the standard model, is to use a randomness ex-
tractor, such as the one which has been proposed by Gennaro et al. in [15].
But one first needs to have some entropy in the DH element, whereas gab is
totally determined by ga and gb. This entropy is computationally injected using
a computational assumption, as the CDH and DDH assumptions.

The CDH assumption, which states that gab is difficult to compute from ga and
gb, implies that several bits of gab are not known from the adversary. Therefore,
from the adversary point of view, there is some randomness in it. So one solution
is to prove the hardness of predicting the least significant bits of a DH element.
This comes from the hardcore bit theory, where one tries to provide a reduction
between an algorithm that predicts the least significant bits of the DH element
to the recovery of the whole DH element: predicting these bits is thus as hard
as solving the CDH problem. However, usually, only a small number of bits can
be proved to be random-looking, given ga and gb [6, 5, 20].

This entropy can also be computationally created using the DDH assumption,
which says that we have log2(q) bits of entropy in the DH element, but one does
not know where exactly: one cannot extract them directly out of the representa-
tion of the element in G. This is the goal of a randomness extractor. The Leftover
Hash Lemma [17, 15] is the most famous randomness extractor. It is a probabilis-
tic randomness extractor that can extract entropy for any random source which
has sufficient min-entropy. The main drawback with the Leftover Hash Lemma
is that it requires the use of pairwise independent hash functions, which are
not used in practice, and extra perfect randomness. A computational version of
this Leftover Hash Lemma, has also been proposed and analysed in [14], version
which has the advantage of using pseudorandom functions for randomness ex-
traction and not pairwise independent hash functions. However, it still requires
the use of extra perfect randomness. The two previous solutions are generic: it
could be interesting to find a deterministic solution dedicated to the randomness
extraction from a random element in G, since it would prevent the use of extra
randomness.

Definitely, the most interesting solution in this vein is to keep the least signif-
icant bits of the DH element and hope that the resulting bit-string is uniform,
as it is proposed in many papers [6, 5, 20]. Truncation, as studied above and in
this paper, is quite simple and deterministic, which is of high interest from a
practical point of view, even if it is specific to DH distributions.

A first step in this direction was the analysis of Canetti et al. [8] which basi-
cally shows that the concatenation of the least significant bits of ga, gb and gab

is close to the uniform distribution. This result was achieved using exponential
sums techniques. However, Boneh [4] noted: “This is quite interesting although
it does not seem to apply to the security analysis of existing protocols. In most
protocols, the adversary learns all of ga and gb.” This result is statistical and
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no cryptographic assumption is required, since some bits of a and b are free,
when the view of the adversary is limited to some part of ga and gb. There is no
chance to extend this result to our problem, since, as already noted, given the
entire representation of ga and gb, there is no randomness at all in gab. However,
under the DDH assumption, some entropy appears in the DH element, and so,
one can expect to extract it into a bit-string that will be close to the uniform
distribution, in a statistical sense.

At ICALP’06, Fouque et al. [13] use this idea and show that under the DDH
assumption, the least significant bits of gab are nearly uniformly distributed,
given ga and gb, if the group G is a large enough multiplicative subgroup (of
prime order q) of a finite field (let say Zp), that is, q is not too small compared
to p. The large q is the main drawback since q needs to be at least half the
size of p, which makes the cryptographic protocol quite inefficient. To prove this
result, the authors upper bound the statistical distance, evaluating directly the
L1 norm, using exponential sums.

Since elliptic curves cryptography uses large subgroup in practice, the same
result for elliptic curve could be of practical interest. Gürel [16] studied the
case of elliptic curves over quadratic extensions of a finite field, with a large
fraction of bits, and over a prime finite field, but with similar limitations as above
in the number of extracted bits. He also upper bounds directly the statistical
distance by evaluating the L1 norm, but using a sum of Legendre characters.
His technique only uses the Legendre character, which is not enough in the case
of Zp. Consequently, the technique of the authors of [13] needed to sum on all
characters.

1.2 Our Results

In this paper, we show that the following distributions are computationally in-
distinguishable

(aP, bP, Uk) ≈C (aP, bP, lsbk(x(abP ))),

where Uk is the uniform distribution on k-bit strings, lsbk() is the function
which truncates the k least significant bits of a bit-string and x() is the abscissa
function of points on an elliptic curve.

Under the DDH assumption, we know that (aP, bP, abP ) ≈C (aP, bP, cP ) for
random scalars a, b, c ∈ �1, q�, in the group G, generated by P of prime order q.
Then, we prove, without any cryptographic or mathematical assumption, that

(aP, bP, Uk) ≈S (aP, bP, lsbk(x(cP )))

in a statistical sense.
Actually, we first show this result for prime order multiplicative subgroups

of finite fields. This result extends those of Canetti et al. and of Fouque et al.
since we are able to extract twice the number of bits as before. This new result
is achieved by introducing a new technique to bound the statistical distance.
Whereas previous techniques directly tried to bound the L1 norm, while it is
hard to cope with the absolute value, we upper-bound the Euclidean L2 norm,
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which is much easier since only squares are involved. Finally, we are also able,
in some cases, to improve our result using classical techniques on exponential
sums. Then, the number of extracted bits can be made quite close to the number
that the Leftover hash lemma can extract.

However, since the result still applies to large subgroups only, we extend it to
Elliptic Curve groups. In general, the co-factor of EC groups is small: less than
8, and even equal to one for the NIST curves, over prime fields. We thus achieve
our above-mentioned result using more involved techniques on exponential sums
over functions defined on the points of the elliptic curve. More precisely, we can
show that the 82 (resp. 214 and 346) least significant bits of the abscissa of a
DH element of the NIST curves over prime fields of 256 (resp. 384 and 521) bits
are indistinguishable from a random bit-string. They can thus be directly used
as a symmetric key. To compare with Gürel’s result in [16], for an elliptic curve
defined over a prime field of 200 bits, Gürel extracts 50 bits with a statistical
distance of 2−42, while with the same distance, we can extract 102 bits. Note
that Gürel’s proof was easier to understand, but we did not manage to evaluate
the L2 norm of Legendre character sums and generalize his proof.

One main practical consequence of the result for elliptic curve is that, we can
avoid the Truncated Point Problem (TPP) assumption used in the security proof
of the NIST Elliptic Curve Dual Random Bit Generator (DRBG) [7, 24].

1.3 Organization of the Paper

In Section 2, we review some notations and the definition of a deterministic
randomness extractor as well as some results on the Leftover Hash Lemma.
Then, in Section 3, we improve the results of Canetti et al. and of Fouque et al.
using a new technique to bound exponential sums, using the Euclidean norm.
In this section, we also improve the bound in some cases. Next, in Section 4, we
prove the same kind of result for the group of points of an elliptic curve. Finally,
in Section 5, we show some applications of our proofs to the security of the NIST
EC DRBG [7, 24] and the key derivation from a DH element.

2 Notations

First, we introduce the notions used in randomness extraction. In the following,
a source of randomness is viewed as a probability distribution.

2.1 Measures of Randomness

To measure the randomness existing in a random variable, we use two different
measures: the min entropy and the collision entropy. The min entropy measures
the difficulty that an adversary has to guess the value of the random variable,
whereas the collision entropy measures the probability for two elements drawn
according this distrubtion to collide. In this paper, the collision entropy is used
as an intermediate tool to establish results, which are then reformulated using
min entropy.
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Definition 1 (Min Entropy). Let X be a random variable with values in a
finite set X . The guessing probability of X, denoted by γ(X), is the probability
maxx∈X (Pr[X = x]). The min entropy of X is: H∞(X) = − log2(γ(X)).

For example, when X is drawn from the uniform distribution on a set of size N ,
the min-entropy is log2(N).

Definition 2 (Collision Entropy). Let X and X ′ be two random indepen-
dent and identically distributed variables with values in a finite set X . The col-
lision probability of X, denoted by Col(X) is the probability Pr[X = X ′] =∑

x∈X Pr[X = x]2. The collision entropy of X is: H2(X) = − log2(Col(X)).

The collision entropy is also called the Renyi entropy. There exists an easy re-
lation between collision and min entropies: H∞(X) ≤ H2(X) ≤ 2 · H∞(X). To
compare two random variables we use the classical statistical distance:

Definition 3 (Statistical Distance). Let X and Y be two random variables
with values in a finite set X . The statistical distance between X and Y is the
value of the following expression:

SD(X, Y ) =
1
2

∑
x∈X

|Pr[X = x] − Pr[Y = x]| .

We denote by Uk a random variable uniformly distributed over {0, 1}k. We say
that a random variable X with values in {0, 1}k is δ-uniform if the statistical
distance between X and Uk is upper-bounded by δ.

Lemma 4. Let X be a random variable with values in a set X of size |X | and ε =
SD(X, UX ) the statistical distance between X and UX , the uniformly distributed
variable over X . We have:

Col(X) ≥ 1 + 4ε2

|X | . (1)

Proof. This lemma, whose result is very useful in this work, is proved in Ap-
pendix A.

2.2 From Min Entropy to δ-Uniformity

The most common method to obtain a δ-uniform source is to extract randomness
from high-entropy bit-string sources, using a so-called randomness extractor.
Presumably, the most famous randomness extractor is provided by the Leftover
Hash Lemma [17, 19], which requires the use of universal hash function families.

Definition 5 (Universal Hash Function Family). A universal hash func-
tion family (hi)i∈{0,1}d with hi : {0, 1}n → {0, 1}k, for i ∈ {0, 1}d, is a family of
functions such that, for every x �= y in {0, 1}n, Pri∈{0,1}d [hi(x) = hi(y)] ≤ 1/2k.
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Let (hi)i∈{0,1}d be a universal hash function family, let i denote a random variable
with uniform distribution over {0, 1}d, let Uk denote a random variable uniformly
distributed in {0, 1}k, and let X denote a random variable taking values in
{0, 1}n, with i and X mutually independent and with X min entropy greater
than m, that is H∞(X) ≥ m. The Leftover Hash Lemma (which proof can be
found in [25]) states that SD(〈i, hi(X)〉, 〈i, Uk〉) ≤ 2(k−m)/2−1.

In other words, if one wants to extract entropy from the random variable X ,
one generates a uniformly distributed random variable i and computes hi(X).
The Leftover Hash Lemma guarantees a 2−e security, if one imposes that

k ≤ m − 2e + 2. (2)

The Leftover Hash Lemma extracts nearly all of the entropy available whatever
the randomness sources are, but it needs to invest few additional truly random
bits. To overcome this problem, it was proposed to use deterministic functions.
They do not need extra random bits, but only exist for some specific randomness
sources.

Definition 6 (Deterministic Extractor). Let f be a function from {0, 1}n

into {0, 1}k. Let X be a random variable taking values in {0, 1}n and let Uk

denote a random variable uniformly distributed in {0, 1}k, where Uk and X are
independent. We say that f is an (X, ε)-deterministic extractor if:

SD (f(X), Uk) < ε.

2.3 Characters on Abelian Groups

We recall a standard lemma for character groups of Abelian groups.

Lemma 7. Let H be an Abelian group and Ĥ = Hom(H, C∗) its dual group.
Then, for any element χ of Ĥ, the following holds, where χ0 is the trivial char-
acter:

1
|H |

∑
h∈H

χ(h) =

{
1 if χ = χ0

0 if χ �= χ0

In the following, we denote by ep the character such that for all x ∈ Fp, ep(x) =
e

2iπx
p ∈ C∗.

2.4 Elliptic Curves

Let p be a prime and E be an elliptic curve over Fp given by the Weierstrass
equation

y2 + (a1x + a3) · y = x3 + a2x
2 + a4x + a6.

We denote by E(Fp) the group of elements of E over Fp and by Fp(E) the
function field of the curve E , defined as the field of fractions over the points
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of E : Fp(E) = Fp[X, Y ]/E(Fp). It is generated by the functions x and y, satis-
fying the Weierstrass equation of E , and such that P = (x(P ), y(P )) for each
P ∈ E(Fp) \ {O}. Let fa ∈ Fp(E) be the application fa = a · x where a ∈ Z∗

p.

If f ∈ Fp(E), we denote by deg(f) its degree, that is
t∑

i=1
ni deg(Pi) if

t∑
i=1

niPi is

the divisor of poles of f . Finally, we denote by Ω = Hom(E(Fp), C∗) the group
of characters on E(Fp), and by ω0 the trivial character (such that ω0(P ) = 1 for
each P ).

3 Randomness Extraction in Finite Fields

In this section, we first extends results from Fouque et al. [13], in order to extract
bits from random elements in a multiplicative subgroup of a finite field. Then,
we use the same techniques to improve the result of Canetti et al. [8].

3.1 Randomness Extraction

We study now the randomness extractor which consists in keeping the least
significant bits of a random element from a subgroup G of Z∗

p. The proof tech-
nique presented here allows us to extract twice the number of bits extracted by
Fouque et al.. In the particular case when q ≥ p3/4, where q is the cardinal of
G, we prove an even better result: one can extract as many bits as with the
Leftover Hash Lemma. This means that, in the case when q ≥ p3/4, our extrac-
tor is as good as the Leftover Hash Lemma, but computationally more efficient
and easiest to use in protocols, since it does not require extra perfect public
randomness.

In the original paper, Fouque et al. upper bound directly the statistical dis-
tance between the extracted bits and the uniform distribution, using exponential
sums. We still use them, but propose to apply exponential sum technique to up-
per bound the collision probability of the extracted bits. The Cauchy-Schwartz
inequality allows to relate statistical distance and collision probability and to
conclude. Since the distribution of extracted bits is very close to the uniform
distribution, the Cauchy-Schwartz inequality is very tight. That is the reason
why we do not lose much with our roundabout way. On the contrary, we are
able to find a good upper bound of collision resistance, and thus the global
upper bound is improved.

The result in the case when q ≥ p3/4 is elaborated on the same basic idea but
requires more elaborated techniques on exponential sums to be established.

Theorem 8. Let p be a n-bit prime, G a subgroup of Z∗
p of cardinal q (we

denote � = log2(q) ∈ R), UG a random variable uniformly distributed in G and
k a positive integer. We have:

SD(lsbk (UG) , Uk) ≤

⎧⎪⎪⎨⎪⎪⎩
23n/4−�−1 + 2(k−�)/2

(
if p3/4 ≤ q

)
2(k+n+log2 n)/2−�

(
if (2−8p)2/3 ≤ q ≤ p3/4

)
2(k+n/2+log2 n+4)/2−5�/8

(
if p1/2 ≤ q ≤ (2−8p)2/3

)
2(k+n/4+log2 n+4)/2−3�/8

(
if (216p)1/3 ≤ q ≤ p1/2

)
.
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We remind that these inequalities are non trivial only if they are smaller than 1.

Proof. We give here a sketch of proof of the theorem, the complete proofs are in
the full version.

Let us define K = 2k, u0 = msbn−k (p − 1). Let denote by ep the following
character of Zp: for all y ∈ Zp, ep(y) = e

2iπy
p ∈ C∗. The character ep is an

homomorphism from (Zp, +) in (C∗, ·). For all a ∈ Z∗
p, let also introduce the

following notation:
S(a, G) =

∑
x∈G

ep(ax).

The two main interests of exponential sums is that they allow to construct
some characteristic functions and that in some cases we know good upper bounds
for them. Thanks to these caracteristic functions one can evaluate the size of
certain sets and, manipulating sums, one can upper bound the size of these sets.

In our case, we construct 1(x, y, u) = 1
p × ∑p−1

a=0 ep(a(gx − gy − Ku)), where
1(x, y, u) is the characteristic function which is equal to 1 if gx−gy = Ku mod p
and 0 otherwise. Therefore, we can evaluate Col(lsbk (UG)) where UG is uniformly
distributed in G:

Col(lsbk (UG)) =
1
q2 ×

∣∣∣{(x, y) ∈ �0, q − 1�2 | ∃u ≤ u0, gx − gy = Ku mod p}
∣∣∣

=
1

q2p
×

q−1∑
x=0

q−1∑
y=0

u0∑
u=0

p−1∑
a=0

ep(a(gx − gy − Ku)).

Then we manipulate the sums, separate some terms (a = 0) and obtain:

Col(lsbk (UG)) =
u0 + 1

p
+

1
q2p

p−1∑
a=1

|S(a, G)|2
(

u0∑
u=0

ep(−aKu)

)
. (3)

The last three bounds. From this point, the proof of the last three inequations
is different from the proof of the first inequation. First, we give here the sketch of
proof of the last three inequations of the theorem (we remind that the complete
proof is given in the full version).

In Equation (3) we inject the absolute value, introduce M = maxa(|S(a, G)|),
make classical manipulations and obtain:

Col(lsbk (UG)) ≤ u0 + 1
p

+
M2 log2(p)

q2 .

We now use the Lemma 4 which gives a relation between the statistical dis-
tance ε of lsbk (X) with the uniform distribution and the collision probability:
Col(lsbk (UG)) ≥ 1+4ε2

2k . The previous upper bound, combined with some manip-
ulations, gives:

2ε ≤
√

2k · Col(lsbk (UG)) − 1 ≤
√

2k

p
+

2k/2M log1/2
2 (p)

q
. (4)
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We conclude the theorem using the following upper bounds for M :

M ≤
⎧⎨⎩

p1/2
(
interesting if p2/3 ≤ q

)
4p1/4q3/8

(
interesting if p1/2 ≤ q ≤ p2/3

)
4p1/8q5/8

(
interesting if 216/3p1/3 ≤ q ≤ p1/2

)
.

The first bound above is the famous Polya-Vinogradov bound that we recall
in Theorem 9 (its proof is reminded in the full version). The other bounds are
from [22, 18]. The last third bounds of the theorem can be easily deduced.

Theorem 9 (Polya-Vinogradov inequality). Let p be a prime number, G a
subgroup of (Z∗

p, ·). For all a ∈ Z∗
p, we have:∣∣∣∣∣∑

x∈G

ep(ax)

∣∣∣∣∣ ≤ √
p.

The first bound. We give now a sketch of proof of the first inequality, a precise
proof is given in the full version. For that, we use a bit more elaborated results
than previously: for all coset ω ∈ Z∗

p/G, and for all two representatives a and
a′ of the coset ω, we have S(a, G) = S(a′, G). Therefore we can naturally define
S(ω, G).

To establish the first inequality, we use Equation (3) and manipulating sums
we establish that:

Col(lsbk (UG)) =
u0 + 1

p
+

1
q2p

∑
ω∈Z∗

p/G

|S(ω, G)|2
u0∑

u=0

S(−ωKu, G).

Then we use the Polya-Vinogradov inequality combined with the inequality∑
ω∈Z∗

p/G |S(ω, G)|2 ≤ p (the proof of this result is reminded in the full ver-
sion) and show that:

Col(lsbk (UG)) ≤ u0 + 1
p

+
u0

√
p + q

q2 .

Finally, we finish, as for previous inequalities, using that Col(lsbk (UG)) ≥ 1+4ε2

2k ,
and obtain:

2ε ≤ 2(k−n+1)/2 + 23n/4−� + 2(k−�)/2.

Since � ≤ n − 1, this gives the expected bound. 
�
Since the min entropy of UG, as an element of Z∗

p but uniformly distributed in
G, equals � = log2(|G|) = log2(q), the previous proposition leads to:
Corollary 10. Let e be a positive integer and let us suppose that one of these
inequations is true:

k ≤

⎧⎪⎪⎨⎪⎪⎩
� − (2e + 2) and 2e · p3/4 ≤ q

2� − (n + 2e + log2(n)) and (2−8 · p)2/3 ≤ q ≤ 2e · p3/4

5�/4 − (n/2 + 2e + log2(n) + 4) and p1/2 ≤ q ≤ (2−8 · p)2/3

3�/4 − (n/4 + 2e + log2(n) + 4) and (216 · p)1/3 ≤ q ≤ p1/2.

In this case, the application Extk is an (UG, 2−e)-deterministic extractor.



Optimal Randomness Extraction from a Diffie-Hellman Element 581

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  200  400  600  800  1000

 N
um

be
r 

of
 b

its
 e

xt
ra

ct
ed

 

 Size of G

Fig. 1. This is the number of bits extracted according to the group size, for n = 1024
and e = 80. The long dash line represents Fouque et al. [13] result, the plain line is our
results. Note the jump for q = p3/4. The short dash line represents our result without
particular improvement in the case q ≥ p3/4.

This means that if one wants a 2−e security, and if (2−8 · p)2/3 ≤ q ≤ 2e · p3/4,
one can extract k bits with k ≤ 2(� − (n/2 + e + log2 n/2)).

In most practical cases, the second bound is the most appropriate. However,
sometimes it is one of the others. For example, with n = 1024, � = 600 and
e = 80, the second bound says that we can extract 6 bits. Using the third bound
given in the theorem above we can actually extract 64 bits.

If one wants to extract a 256-bit string, for the same values of n and e,
one needs a group of size greater than 2756. The figure 1 presents our upper
bounds and also the original upper bounds of Fouque et al. [13], in the case
when n = 1024 and e = 80.

3.2 Truncated Inputs

Our above result proves that given ga and gb, the least significant bits of gab

are globally indistinguishable from a random bit-string, under the Decisional
Diffie-Hellman problem.

But our technique can be applied to other results which upper-bound statisti-
cal distances using character sums. One of them is the result of Canetti et al. [8],
which studies some statistical properties of Diffie-Hellman distribution. They
show that if one takes a proportion of the least significant bits of gx, gy, gxy,
then one obtains a distribution whose statistical distance from uniform is ex-
ponentially small. Basically, it shows that given the least significant bits of
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ga and gb, the least significant bits of gab are globally indistinguishable from a
random bit-string, without any computational assumption.

More precisely, if k1, k2, k3 are three integers and U1, U2, U3 three independent
random variables uniformly distributed in respectively {0, 1}k1, {0, 1}k2, {0, 1}k3,
then, using the notations as in previous subsection, their Theorem 9 inequality,
can be restated as follows:

SD ((lsbk1 (gx) , lsbk2 (gy) , lsbk3 (gxy)) , (U1, U2, U3)) 3 2k1+k2+k3p1/4 log1/3
2 (p)

q1/3 .

Using our techniques, we can prove a better upper-bound:

Theorem 11. Let p be a prime, G a subgroup of Z∗
p of cardinal q and X, Y two

independent random variables uniformly distributed in {1, . . . , q}. If k1, k2, k3
are three integers and U1, U2, U3 three independent random variables uniformly
distributed in respectively {0, 1}k1, {0, 1}k2, {0, 1}k3, then we have:

SD ((lsbk1 (gx) , lsbk2 (gy) , lsbk3 (gxy)) , (U1, U2, U3)) 3 2
k1+k2+k3

2 p1/4 log1/3
2 (p)

q1/3 .

Proof (Sketch of the proof.). First, find an upper bound for the collision entropy
Col (lsbk1 (gx) , lsbk2 (gy) , lsbk3 (gxy)) using exponential sum techniques and the
inequality of Theorem 8 of [8]. Conclude with Lemma 4. 
�

4 Randomness Extraction in Elliptic Curves

We now show how the randomness extractor studied in the previous section,
which consisted in keeping the least significant bits of a random element from
a subgroup G of Z∗

p, can be extended to another structure, that is the group of
elements of an elliptic curve. The main idea is to evaluate the element “M ” of
the proof of Theorem 8, which is the upper bound of S(a, G) as defined in the
previous section.

4.1 A bound for S(a, G)

If G is a subgroup of E(Fp), f ∈ Fp(E) and ω ∈ Ω, we define

S(ω, f, G) =
∑

P∈G

ω(P )ep(f(P )).

In particular, since ep ∈ Ω,

S(a, G) = S(ω0, fa, G) =
∑

P∈G

ep(fa(P )).

The objective of this section is to show the following result:

Theorem 12. Let E be an elliptic curve over Fp and f ∈ Fp(E). Then,

S(ω, f, E(Fp)) ≤ 2 deg(f)
√

p.

As a consequence, if a ∈ Z∗, S(a, E(Fp)) ≤ 4
√

p.
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More specifically, in the case where the co-factor is not equal to 1, we are inter-
ested in its corollary. Note that in the case of Fp, all the curves recommended
by the NIST have co-factor equal to 1. The proof of this corollary can be found
in the full version.

Corollary 13. Let E be an elliptic curve over Fp, a ∈ Z∗ and G a subgroup
of E(Fp). Then,

S(ω, f, G) ≤ 2 deg(f)
√

p and S(a, G) ≤ 4
√

p.

Proof (of Theorem 12). For sake of simplicity, we only show the case where ω =
ω0 in order to use easier notations. We follow the proof of Bombieri in [3] and Ko-
hel and Shparlinski in [21], by first considering Sm(f, E(Fp)) = S(σ ◦ f,E(Fpm))
where σ is the trace from Fpm to Fp. Note that for our needs, the interesting
sum corresponds to m = 1.

This sum comes from the character ep ◦ f , which defines an Artin-Schreier
extension (informally, an extension of degree p) of the function field Fp(E), and
then an Artin-Schreier covering of E(Fp). An easy way to evaluate this sum is to
consider the L-function related to this Artin-Schreier covering. L-functions are
a standard means to assemble several elements in a unique object (a series), in
the same manner as a generating power series, see for example [26, chap. 14].
Bombieri shows that this L-function is defined as follows, for t ∈ C such that
|t| < q−1:

L(t, f, E(Fp)) = exp
(

+∞∑
m=1

S(f, E(Fp))tm/m

)
.

By the Artin conjecture, which proof was given by Weil in [27] (see the full
version), this function is a polynomial of degree D = deg(f). Denote its D
complex roots (not necessarily distincts) by θi = ωi

−1. Then, we have the two
following equations:

L(t, f, E(Fp)) =
+∞∑
i=0

1
i!

(
+∞∑
m=1

Sm(f, E(Fp))tm/m

)i

L(t, f, E(Fp)) =
D∏

i=1
(1 − ωit).

The first equation can be rewritten the following way:

1 +
+∞∑
m=1

Sm(f, E(Fp))tm/m +
1
2

+∞∑
m=1

+∞∑
n=1

Sm(f, E(Fp))Sn(f, E(Fp))
m n

tm+n + . . .

If we consider the coefficient of the polynomial of order 1, we obtain:

S1(f, E(Fp)) = −
D∑

i=1
ωi.

The Riemann hypothetis for function fields (see [27] for the proof and the full
version for the statement) shows that each zero of the above L-function verifies
|θi| = 1/

√
p. This boils down to |S1(f, E(Fp))| ≤ deg(f)

√
p, which is the result

required. Finally, we conclude by remarking that deg(fa) = 2. 
�
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4.2 Randomness Extraction

We now show an equivalent of Theorem 8:

Theorem 14. Let p be a n-bit prime, G a subgroup of E(Fp) of cardinal q gen-
erated by P0, q being a �-bit prime, UG a random variable uniformly distributed
in G and k a positive integer. We have:

SD(lsbk (UG) , Uk) ≤ 2(k+n+log2 n)/2+3−�.

Proof. We follow the proof of Theorem 8, by constructing 1(r, s, u) = 1
p ×∑p−1

a=0 ep(a(f(rP0)−f(sP0)−Ku)), where 1(r, s, u) is the characteristic function
which is equal to 1 if f(rP0)−f(sP0) = Ku mod p and 0 otherwise. Therefore, we
can evaluate Col(lsbk (x(UG))) where UG is uniformly distributed in G, exactly
in the same way, and inject M ≤ 4

√
p in Equation (4) to obtain:

2ε ≤
√

2k

p
+

2k/2+2√p
√

log2(p)
q

.

We conclude as before using the two inequalities 2n−1 < p ≤ 2n and 2�−1 < q ≤
2� and remarking that the first term is negligible with respect to the second one:

2ε ≤ 2(k−n−1)/2 + 2(k+n+log2(n))/2+3−�. 
�
Using the co-factor α = |E(Fp)| / |G| ≤ 2n−� of the elliptic curve, we obtain the
following result:

Corollary 15. Let e be a positive integer and let us suppose that this inequation
is true:

k ≤ 2� − (n + 2e + log2(n) + 6) = n − (2 log2(α) + 2e + log2(n) + 6).

In this case, the application Extk is an (UG, 2−e)-deterministic extractor.

5 Applications

Our extractor can be applied in every protocol which generates (possibly under
the DDH assumption) a uniformly distributed element in a subgroup of Z∗

p or
a random point over an elliptic curve, while a random bit-string is required
afterwards. Our results are indeed quite useful in cryptographic protocols and
primitives where one has to extract entropy from a Diffie-Hellman element.

5.1 Key Extraction

The most well known cryptographic primitive where randomness extractors are
required is the key extraction phase of a key exchange protocol in order to create
a secure channel. The key exchange can be either interactive (classical 2-party or
group key exchange) or non-interactive (the Key Encapsulation Mechanism of an
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hybrid encryption scheme). After a Diffie-Hellman key exchange (or ElGamal-
like key encapsulation) performed over a group G, the parties share a common
Diffie-Hellman element, which is indistinguishable from a uniformly distributed
element in G granted the DDH assumption. However, they need a uniformly
distributed bit-string to key a symmetric primitive: one thus extracts entropy
from the DH element using a randomness extractor.

The two most well-known tools used for this task are hash functions (seen as
random oracles [2]) and universal hash functions (in order to apply the Leftover
HashLemma).Hash functions are themost often adopted solution, because of their
flexibility and efficiency. However, they have a significant drawback: the validity of
this technique holds in the random oraclemodel only. On the contrary, the Leftover
HashLemmashows that theuse ofuniversal hash functions is secure in the standard
model and that, if the cardinal of the groupG is equal to q and if onewants to achieve
a security of 2−e, then one can extract k = log2 q − 2e bits. However this solution
requires some extra, public and perfectly random bits, which increases both time
and communication complexities of the underlying protocols.

The truncation of the bit-string representation of the random element is defi-
nitely the most efficient randomness extractor, since it is deterministic, and it does
not require any computation. However, the original results presented in [13, 16]
were not as good as the Leftover Hash Lemma, from the number of extracted bit
point of view. One could extract much less than log2 q − 2e bits. In this paper, for
large subgroups of Z∗

p (when the order q is larger than p3/4 · 2e), one extracts up to
log2 q−2e bits, which is as good as the Leftover Hash Lemma. For large subgroups
of an elliptic curve over Fp, one extractsn−2e−log2(n)−2 log2(α)−6 bits whereα
is the co-factor of the elliptic curve, which is not far from the Leftover Hash Lemma
since, in practice, α is very small (often equal to 1). And then, for usual finite field
size (p between 256 and 512), one can extract approximately n − 2e − 16.

Even with our improvement, the simple extractor may seem not very practical
for subgroups of Z∗

p, since quite large subgroups are needed. Indeed to generate a
256-bit string, with a 80-bit security and a 1024-bit prime p, one requires a 725-
bit order subgroup, when the Leftover Hash Lemma would need a 416-bit order
subgroup only: the time for exponentiation is approximately doubled. Note that,
however, one saves on the time of the generation of extra randomness. Anyway,
on elliptic curves, the improvement is quite meaningful, since groups in use are
already quite large. The NIST elliptic curves have co-factor 1, and then on the
256-bit finite field elliptic curve, one can extract 82 bits, with a 80-bit security.
On the 384-bit finite field, 214 bits can be extracted, while we can get 346 bits
on the 521-bit field. This is clearly enough as symmetric key material for both
privacy and authentication, without any additional cost.

We insist on the fact that it can apply for interactive key exchange, but also
for the ElGamal [11] or Cramer-Shoup [9] encryption schemes.

5.2 NIST Random Generator

The very recent NIST SP 800-90 elliptic curve Dual Random Bit Generator
(DRBG) [24] has been approved in the ANSI X9.82 standard in 2006. Based on
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the elliptic curves, the design of this random bit generator (RBG) is adapted
from the Blum-Micali generator. At Crypto ’07, Brown and Gjøsteen [7] adapted
the Blum-Micali RNG security proof to show that the DRBG output is indistin-
guishable from a uniformly distributed bit-string for all computationally limited
adversaries. In this section, we show that our result allows to improve this se-
curity result at two different places. The first improvement reduces the number
of assumptions on which the security proof relies. The second one decreases the
implicit security bound given in [7].

Getting Rid of TPP Assumption. The security result of [7] holds under
three computational assumptions: the classical decisional Diffie-Hellman problem
(DDH), the new x-logarithm problem (XLP) (which states that, given an elliptic
curve point, it is hard to determine whether the discrete logarithm of this point
is congruent to the x-coordinate of an elliptic curve point), and the truncated
point problem (TPP). The latter TPP states that, given a k-bit string, it is hard
to tell if it was generated by truncating the x-coordinate of a random elliptic
curve point or if it was chosen uniformly at random. This problem is exactly the
problem we studied in this paper. In section 4, we proved that this problem is
indeed hard if the elliptic curve is defined over Fp (where p is an n-bit prime)
and if k = n − 2e − 2 log2(α) − log2(n) bits are kept after the truncation (we
remind that e denotes the expected security level and α the cofactor of the
elliptic curve). Therefore, our result strengthens the security proof of [7] since
thanks to it, when the elliptic curve is defined over Fp of appropriate size, the
TPP assumption actually holds, and thus their security proof relies on the DDH
and XLP assumptions only.

It is interesting to note that Brown and Gjøsteen [7], when making their
highly heuristic assumptions, estimated that the expected number of bits that
could be kept after truncation would be approximately k = n− 2e−C where C
is some constant (if the cofactor of the elliptic curve is equal to 1). Our result
confirms this heuristic analysis, but is more precise since it proves that in all
cases we can keep at least k = n − 2e − log2(n) bits. However, we recall Brown
and Gjøsteen’s warning and recommend to skip 2e + log2(n) bits of the elliptic
curve point abscissa in the ECRNG.

Improvement of the Security Bound. Finally, our result also allows to im-
prove the security bound of [7]. For the sake of clarity, this security bound is
not explicitly stated in [7], but can be recovered from the proof. At the very last
stage of the proof, the TPP assumption is used to show that if Z1, . . . , Zm are
uniformly distributed points on the elliptic curve and if b1, . . . , bm are uniformly
distributed k-bit strings, then (lsbk (Z1) , . . . , lsbk (Zm)) is indistinguishable from
(b1, . . . , bm). If any adversary has a probability of successfully distinguishing
lsbk (Z1) from b1 smaller than δ, a classical hybrid argument implies that any ad-
versary has a probability of successfully distinguishing (lsbk (Z1) , . . . , lsbk (Zm))
from (b1, . . . , bm) smaller than m · δ. This bound can be improved to

√
2m/π · δ.
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First, notice that in our case, δ is equal to 2(k+log2 n+2 log2(α)−n)/2. Using
a result that can be found in [1], one can show that the advantage of the
best adversary in distinguishing to two above m-uples is approximately equal
to

√
m · (2k · Col(lsbk (Z1)) − 1)/2π, if 2k · Col(lsbk (Z1)) − 1 3 1. The lat-

ter expression 2k · Col(lsbk (Z1)) − 1 is exactly the one we upper-bounded in
the proof in Section 4: it is smaller than 2k+log2(n)+2 log2(α)−n+2 = 4δ2. This
implies that, if δ 3 1, the advantage of the best adversary in distinguishing
(lsbk (Z1) , . . . , lsbk (Zm)) from (b1, . . . , bm) is upper bounded by

√
2m/π · δ. We

thus improve the bound from [7] by a factor
√

m.
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A Relation between Collision Probability and Statistical
Distance

In this section we prove the following lemma. The proof is taken from [25] and is
given here for the sake of completeness. Note that this lemma is a consequence
of the Cauchy-Schwarz inequality, which implies that the smaller the statistical
distance is, the tighter the inequation is (if X is uniformly distributed, then the
inequality is an equality).

Lemma 4. Let X be a random variable with values in a set X of size |X | and
ε = SD(X, UX ) be the statistical distance between X and UX a random variable
uniformly distributed over X . We have:

Col(X) ≥ 1 + 4ε2

|X | .

To prove the lemma we need the following result which states that norm 1 is
smaller than norm 2.

Lemma 16. Let X be a finite set and (αx)x∈X a sequence of real numbers. We
have: (∑

x∈X |αx|
)2

|X | ≤
∑
x∈X

α2
x. (5)

Proof. This inequality is a direct consequence of Cauchy-Schwarz inequality:∑
x∈X

|αx| =
∑
x∈X

|αx| · 1 ≤
√∑

x∈X
α2

x ·
√∑

x∈X
12 ≤

√
|X |

√∑
x∈X

α2
x.

The result can be deduced easily. 
�
If X is a random variable with values in X and if we consider that αx =
Pr[X = x], then, since the sum of probabilities is equal to 1, and since Col(X) =∑

x∈X Pr[X = x]2, we have:

1
|X | ≤ Col(X). (6)

We are now able to prove the above Lemma 4.

Proof. If ε = 0 the result is an easy consequence of equation Equation (6). Let
assume that ε is different from 0. Let define qx = |Pr[X = x] − 1/ |X || /(2ε), we
have

∑
x qx = 1. According to equation Equation (5), we have:

1
|X | ≤

∑
x∈X

q2
x =

∑
x∈X

(Pr[X = x] − 1/ |X |)2
4ε2 =

1
4ε2

(∑
x∈X

Pr[X = x]2 − 1/ |X |
)

≤ 1
4ε2 (Col(X) − 1/ |X |) .

The lemma can be deduced easily. 
�
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