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Abstract. We propose a methodology to construct verifiable random
functions from a class of identity based key encapsulation mechanisms
(IB-KEM) that we call VRF suitable. Informally, an IB-KEM is VRF
suitable if it provides what we call unique decryption (i.e. given a cipher-
text C' produced with respect to an identity ID, all the secret keys cor-
responding to identity ID’, decrypt to the same value, even if ID # ID')
and it satisfies an additional property that we call pseudorandom decap-
sulation. In a nutshell, pseudorandom decapsulation means that if one
decrypts a ciphertext C', produced with respect to an identity ID, using
the decryption key corresponding to any other identity ID’ the resulting
value looks random to a polynomially bounded observer. Interestingly,
we show that most known IB-KEMs already achieve pseudorandom de-
capsulation. Our construction is of interest both from a theoretical and
a practical perspective. Indeed, apart from establishing a connection be-
tween two seemingly unrelated primitives, our methodology is direct in
the sense that, in contrast to most previous constructions, it avoids the
inefficient Goldreich-Levin hardcore bit transformation.

1 Introduction

Verifiable Random Functions (VRF's for short) were introduced by Micali, Rabin
and Vadhan [21]. Informally a VRF is something that behaves like a random
function but also allows for efficient verification. More precisely, this means that
associated with a secret key sk (the seed), there is a public key pk and a function
F such that the following properties are satisfied. First, the function is efficiently
computable, given sk, on any input. Second, having only pk and oracle access to
the function, the value Fpj(z) = y looks random to any polynomially bounded
observer who did not query Fj,(x) explicitly. Third, a proof mpx(x) that Fyr(z) =
y is efficiently computable knowing sk and efficiently verifiable knowing only pk.

VRFs turn out to be very useful in a variety of applications essentially be-
cause they can be seen as a compact commitment to an exponential number of
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(pseudo)random bits. To give a few examples, Micali and Reyzin [22] show how to
use VRF's to reduce to 3 the number of rounds of resettable zero knowledge proofs
in the bare model. Micali and Rivest [23] described a very simple non interac-
tive lottery system used in micropayment schemes, based on VRFs. Jarecki and
Shmatikov [17] employed VRFs to build a verifiable transaction escrow scheme
that preserves users anonymity while enabling automatic de-escrow. Liskov [18§]
used VRFs to construct updatable Zero Knowledge databases. In spite of their
popularity VRF's are not very well understood objects. In fact, as of today, only
four constructions are known, in the standard model [21,20,11,13]. The schemes
given in [21,20] build VRFs in two steps. First they focus on constructing a
Verifiable Unpredictable Function (VUF). Informally a VUF is a function that is
hard to compute but whose produced outputs do not necessarily look random.
Next they show how to convert a VUF into a VRF using the Goldreich-Levin [15]
theorem to “extract” random bits. Unfortunately, however, the VRF resulting
from this transformation is very ineflicient and, furthermore, it looses a quite
large factor in its exact security reduction. This is because, the transformation
involves several steps, all rather inefficient. First one uses the Goldreich Levin
theorem [15] to construct a VRF with very small (i.e. slightly super polynomial
in the security parameter) input space and output size 1. Next, one iterates the
previous step in order to amplify the output size to (roughly) that of the input.
Then, using a tree based construction, one iterates the resulting function in or-
der to get a VRF with unrestricted input size and finally one evaluates the so
obtained VRF several times in order to get an output size of the required length.

The constructions given in [11,13], on the other hand, are direct, meaning
with this that they manage to construct VRF without having to resort to the
Goldreich Levin transform. The VRF presented in [11] is based on a “DDH-
like” assumption that the author calls sum-free decisional Diffie-Hellman (sf-
DDH). This assumption is similar to that one employed by Naor-Reingold [24]
to construct PRFs, with the difference that it applies an error correcting code C'
to the input elements in order to compute the function. The specific properties
of the employed encoding allow for producing additional values that can be used
as proofs. This construction is more efficient than [21,20] in the sense that it does
not need the expensive Goldreich Levin transform. Still it has some efficiency
issues as the size of the produced proofs and keys is linear in the input size.
Dodis [11] also adapts this construction to provide a distributed VRF, that is a
standard VRF which can be computed in a distributed manner.

The scheme proposed by Dodis and Yampolskiy [13], on the other hand, is
more attractive, at least from a practical point of view, as it provides a simple
implementation of VRFs with short (i.e. constant size) proofs and keys. It is
interesting to note that, even though the latter construction is far more efficient
than previous work, it builds upon a similar approach. Basically, the construc-
tion in [13] works in two steps. First they consider a simple VUF (which is
basically Boneh Boyen [3] weakly secure signature scheme) that is secure for
slightly superpolynomially sized input spaces. Next, rather than resorting to the
Godreich Levin [15] hardcore bit theorem to convert it into a VRF, they show
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how to modify the original VUF in order to make it a VRF, under an appropriate
decisional assumption.

From the discussion above, it seems clear that, with the possible exception
of [11], all known constructions of verifiable random functions, follow similar
design criteria. First one builds a suitable VUF and then transforms it into a
VRF by either using the Goldreich Levin transform, or via some direct, ad hoc,
modifications of the original VUF. The main drawback of this approach is that,
once a good enough VUF is found, one has to either be able to make it a VRF
directly or accept the fact that the VRF obtained from the Goldreich Levin
transform is not going to be a practical one. Thus it seems very natural to ask if
there are alternative (and potentially more efficient) ways that allow to construct
VRFs directly, without needing to resort to the two steps methodology sketched
above.

OUR CONTRIBUTION. In this paper we show how to construct VRF from a
class of identity based encryption (IBE) schemes [26] that we call VRF suitable.
Roughly speaking an identity based encryption scheme, is an asymmetric en-
cryption scheme where the public key can be an arbitrary string. Such schemes
consists of four algorithms. A Setup algorithm, that generates the system com-
mon parameters as well as a master key msk; a key derivation algorithm that
uses the master secret key to generate a private key dg;, corresponding to an arbi-
trary public key string ID (the identity); an encryption algorithm that encrypts
messages using the public key ID and a decryption algorithm that decrypts
ciphertexts using the corresponding private key.

Informally an IBE is said to be VRF suitable if the following conditions are
met. First, the scheme has to provide unique decryption. This means that, given
a ciphertext C' produced with respect to some arbitrary identity ID, all the se-
cret keys corresponding to any other identity ID" decrypt to the same value (i.e.
even if ID' # ID). Second, the Key Encapsulation Mechanism (KEM) associ-
ated with the IBE (see below for a definition of key encapsulation mechanism)
has to provide what we call pseudorandom decapsulation. Very informally, pseu-
dorandom decapsulation means that if C' is an encapsulation produced using
some identity ID, the “decapsulated” key should look random even if the decap-
sulation algorithm is executed using the secret key corresponding to any other
identity ID* # ID. Having a scheme that achieves pseudorandom decapsulation
may seem a strong requirement at first. We argue that it is not, as basically all
currently known secure (in the standard model) IBE schemes already provide
pseudorandom decapsulation.

Our result is of interest both from a theoretical and a practical point of view.
Indeed, apart from establishing a connection between two seemingly unrelated
primitives, our method is direct, in the sense that it allows to build a VRF
from a VRF suitable IBE without having to resort to the inefficient Goldreich
Levin transform. Moreover, the reduction is tight. This means that, once an effi-
cient VRF suitable IBE is available, this leads to an equally efficient VRF, with
no additional security loss. Furthermore, our constructions immediately allow
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for efficient distributed VRF's as long as a distributed version of the underly-
ing encryption scheme is available (which is the case for most schemes used in
practice).

As a second contribution of this paper, we investigate on the possibility of im-
plementing VRF suitable IBEs. Toward this goal, we first show how to construct
a VRF suitable IB KEM from the Sakai-Kasahara IB KEM [25]. Interestingly,
the resulting VRF turns out to be very similar to the Dodis-Yampolskiy VRF
[13], thus showing that the latter construction can actually be seen as a special
case of our general methodology. Next, we propose a new implementation of
VRF suitable IB KEM inspired (but more efficient) by Lysyanskaya’s VRF [20]
(which in turn builds from the Naor Reingold’s PRF [24]). The proposed scheme
can be proved secure under the assumed intractability, in bilinear groups, of
the decisional ¢-th weak Bilinear Diffie Hellman Inversion problem (decisional
¢-wBDHI* for short) introduced by Boneh, Boyen and Goh [4]. Interestingly,
even though the decisional /~-wBDHI* assumption is asymptotic in nature, the
{ parameter does not need to be too large in order for our security proof to go
through. This is because it directly affects only the size of the space of valid iden-
tities but not the number of adversarial queries allowed in the security reduction!
(as opposed to most known proofs using asymptotic assumptions). This means
that in practice it is enough to assume the decisional /~-wBDHI* assumption to
hold only for reasonably small values of ¢ (such as ¢ = 160 or ¢ = 256).

IBES AND DIGITAL SIGNATURES. Naor pointed out (see [5]) that a fully secure
identity based encryption scheme can be transformed into a secure signature
scheme as follows. One sets the message space as the set I of valid identities of
the IBE. To sign m € I one executes the key derivation algorithm on input m,
and outputs dgs; as the signature. A signature on m is verified by encrypting a
random M with respect to the identity m, and then by checking that decrypting
the resulting ciphertext one gets back M. Thus if one considers an IBE with
unique key derivation (i.e. where for each identity one single corresponding de-
cryption key can be computed) the methodology sketched above leads to a secure
unique digital signature scheme (i.e. a digital signature scheme for which each
message admits one single valid signature). Since secure unique signatures are,
by definition, verifiable unpredictable functions, at first glance our construction
might seem to (somewhat) follow from Naor’s remark. We argue that this does
not seem to be the case for two reasons. First, our construction does not re-
quire the underlying IB-KEM to have unique key derivation, but only to provide
unique decryption. Clearly the former property implies the latter, but there is
no reason to exclude the possibility of constructing a scheme realizing unique
decryption using a randomized key derivation procedure. Second, a crucial re-
quirement for Naor’s transformation to work is that the original IBE is actually
fully secure. A VRF-suitable IBE, on the other hand, is required to be secure
only in a much weaker sense (that we call weak selective ID security).

! Here by not affecting the number of adversarial queries we mean that ¢ grows lin-
early with respect to the identity space but only logarithmically with respect to the
number of adversarial queries.
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OTHER RELATED WORK. As pointed out above the notion of VRF is related
to the notion of unique signatures. Unique signatures were introduced by Gold-
wasser and Ostrovsky [16] (they called them invariant signatures). The only
known constructions of unique signatures in the plain model (i.e. without com-
mon parameters or random oracles) are due to Micali, Rabin and Vadhan [21],
to Lysyanskaya [20] and to Boneh and Boyen [3]. In the common string model,
Goldwasser and Ostrovsky [16] also showed that unique signatures require the
same kind of assumptions needed to construct non interactive zero knowledge.

Dodis and Puniya in [12] address the problem of constructing Verifiable Ran-
dom Permutations from Verifiable Random Functions. They define VRPs as the
verifiable analogous of pseudorandom permutations. In particular they point out
that the technique of Luby-Rackoff [19] (for constructing PRPs from PRFs) can-
not be applied in this case. This is due to the fact that VRP proofs must reveal
the VRF outputs and proofs of the intermediate rounds. In their paper they
show a construction in which a super-logarithmic number of executions of the
Feistel transformation suffices to build a VRP.

More recently Chase and Lysyanskaya [8] introduced the notion of simulatable
VRF. Informally a simulatable VRF is a VRF with the additional property that
proofs can be simulated, meaning with this that a simulator can fake proofs
showing that the value of Fy () is y for any y of its choice. Simulatable VRF's can
be used to provide a direct transformation from single theorem non interactive
zero knowledge to multi theorem NIZK and work in the common reference string
model.

2 Preliminaries

Before presenting our results we briefly recall some basic definitions. In what
follows we will denote with k a security parameter. The participants to our
protocols are modeled as probabilistic Turing machines whose running time is
bounded by some polynomial in k. Denote with N the set of natural numbers
and with RT the set of positive real numbers. We say that a function € : N — RT
is negligible if and only if for every polynomial P(k) there exists an kg € N such
that for all k > ko e(k) < 1/P(k). If A is a set, then a < A indicates the process
of selecting a at random and uniformly over A (which in particular assumes that
A can be sampled efficiently).

VERIFIABLE RANDOM FUNCTIONS Verifiable Random Functions (VRFs for
short) were introduced by Micali, Rabin and Vadhan [21]. Intuitively, a VRF
is something that behaves like a pseudorandom function, but also allows for a
proof of its output correctness. More formally, a VRF is a triplet of algorithms
VRF = (Gen, Func, V) providing the following functionalities. The key generation
algorithm Gen is a probabilistic algorithm that takes as input the security pa-
rameter and produces a couple of matching public and private keys (vpk, vsk).
The deterministic algorithm Func, on input the secret key vsk and the input x
to the VRF, computes (Fysx(x), Prove,s;(x)), where F,q(z) is the value of the
VRF and Prove,; () its proof of correctness. The verification algorithm V takes
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as input (vpk,z,v,7) and outputs a bit indicating whether or not 7 is a valid
proof that F,s(x) = v.

Let a : N - NU {x} and b : N — N be functions computable in polynomial
time (in k). Moreover we assume that a(k) and b(k) are bounded by a polynomial
in k, except if a takes the value * (in this case we simply assume that the VRF
can take inputs of arbitrary length). Formally, we say that VRF = (Gen, Func, V)
is a VRF of input length a(k) and output length b(k), if the following conditions
are met.

Domain Range Correctness. For all 2 € {0,1}%() it has to be the case that
Fosk(z) € {0,1}°®). We require this condition to hold with overwhelming
probability (over the choices of (vpk, vsk)).

Provability. For all z € {0,1}%%) if Prove,s(z) = m and Foe(2z) = v then
V(vpk,z,v,7) = 1. We require this condition to hold with overwhelming
probability (over the choices of (upk, vsk) and the coin tosses of V).

Uniqueness. No values (vpk, z,v1,ve, 71, m2) can satisfy (unless with negligible
probability over the coin tosses of V) V(vpk, x,v1,m) = V(vpk, z,ve,m2) = 1,
when v; # vs.

Pseudorandomness. For all probabilistic polynomial time adversaries A =
(A1, A2) we require that

(upk, vsk) & Gen(1%); (a,w) — AT (wpk) | |
Pr| b =b b& 0,1} vo — Fua(a); vr & {0,110 | < +e(h)
b — Ag“"c(')(w,vb)

where the notation A™"(") indicates that A has oracle access to the algorithm
Func. In order to make this definition sensible, we impose that A cannot
query the oracle on input x.

Remark 1. One might consider a relaxation of the pseudorandomness property
in which the adversary is required to commit ahead of time (i.e. before seeing
the public key) to the input value it intends to attack. We call selective-VRF a
VRF that satisfies this weaker pseudorandomness?.

ID BASED ENCRYPTION An identity based encryption scheme is a tuple of al-
gorithms IBE = (Setup, KeyDer, Enc, Dec) providing the following functionality.
The trusted authority runs Setup, on input 1%, to generate a master key pair
(mpk, msk). Without loss of generality we assume that the public key mpk spec-
ifies a message space M and a value n (polynomial in the security parameter)
indicating the length of each identity. It publishes the master public key mpk and
keeps the master secret key msk private. When a user with identity ID wishes
to become part of the system, the trusted authority distributor generates a user
decryption key dip < KeyDer(msk, ID), and sends this key over a secure and
authenticated channel to the user. To send an encrypted message m to the user

2 For lack of space we defer a more formal definition of this notion to the full version
of this paper.
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with identity ID, the sender computes the ciphertext C < Enc(mpk, ID,m),
which can be decrypted by the user as m « Dec(d;p, C).

Boneh and Franklin [5] formally defined the notion of security for identity
based encryption schemes. In particular they defined chosen plaintext security
against adaptive chosen identity attack. Intuitively, such a notion, captures the
requirement that security should be preserved even when facing an adversary
who is allowed to choose the identity it wishes to attack. Later, Canetti, Halevi,
and Katz [7] introduced a weaker notion of security in which the adversary is
required to commit ahead of time (i.e. before the parameters of the scheme
are made public) to the identity it intends to attack. A scheme meeting such
a weaker security requirement is said selective ID, chosen plaintext secure IBE
(IND-sID-CPA).

In this paper we introduce a new notion of security for IBE schemes that we
call weak selective ID security. More precisely, we define weak selective ID secu-
rity as the full fledged selective case with the exception that here the challenge
identity is chosen by the challenger and given in input to the adversary. Clearly,
this notion is weaker with respect to selective ID security as it is easy to see that
the latter implies the former.

IDENTITY BASED KEY ENCAPSULATION. An identity-based key encapsulation
mechanism (IB-KEM) scheme allows a sender and a receiver to agree on a ran-
dom session key K in such a way that the sender can create K from public
parameters and receiver identity and the receiver can recover K using his secret
key. This notion, in the context of identity-based encryption, was first formalized
by Bentahar et al. [1].

An IB-KEM scheme is defined by four algorithms:

— Setup(1*) is a probabilistic algorithm that takes in input a security parameter
k and outputs a master public key mpk and a master secret key msk.

— KeyDer(msk, ID) The key derivation algorithm uses the master secret key to
compute a secret key sk;p for identity ID.

— Encap(mpk, ID) The encapsulation algorithm computes a random session
key K and a corresponding ciphertext C encrypted under the identity ID.

— Decap(C, skip) allows the possessor of a secret key sk;p to decapsulate C
to get back a session key K. We denote by K the session key space.

For correctness it is required that Vk € N, ID € ID,(C,K) & Encap(mpk,
ID) the following probability holds for all possible (mpk, msk) & Setup(1%):

Pr[Decap(C, KeyDer(msk,ID)) = K] =1

Here we define the notion of weak selective ID security for IB-KEM schemes. Let
IBKEM be a IBE scheme with key encapsulation mechanism. Then ZBKXEM is
weakly selective ID secure against adaptively-chosen plaintext attacks
(wsIB-KEM-CPA) if there exists no polynomially bounded adversary .4 with non
negligible advantage against the Challenger in the following game:

Setup. In this phase the challenger selects a challenge identity ID* (according
to an arbitrary distribution) and runs (mpk, msk) < Setup(1¥). Then it
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computes (C*, K*) = Encap(mpk, ID*) and flips a binary coin b < {0,1}.
Then it sets K = K* if b = 0, otherwise it picks a random key K < K.
Finally it runs A on input (mpk, ID*, C*, K) and keeps msk for itself.

Key derivation queries. The adversary is allowed to ask key derivation que-
ries for an arbitrary (but polynomial) number of adaptively chosen identities
different from ID*.

Guess. In the end of this game A outputs b’ as its guess for b.

The adversary wins if b’ = b. We formally define the advantage of A against
IBKEM in the above game as
_ ; 1
AdvEESE T ) =[P =01 - |
where the probability is taken over the coin tosses of the challenger and the
adversary.

VRF-sUITABLE IB-KEMs. Our VRF construction relies on a special class of

identity based key encapsulation mechanisms that we call VRF suitable. In par-
ticular, a VRF suitable IB-KEM is defined by the following algorithms

— Setup(1*) is a probabilistic algorithm that takes in input a security parameter
k and outputs a master public key mpk and a master secret key msk.

— KeyDer(msk, ID) The key derivation algorithm uses the master secret key to
compute a secret key sk;p for identity ID and some auxiliary information
auxrp needed to correctly encapsulate and decapsulate the key.

— Encap(mpk, ID, auzp) The encapsulation algorithm computes a random ses-
sion key K, using (mpk, ID, auz;p). Moreover it uses (mpk, ID) to computes
a ciphertext C encrypted under the identity ID. Notice that aux;p is re-
quired to compute K but not to compute C.

— Decap(C, skp, auzsp) allows the possessor of sk;p and auzrp to decapsulate
C' to get back a session key K. We denote by I the session key space.

Remark 2. Notice that the description above differs from the one given for basic
IB-KEM in that here we require the encapsulation and decapsulation mechanism
to use some auxiliary information auz;p, produced by KeyDer, to work correctly.
Clearly if one sets auz;p = L one goes back to the original description. Thus
the new paradigm is slightly more general as it allows to consider encapsulation
mechanism where everybody can compute the ciphertext but only those knowing
the auzr;p information can compute the key. Notice however that auz;p does
not allow, by itself, to decapsulate. In some sense, this auxiliary information
should be seen as a value that completes the public key (rather than something
that completes the secret key) 2. Even though such a syntax may look totally
meaningless in the standard public key scenario, it turns out to be extremely
useful (see below) in our context.

3 In fact this auxiliary information is not required to be kept secret in our constructions
since the adversary can in principle obtain its value for any identity of its choice
including the challenge identity (see definition of pseudorandom decapsulation).
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Moreover, the IB-KEM has to satisfy the following properties:

1. Unique decryption.Let IDy be any valid identity and C' a ciphertext en-
crypted under IDy. We require that no valid identity ID can satisfy (unless with
negligible probability) Decap(C, sk, auzip’) # Decap(C, skfp, auzip”),
where (sk}p, auzip’) «— KeyDer(msk, ID), (skip, auzip”) «— KeyDer(msk,
ID)

2. Pseudorandom decapsulation. Let C be an encapsulation produced using
identity IDg, we require the session key to look random even if the decapsu-
lation algorithm is executed using the secret key corresponding to any other
ID. More formally, we define the following experiment, for a polynomially
bounded adversary A = (Aj, A2).

Experiment Explz%%g\fljiDECAP(k)

(mpk, msk) < Setup(1¥)

Choose ID € ZD (according to any arbitrary distribution)
C* & Encap(mpk, IDy)

(ID, st) & AXPO) (pk C*, IDy)

(auz,p), sk;p) < KeyDer(msk, ID)

b {0,1}; Ky & Decap(C*, sk;p, auz;p,); Ky ik

b — AgeyDer(')(st, Ky, auz,p)

If ¥ = b then return 1, else return 0

With AKeYPer() we denote that an algorithm A has oracle access to the key
derivation algorithm. Let ZD denote identity space, i.e. the space from which
the adversary (and everybody else) is allowed to choose the identities. In the

experiment Expé%ggﬁﬁDECAp we need the following restrictions:

— the identity ID output by A; should not be asked before;
— As is not allowed to query the oracle on ID.

We define the advantage of A in the IB-KEM-RDECAP experiment as

- - _ _ 1
AQVEREEVAPPONT (1) = | Pr [BxpB BP0 = 1] - ).

IBKEM has pseudorandom decapsulation if for any polynomially bounded
adversary A the advantage AdvII%',IéE\I\f[ﬁDECAP(k) is a negligible function

in k.

Remark 3. Requiring that an IB-KEM provides pseudorandom decapsulation
might seem a very strong requirement at first. We argue that it is not, at least if
the known constructions of IB-KEMs are considered. Indeed, all currently known
schemes which are IND-CPA secure (but not IND-CCA secure) in the standard
model already have this property (see the full version of the paper for details).
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3 The Construction

In this section we show our construction of Verifiable Random Functions from
a VRF-suitable IB-KEM ZBKEM = (Setup, KeyDer, Encap, Decap). Let ZD be
the identity space, K the session key space and SK the secret key space. Then
we construct VRF = (Gen, Func,V) which models a function from input space
ID to output space K.

Gen(1%) runs (mpk, msk) < Setup(1*), chooses an arbitrary identity IDy € ZD
and computes Cy < Encap(mpk, IDg). Then it sets vpk = (mpk,Cp) and
vsk = msk.

Func,s,(z) computes, = (sky, auzr,) = KeyDer(msk, z) and y = Decap(Cy, 7).
It returns (y, 7,;) where y is the output of the function and 7, is the proof.
V(vpk,x,y, ;) first checks if 7, is a valid proof for x in the following way. It
computes (C, K) = Encap(mpk, z, auz,) and checks if K = Decap(C, 7).
Then it checks the validity of y by testing if Decap(Cy, ;) = y. If both the

tests are true, then the algorithm returns 1, otherwise it returns 0.

Now we prove that the proposed construction actually realizes a secure VRF.

Theorem 1. AssumeZBKEM is a VRF Suitable IB-KEM scheme, as described
in section 2 then the construction given above is a verifiable random function.

Proof. According to the definition given in section 2, we prove that VRF =
(Gen, Func, V) is a verifiable random function by showing that it satisfies all the
properties. Domain range correctness and provability trivially follow from the
IB-KEM scheme correctness. Since ZBKXEM has unique decryption the unique-
ness property is satisfied for construction of VRF. To prove the residual pseu-
dorandomness we assume there exists an adversary A = (A, Az) that breaks
the residual pseudorandomness of VRF with non-negligible probability é + e(k).
Then we can build an adversary B = (Bj, B2) which has non-negligible advantage
€(k) in the IB-KEM-RDECAP game.

B; receives in input from its Challenger the public key mpk and a ciphertext
Cy. It sets wpk = (mpk,Cy) and runs A;(vpk). The adversary A is allowed
to make queries to the function oracle Func(:). B simulates this oracle in the
following way. Given input z € ID, it queries the key derivation oracle on z.
It obtains sk, and returns (Decap(C§, skz), skz) to the adversary. When A,
outputs an element Z, By gives the same element to its challenger. Thus the
challenger produces K*, which is either the decapsulation of Cj with skz or a
random element of K, and gives it to Bs. Then By runs b «— As(st, K*) and
outputs b’ to the Challenger.

Since the simulation is perfect, if A outputs ' = b with probability é + e(k),
then B’s advantage is exactly e(k).

Notice that, when describing the notion of VRF suitable IB-KEM, we did not
expect the underlying scheme to meet any additional security requirement. With
the following theorem (whose proof is deferred to the full version of this paper)
we show that, indeed, a necessary condition, in order for an IB-KEM to be VRF
suitable, is that it is secure only in a weak selective sense.
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Theorem 2. Let ZBKEM be a VRF Suitable IB-KEM, then it is also a weakly
selective secure IB-KEM (in the sense of the definition given in section 2).

4 VRF Suitable IBEs

In this section we describe our constructions of Verifiable Random functions from
VRF suitable encryption schemes. In particular, in light of the results presented
in section 3, we focus on constructing VRF suitable IB-KEM schemes.

We start by describing, in section 4.1, a VRF from the Sakai-Kasahara [25]
IB-KEM. Interestingly, the proposed VRF is basically the same as the VRF
proposed by Dodis and Yampolskiy [13], thus showing that their construction
can be seen as a special case of our general paradigm.

Next we present, in section 4.2, a new construction of VRF suitable IB-KEM
from an assumption related to the ¢-Bilinear Diffie Hellman Inversion assump-
tion (see [2]), that is known as the decisional ¢-weak Bilinear Diffie Hellman
Inversion assumption (decisional /~wBDHI*, following the acronym used in [4]).
The decisional ~-wBDHI* was introduced by Boneh, Boyen and Goh in [4] and it
(informally) states that given g®, ¢, g*°, ..., g%, the quantity e(g,g)lec should
remain indistinguishable from random to any polynomially bounded adversary.
The assumption is related to the ¢ bilinear Diffie Hellman Inversion assumption
(¢-BDHI), in the sense that the former is known to hold in all those groups
where the latter holds, but the converse is not known to be true. Interestingly,
in order for our construction to work, the ¢ parameter does not need to be too
large. This is because it only limits to 2¢ the size of the space of valid identities
but it does not affect in any other way the number of adversarial queries allowed
in the security proof (as in most known proofs using g-type assumptions). Said
in a different way, ¢ is required to grow only in a logarithmic way (rather than
linearly) with respect to the number of adversarial queries allowed. This means
that it is enough to assume that the /~-wBDHI* assumption holds only for rather
small values of ¢ (i.e. £ =160 or £ = 256).

As a final note we mention that, in principle, one could construct a VRF from
Boneh Franklin’s IBE. Indeed, in the full version of this paper, we show that
the KEM version of the scheme is actually a VRF suitable IB-KEM, under the
decisional Bilinear Diffie Hellman assumption. This construction, however, is of
very limited interest, since the proof holds in the random oracle model.

4.1 Sakai-Kasahara VRF

We briefly recall the KEM version of the Sakai-Kasahara IBE scheme (SK for
short) [25]. This scheme relies on the ¢-decisional Bilinear Diffie-Hellmann In-
version assumption (DBDHI for short), introduced by Boneh and Boyen in
[2]. Informally, the DBDHI assumption in bilinear group G of prime order p
states that, for every PPT algorithm A and for a parameter ¢, A has negligible
probability into distinguishing e(g, g)'/* € Gr from a random one after seeing
(9;9179('%2)7 o, g@). If we suppose that G(1¥) is a bilinear group generator
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which takes in input a security parameter k, then (asymptotically) the DBDHI
assumption holds for G if A’s probability of success is negligible in &, for any ¢
polynomial in k.

— Setup(1*) runs G(1*) to obtain the description of the groups G, Gy and of
a bilinear map e : G x G — Grp. The description of G contains a generator
g € G. Then the algorithm picks a random s & Z, and sets h = g°, mpk =
(g, h), msk = s.

— KeyDer(msk, ID) We assume ID € Z,. The key derivation algorithm con-
structs the secret key sk;p = gerlfD.

— Encap(mpk, ID) The encapsulation algorithm picks a random ¢ & Zy and
computes a random session key K = e(g, g)" and a corresponding ciphertext
C = (gsgID)t.

— Decap(C, skip) the decapsulation algorithm uses the secret key skjp to com-
pute a session key K from a ciphertext C as follows: K = e(C, skip).

First notice that, assuming auz;p = L VID, the above description fits our
syntax of VRF suitable IB-KEMs. Now we prove (for lack of space the actual
proof appears in the full version of this paper) that the Sakai-Kasahara IB-
KEM scheme can be used to construct a VRF (i.e. that it actually provides
unique decryption and pseudorandom decapsulation). In particular, the resulting
VRF can only support superpolynomially-sized (in the security parameter) input
space. Notice that all known constructions of VRF made the same assumption.

Theorem 3. Assuming that the DBDHI assumption holds in a bilinear group
G, then the Sakai-Kasahara IBE scheme [25] is a VRF-suitable IBE.

Similarity with the Dodis-Yampolskiy VRF. Now we show that the Dodis-
Yampolskiy VRF [13] (that we briefly recall in appendix A) can be seen as a
special instantiation of the construction given above. Indeed, theorem 3 leads to
the following VRF.

Gen(1*) Runs G(1%) to obtain the description of the groups G,Gr and of a
bilinear map e : G x G — Gp. The description of G contains a generator
g € G. Then the algorithm picks random s, ¢ & Z, and sets h = g%, Cy = h,
vpk = (g, h, Cy), vsk = s.

Func,s;(2) Let Funcs; (2)=(Fysk (x), Tpsk (z)). One sets Func g, ()= e(Co, skz)
= e(g,9)"/(572) as the VRF output and m,e(z) = KeyDer(z) = g/ (s+o)
as the proof of correctness.

V(vpk,z,y, ;) To verify whether y was computed correctly, one starts by
running the Encap algorithm on input (wpk,z). Encap chooses w & Zy,
and then computes K «— e(g,9)* and C = (hg”)¥. Then one checks that
K = Decap(C,7;) = e((9* - h)*,mz) and y = Decap(Co, 1) = e(ht, 7).

Thus by setting t = s~! mod p and w = 1, the construction above can be
optimized to get exactly the Dodis Yampolskiy VRF.
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4.2 The New Construction

In this section we propose a new construction of VRF suitable IB-KEM from the
(conjectured) computational intractability of the decisional weak ¢-Bilinear Diffie-
Hellman Inversion problem (see below for a formal description). The new scheme
is inspired from Lysyanskaya [20] VRF in that the validity of each new auxiliary
information auz;p (required to compute the session key) is verified by exploiting
the DDH-CDH separation in bilinear groups. The new scheme however is more ef-
ficient as it leads to a VRF directly (i.e. rather than having to construct a unique
signature scheme first) and does not require error correcting codes.

Decisional weak ¢-Bilinear Diffie Hellman Inversion Problem [4]. The
decisional /~-wBDHI* problem in G is defined as follows. Let GG be a bilinear
group of prime order p and ¢ a generator of G. Given g®, g%, ¢*°, ..., g* , we say
that an algorithm A4 has advantage € in solving decisional ~-wBDHI* in G if

PrlA(g%, 9" 9" 9" e(9,9)" ) = 1] = PrlA(g, """ g €9, 9)) = 1] 2 €
where the probability is over the random choices of b, ¢, z € Z

We say that the decisional /~-wBDHI* assumption holds in G if no polynomially
bounded adversary has advantage better than negligible in solving the decisional
{-wBDHI* problem in G.

Remark 4. Cheon showed in [9] an attack against the Strong Diffie-Hellman
Assumption and its related problems (among which the DBDHI used to prove
the security of the Dodis-Yampolskiy VRF). This attack reduces the security of
a factor /¢ and applies to the (~-wBDHI* as well. However, as it is stated at
the beginning of this section, in our construction it is enough to assume that
the £~-wBDHI* assumption holds only for rather small values of ¢ (i.e. £ = 160
or ¢ = 256). Thus in our case the security loss is not significant as in Dodis-
Yampolskiy’s.

The proposed scheme follows

Setup(1*) runs G(1¥) to obtain the description of the groups G,Gr and of a
bilinear map e : G X G — Gp. The description of G contains a generator
g € G. Let {0,1}¢ be the space of valid identities. Then the algorithm picks
(at random) a, oy, 81, ..., au, e & Zp, sets g1 = g%, and for i = 1,..., ¢ sets
goi = ¢”% and g¢1; = ¢g®. The public parameters are

mpk = (97 g1, {gij}i:[),l;j:L,Z>

The master secret key is msk = (a, {a, B }i=1....0)

KeyDer(msk, ID) We assume ID = ID;---ID, where each ID; € {0,1}. The
key derivation algorithm constructs the secret key sk;p and the auxiliary
information auz;p as follows. Let hg = g, for i = 1 to £ one computes

afDlﬂEkmi)

hi = (hi—l) !

and sets auzrp = (h1,...,he) and sk;p = h.
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Encap(mpk, ID, aux;p) Let auzip = (h1, ..., hs) computed as above, the encap-
sulation algorithm picks a random ¢ & Zy, and computes a random session
key K = e(g1, h¢)! and a corresponding ciphertext C' = g.

Decap(C, skip, auzyp) the decapsulation algorithm uses the secret key sk;p and
the auxiliary information auz;p to compute a session key K from a cipher-
text C. This is done as follows. First, in order to guarantee the unique
decryption property, a check on the validity of the auxiliary information has
to be performed. This is done as follows, let hg =g, fori=1,...,¢

[l

if ID; =1 check e(g, h;) = e(g1i, hi—1)
?

else check e(g, h;) = e(goi, hi—1)

If any of the above checks fails output reject. Second, the key K is computed
as K = e(C,skip) = e(g1,he)t Notice that, the validity of sk;p can be
verified by first encrypting some random message m with respect to the
public key (g, g1, h¢) and then by checking if one can decrypt it correctly
using skjp.

Now we prove the following result

Theorem 4. Suppose the decisional £-wBDHI* assumption holds in GG, then the
scheme given above is a secure VRF suitable IB-KEM scheme.

Proof. Let ITD = {0,1}¢ the identity space. First notice that the scheme fits
the syntax of VRF suitable IB-KEMs. We prove the theorem by showing that
the scheme has the unique decryption property and meets the pseudorandom
decapsulation requirement.

Unique Decryption. We prove this by showing that for a given identity ID
the corresponding hy is uniquely determined as

P ID; ,1—1ID;
ITici o '8, ’

he=g

The proof is by induction on 4. First notice that it must be the case h; =
IDy 51—1IDq . ? IDy 41—IDy
g™ P as otherwise the check e(g,h1) = e(gip,1,ho) = e(g™ P g)
would fail. Now assume that the statement holds true for any index j — 1 < ¢,

j—1 ID; 1—ID;

i.e. that hj_1 = glli=i &' B; . We prove that the same holds for j.

IDj 1—1ID; IDj ;1—ID;

i—1 ID; ,1—ID;\ ¢ ° B i ID; ,1—1ID;
hj = h’?il P = (ng=1l a; "B 1) s = gH'§=1 ;B ’

Pseudorandom Decapsulation.Assume that there is an an adversary A that
breaks the pseudorandom decapsulation of the proposed scheme with adv-
antage €, we show how to build an adversary B that solves the decisional ¢-
wBDHI* problem with advantage ¢/2° and runs in time comparable to that
needed by A. B starts by receiving, from some challenging oracle, the values
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(C=g¢° By =g" By = gbrz7 ...Bp= gbk and a value T that can be either of the
form e(gc;?g)bprlc or of the form e(g, g)*, for random z € Zy, depending on some
random (and hidden) bit d that B is supposed to guess. First, notice that in the
proposed scheme the ciphertext C' is independent of specific identities, thus B
can produce it without having to commit to any IDg. B chooses ID at random
as its guess for the challenge identity. Then it sets g1 = BY, for random a € Z;,

chooses at random «;, 3; < Ly, fori=1,...,¢, and computes for i =1,...,¢

[ BYif IDi=0 ~fg% if ID;=0
Wi=g% if ID;=1 T\ B if ID; =1

Notice that the public parameters mpk = (9791, {gij}i:071;j:1__€> are dis-
tributed exactly as those produced by the setup algorithm. The master secret
key is implicitly set to msk = (ab, {a;b'P¢, ;b1 ~1Pi},_; ;). Next, B computes
C* as follows C* « C' = g¢. Thus, C* is also correctly distributed. Now B runs
A on input (mpk,C*, IDy), for some randomly chosen identity IDg. Notice that,
from the received inputs, A gets no information at all about the ID chosen by
B, thus such a choice will be identical to the challenge identity with probability
1/2%

Now we show how 5 can answer key derivation queries for identities ID # ID.
Since ID # ID there exists (at least) an index j such that ID; # ID;. For such
index we have that either go; = ¢% (if ID; = 0) or g1; = g® (otherwise). This
means that the hy corresponding to identity ID will contain the (unknown) b
with exponent ¢ — 1, at most. Let n < £ denote the number of positions ¢ such
that ID; = ID;. B computes the h; as follows.

IDy ,1—1IDy

IDy n1—1IDy .

L g A if IDy # ID;
1 =

Bt ™ if IDy = ID,

1D 1—1D
RS2 P2 if IDy £ IDy
_ a1D2ﬁ171D2 )
hy = ¢ B2 ™ if IDy = IDy A IDy # ID,

1-1IDgy

BaéDrzsz : _ —
5 if IDy = 1Dy N\ IDy = IDy

Finally, letting wzp = Hf:l aiIDiﬁil_IDi, he is computed as B&P.

The skip is set to B} Recall that, since n < ¢, B can do this operation
using the values received by the challenger. It is easy to check that both the
auzx;p = (h1,...,he) and skrp are distributed as in the real key derivation
algorithm.

Once A is done with its first phase of key derivation queries it outputs a chal-
lenge identity ID*. If ID* # ID, B outputs a random bit and aborts. Otherwise
it constructs K, as T, where w;, = Hle Dipl= 1P and auz;p is com-
puted as before. This time however hy is set to BZ)“’ , thus B will not be able to
explicitly compute sk ,,. However this is not a problem as B is not required to

do so. Finally B hands (K, sk;;) to A. A replies back with a guess d’ (d' =0
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means real, d = 1 means random). B outputs d’ as well. Additional key deriva-
tion queries are dealt with as in the first phase. This completes the description
of the simulator.

Now notice that if T' = e(g, g)lec7 K ,p, is a valid key for the identity ID. This
is because, K, = e(g1, h;p)°, where h,, is the hy corresponding to identity ID.

Thus, h,j, = g"“m
KID = e(glv h’ID)C = e(gab7gbzwm)c = T%mn

If on the other hand T is a random value so is K. Thus, by standard cal-
culations one gets that, if A has advantage € in breaking the pseudorandom
decapsulation property of the scheme, B breaks the decisional /~-wBDHI* with
advantage ¢/2°. O

Remark 5. Tt is interesting to note that if one is interested only into a selective-
VRF, then the above construction leads directly to a scheme with large input
space. This does not hold for the Dodis-Yampolskiy VRF because in its security
proof the simulator has to guess all the queries that the adversary is going to
ask even in the weaker selective case.

5 Conclusions

In this paper we introduced a new methodology to construct verifiable random
functions (VRF) from a class of identity based key encapsulation schemes that
we call VRF suitable. We showed the applicability of our methods by providing
two concrete realizations of the new primitive. The first one leads to a VRF
that is very similar to the Dodis-Yampolskiy construction, while the second
leads to a new construction. A natural question left open by this research is
to find new (potentially better) instantiations of the primitive, possibly ones
supporting exponentially large (in the security parameter) identity spaces and
provably secure under non interactive assumptions. This would solve the long
standing open problem of realizing a secure VRF with unbounded input size.
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A The VRF by Dodis and Yampolskiy

In this section we describe the VRF by Dodis and Yampolskiy [13].

Gen(1*) Runs G(1%) to obtain the description of the groups G,Gr and of a

bilinear map e : G X G — Gp. The description of G contains a generator
g € G. Then the algorithm picks a random s & Zp and sets h = g°, vpk =
(g,h), vsk = s.

Func,s;(x)Let  Funcys,(t)=(Fysk (), Tusk(x)).  One  sets  Func,g(x)

=e(g,9)"/ ) as the VRF output and mye () = g/ (%) as the proof of cor-
rectness.

V(vpk, z,y, ;) To verify if y was computed correctly, one checks that e(g” -

h,m:) = e(g,g) and y = e(g, Tz).
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