
Network Services on Service Extensible Routers�

Lukas Ruf, Károly Farkas, Hanspeter Hug, and Bernhard Plattner

Computer Engineering and Networks Laboratory (TIK)
Swiss Federal Institute of Technology (ETH) Zurich

CH-8092 Zurich/Switzerland
{ruf,farkas,hhug,plattner}@tik.ee.ethz.ch

Abstract. Service creation on extensible routers requires a concise specification
of component-based network services to be deployed and extended at node run-
time. The specification method needs to cover the data-flow oriented nature of
network services with service-internal control relations. Hence, it needs to pro-
vide the concept of functional service composition that hides the complexity of a
distributed, dynamically code-extensible system.

We propose the PromethOS NP service model and its Service Programming
Language to answer this challenge. They provide the concepts and methods to
specify a network service as a graph of service chains with service components,
and service-internal control relations. In this paper, we present the concepts of our
service model, the syntax and semantics of its Service Programming Language,
and demonstrate their applicability by an exemplary service specification.

1 Introduction and Motivation

One of the most significant problems of the Internet today is the lack of non-disruptive
service creation and extension on demand on access and border routers. Non-disruptive
service creation and extension have become key requirements due to the following
trends:

– Function shift from the end-systems to the access networks: Function is moved
from the end-systems towards the network to ease site operation, and to benefit
from the economy of scale user-centric network services are deployed on access
routers for the three plains [3] of data-path, control and management functionality.
Examples are the protection of network sites [15] and the alleviation of network
management and control [1].

– Router consolidation: For a reduction of costs of network management and opera-
tion, routers are consolidated. Larger devices, hence, are needed to satisfy the de-
mands for the interconnection of different networks. Equipped with programmable
network interfaces, these network nodes1 provide suitable locations for new ex-
tended network services.

� This work is partially sponsored by the Swiss Federal Institute of Technology (ETH) Zurich,
the Swiss Federal Office for Education and Science (BBW Grant 99.0533), and the Intel IXA
University Program (Research Grant 22919). PromethOS v1 has been developed by ETH as a
partner in IST Project FAIN (IST-1999-10561).

1 We refer interchangeably to a router device by the term network node.

D. Hutchison et al. (Eds.): IWAN 2005, LNCS 4388, pp. 53–64, 2009.
c© IFIP International Federation for Information Processing 2009

54 L. Ruf et al.

– Enabling Technologies: Network Processors [7, 8] (NPs) appeared recently on the
market. They provide generally an asymmetric programmable chip-multiprocessor
architecture with functional units optimized for specific network operations.
Usually, they are built of two different processor types, namely packet and con-
trol processors2 (PPs and CPs respectively), that reside in a conceptual view at
two different levels. CPs are built commonly of a general purpose processor (GPP)
while PPs provide the architecture of a stripped down RISC processor supported
by specialized co-processors to process packets at line-speed. Network interface
cards with embedded NPs (so-called NP-blades) provide, thus, the required flexi-
bility to extend large network nodes easily and increase the processing capacity of
a network node simultaneously.

Router devices with NP-blades and multiple GPPs provide a powerful hardware plat-
form. Service management and node operation, however, is complicated by the nature
of these large heterogeneous network nodes. PromethOS NP [13, 14] provides the flex-
ible router platform that enables non-disruptive service creation and extension on any
programmable processor at node run-time according to an extended plugin [5] model.
For the definition of network services, however, a concise specification method is re-
quired. This specification method needs to export the capabilities of the underlying ser-
vice infrastructure while it must abstract from the complexity of large multi-port router
devices. Moreover, it must be general enough to cope with the large variety of network
nodes. Thus, it needs to describe control and data relations among service components,
and needs to specify additions to previously deployed network services with specific
resource constraints in a flexible way.

Therefore, we present in this paper the PromethOS NP service model and propose its
Service Programming Language (SPL) that is used to define and specify network ser-
vices on the PromethOS NP router platform. The service model provides the concepts
to deploy new network services composed of distributed service components on code-
extensible routers and to extend previously deployed services with additional function-
ality. The SPL supplies the service programming interface of the router platform for the
installation and basic configuration of new network services.

We structure the remainder of this paper as follows. In Sec. 2, we revise related work
in the area of service models and specifications. Then, in Sec. 3, we introduce our ser-
vice model and present our service programming language (SPL) with the definition
of the relevant key productions. For proof of concept, we evaluate the SPL by its ap-
plication on an exemplary service program in Sec. 4. The imaginary service program
illustrates part of the capabilities and the flexibility of the SPL. In Sec. 5, this paper
is then completed by a summary and conclusion followed by a brief outlook to further
fields of application.

2 NP vendors do not use a consistent naming scheme to refer to the code-extensible processors:
the Intel IXP-architecture refers to the first-level processors as microengines while the IBM
PowerNP identifies them as picoprocessors or core language processors. Second-level pro-
cessors are named differently as well. For this reason, we refer to the first level of processing
engines as packet processors and to those of the second level as control processors.

Network Services on Service Extensible Routers 55

2 Related Work

Network service creation on active router platforms and deployment of services within
the network have been a research area for quite a while. Research has been carried out
on various levels of abstractions. We restrict our review of related work to four different
projects in the area of service specification on active network nodes: Click [9] and
NetScript [4] due to their service models and specification languages, Chameleon [2]
due to its service model and process of service creation, and CORBA [11] because of
its component model.

2.1 Click

The Click modular router [9] approach defines two environments of code execution
(EE) on Linux: one is the in-kernel EE and the other is a Linux user space EE. Both
support service creation according to a service specification of interconnected Click
elements. Click elements provide the function of network services. Network services
are defined by the specification of their inter-connection. Click uses so-called compound
elements that allow for user-specified service class definition. A compound element
consists of simple elements that specify the functions.

The Click specification language is a language that defines the elements and their
inter-connection. Sub-classes of elements can be easily extended by own functionality,
since new elements can be specified to create new functions in a C++-like style. The
functions are then statically linked into the Linux kernel. Both, the in-kernel as well as
the user space EE accept a Click service specification, resolve dependencies and create
new network services.

While Click defines arbitrary service graphs by its specification language, the ex-
pressiveness to specify resource limits is not given. Moreover, its capabilities to extend
previously deployed network services is not given following the architectural limita-
tions of the Click EEs.

2.2 NetScript

NetScript [4] defines a framework for service composition in active networks that is pro-
grammed by three domain-specific languages: 1.) the dataflow composition language,
2.) the packet declaration language, and 3.) the rule-based packet classification lan-
guage. The first defines a method to specify data path services as a composition of in-
terconnected service components called boxes. The second is able to define the packet
structure of network protocols, and the third defines the packet classification rules that
are installed in the NetScript kernel. Boxes in NetScript provide a container for code or
hardware-based service components, or other boxes in a recursive manner.

For our vision of service composition on a high-performance router, the first
language, the dataflow composition language, is relevant. As a linear XML [16]
specification of subsequent and interconnected datapath boxes that may be code or
hardware elements, the NetScript dataflow composition language provides an interest-
ing approach to our problem. However, it lacks the abilities to define control relations
among control service components controlling other service components as well as for

56 L. Ruf et al.

signalling conditions among subsequent service components. Moreover, the capabilities
to extend previously deployed network services is not given, and it does not provide the
expressiveness to specify resource and placement constraints of components.

2.3 Chameleon

Chameleon [2] is a node level service creation and deployment framework which pro-
vides an XML-based service description specifying a network service in an abstract
way. The description is based on a recursive service model with containers, so-called
abstract service components (ASCs). The ASCs group the functional entities and de-
scribe dependencies.

In Chameleon, service descriptions define network services as a composition of
ASCs. A node local service creation engine (SCE) resolves the service description ac-
cording to the local capabilities of the node into implementation service components
and creates a tree like representation of them. These components are then deployed on
the node by the help of a node configurator that provides the required interface towards
the SCE to manage and control the platform.

Service components in Chameleon are modelled as functional entities supporting
two different types of interfaces with push and pull call semantics for control and data
path communication. Depending on the underlying NodeOS [10], Chameleon supports
the interconnection of different EEs. In its current implementation, Chameleon makes
use of a Click Linux kernel EE and a proprietary Java-based EE.

Chameleon focuses on the deployment of network services onto different network
nodes. Thus, it provides the mechanisms and architecture to cope with a priori unknown
network nodes. PromethOS NP, however, defines a specific architecture of a powerful
router platform. Hence, for the modelling of network services, we need a service model
that meets our needs and provides the capabilities to define the service infrastructure for
heterogeneous NP-based network nodes, and, thus, resides at a different level of service
modelling.

2.4 CORBA

CORBA [11] has defined the Common Object Request Brokerage Architecture to in-
terconnect various, heterogeneous, distributed components by the mechanisms of the
object request broker (ORB). The CORBA component model (CCM) [12] defines a
component as a meta-type model with the encapsulated respective function. For compo-
nent description and interface specification the Interface Description Language (IDL) is
used. The CCM provides four different component interfaces named facets, receptacles,
event sources and sinks. Facets are named interfaces for client interaction, receptacles
are connection points, event sources are points that emit events to one or more interested
event consumers, and event sinks are the corresponding event targets.

By the mechanisms of stubs and skeletons, a client-server architecture for distributed
components is specified. The ORB provides the communication among distributed
components in a way transparent to the creator of the CORBA service. Due to the level
of abstraction, however, CORBA suffers from too much overhead for an efficient router
platform.

Network Services on Service Extensible Routers 57

3 Network Services

After the review of four specific projects of related work we introduce in this section
our service model and then present its Service Programming Language (SPL) that is
used to export the concepts of the service model.

3.1 Service Model

The goal of our service model is the modelling of a flexible service infrastructure that
provides the mechanisms needed for the seamless integration of new service elements.
Services are modelled as a graph of edges and vertices with edges representing chains of
service components, and vertices defining the interconnection between them. The defi-
nition of network services is based on six constituent concepts: data path service com-
ponents, control service components, service chains, guards, hooks, and name spaces
that identify the service on an extensible router.

CCI_in CCI_out

data_in data_out

SCB_outSCB_in

function

(a) Data Path Service Component

CCI_in CCI_out

Ctrl_out Ctrl_in
data_in data_out

SCB_outSCB_in

function

(b) Control Service Component

Fig. 1. PromethOS NP Service Component

In Fig. 1, the models of a control and data path service component are visualized
of which we refer to both by the term service component if no specific distinction is
required. The service component defines a function according to the plugin model [5],
but extends the interfaces provided. In addition to the data in- and output ports, our ser-
vice component defines Service Control Bus (SCB) in- and output ports, and component
control in- and output interfaces (CCIs). By the data in- and output ports, network traffic
is received and sent out. The SCB serves for the propagation of service-internal signals
between subsequent service components. The semantics of the signals on the SCB are
service specific except for three signals (ACCEPT , ABORT , CHAINEND) that causes
service infrastructure to accept a packet, abort the current service processing or signal
the end of the service chain. The SCB interfaces allow for multiple read but only for a
single write operation of the signal. Optionally, a service component exports control in-
and output ports. CCIs provide the control interfaces to configure and retrieve control
information of a service component at run-time.

Service components are defined for two different purposes: they provide data path
service functionality (cf. Fig. 1(a)) or they provide service internal control functionality
(see Fig. 1(b)). Control service components are either separate control components or
they are inserted into the service path of data path service components, too. Control
service components may be periodically triggered by timed events providing, thus, the

58 L. Ruf et al.

required flexibility of control functionality. They offer the same interfaces but export in
addition two controller interfaces (Ctrl in and Ctrl out in Fig. 1(b)) that define a mul-
tiplexing semantic to control multiple other service components provided the control
service component implements the required functionality.

Both types of service components have specific resource requirements and character-
istics. Resource requirements specify the amount of resources they need for their instan-
tiation and their processing of network traffic while resource characteristics identify the
type of resources needed. For example, different memory types exist on a NP-blade of
which a service component consumes a specific amount or, as another example, differ-
ent instruction set architectures (ISAs) are available on a NP depending on the processor
cores implemented.

Service chains provide an aggregation of one or more service components that are
strongly linked. A chain of strongly linked service components refers to the fact that
only signals along the SCB are propagated between service components, and between
service components and the service infrastructure. No demultiplexing of network traffic
is available between the elements of a service chain allowing for fast pipeline-style
processing by subsequent service components.

Guards provide the demultiplexing functions that control the acceptance of network
traffic to enter service chains. Their definition has been inspired by the concept of
guarded commands [6]. In our service model, guards are represented by service com-
ponents that signal the acceptance or rejection of network traffic by the mechanisms of
its SCB output port. Hence, they are the first service components of a service chain.

Hooks are key elements of the respective name space. Within a name space, they
are identified by their label. They are created in the service program on demand. At
creation time, the dispatching semantics are specified. If ingress hooks are created, they
must be bound to a network interface. Otherwise, they must refer to previously created
ones. Egress hooks may be dangling if required, thus implying the discard of arriving
packets. The purpose of dangling outbound links is the provisioning of a hook for later
service additions to extend provided functionality. Moreover, hooks serve for the em-
bedding of service chains. They initiate and terminate a service chain. Multiple service
chains are attached to hooks. Hooks provide the dispatching of network traffic to ser-
vice chains since guards steer the demultiplexing of network traffic per service chain.
Dispatching semantics have been defined by two different methods to which we refer
by the terms copy and first-match-first-consume, respectively. The dispatching seman-
tics are important for the specification of network services since it is a service design
decision how network traffic is processed by different service chains.

We explain the difference between the two dispatching methods by the help of Fig. 2.
In this figure, five service chains, enumerated from 1 to 5, are embedded between two

3
2

4
5

1

Service
Chains

Guards

hook_in hook_out

Fig. 2. Hooks, Guards and Service Chains

Network Services on Service Extensible Routers 59

hooks labelled hook in and hook out. The order of service chains is defined by the
service program created by the means of our SPL that is presented next. In case of the
copy method, the initiating hook dispatches network traffic to all five service chains cre-
ating copies of the packets on acceptance by the guards. On the other hand, if the first-
match-first-consume method has been specified, packets are presented to the guards in
the order of service chain specification. Upon acceptance of a packet, the processing
at hook in is finished. For both methods, packets are discarded if no guard accepts a
packet.

Name spaces are abstract constructions of our service model that are used to avoid
name collisions between services. Name collisions would occur, for example, if hooks
were labelled identically for different services and then reused for extending a previ-
ously deployed service with service additions.

F1 F3F2

G

Guard

Fc

service

hook1

hook2

name space

hook0

CCI_in
CCI_out

Ctrl_in
Ctrl_out

hook3data_outdata_in

SCB_outSCB_in
SCB

Fig. 3. Control and Data Path Relations Among Service Components

In Fig. 3, a service graph is presented that consists of four service components named
F1, F2, F3 and Fc embedded between four hooks as well as of a guard labelled G
that controls the packet acceptance for its service chain. It illustrates the data path and
control relations between service components with Fc controlling F2. In Fig. 3, this
controlling functionality is indicated by the letter ′C′. Moreover, the figure visualizes
the SCB that accompanies service chains.

3.2 The Service Programming Language

The SPL specifies a network service for the service infrastructure of the PromethOS
NP router platform. It defines the Service Programming Interface (SPI) exported by the
router platform for the creation and extension of new network services.

EBNF 1 presents the key elements3 of the definition of the PromethOS NP Ser-
vice Programming Language (SPL). The language definition is based on a modified
form of the Extended Backus Naur Form (EBNF) [17] that deviates from Wirth’s def-
inition regarding the repetition-operator of elements denoted by bracelets ({..}). Ac-
cording to [17], the repetition-operator contains zero or more elements. For our pur-
poses, we redefined the repetition-operator to produce one or more elements since

3 Self-explanatory productions like, for example, BW, CYCLES or RAM are not included due
to space constraints. Note that we refer to the key = value pair by the term production.

60 L. Ruf et al.

ID = "#" VALID NAME.
TIMED = "timed="DELAY.
BW RES = "bwmin="BW "bwmax="BW ["pps="NUMBER] .
CPU RES = "cpumin="CPU "cpumax="CPU .
RAM RES = "type="ID "rammin="RAM "rammax="RAM.
PROC TYPE = ("ia32" | "ia64" | "np4" | "np4_pp" | "ixp2400" | "ixp2400_pp" |) .
CTRL INFO = (STRING | "file=" VALID NAME) .
COMP SPEC = ("src" [ID] | "bin" (PROC TYPE | ID))

["|" CPU RES] [{ "|" RAM RES }] .
COMP IDENT = (["(" COMP SPEC ")"] VALID NAME ID | ID) .
SERV COMP = COMP IDENT [":" ID] "(" [CTRL INFO] ")" .
CTRL COMP = [TIMED] SERV COMP { "!" ID "@"NUMBER } .
CTRL CHAIN = "{" { CTRL COMP } "}" .
COMP STRING= "{" { SERV COMP } "}" .
GUARD = "[" ["|" BW RES] [SERV COMP] "]" .
HOOK IN = (ID | ">" ID ["copy"] "?" INTF) .
HOOK OUT = (ID | ">" ID ["copy"] ["?" INTF]) .
SERV CHAIN = HOOK IN

"@" [TIMED] [GUARD] COMP STRING "@"
HOOK OUT.

SERVICE = "{" ID ["!" CTRL CHAIN] { SERV CHAIN } "}" .

EBNF 1. The PromethOS NP Service Programming Language

the optionality-operator is defined already by pairs of brackets ([..]). Thus, the se-
mantics of the original zero-to-many repetition-operator is expressed as [{..}] by our
EBNF variant.

The fundamental concept of the SPL is the linear specification of arbitrary service
graphs consisting of service and control chains. Based on the concept of hooks to which
service chains are attached, graphs are created out of the linear specification.

The key element of the SPL is the service component specified by the SERV COMP
production. It starts with the component identifier COMP IDENT . Part of the com-
ponent identifier is the specification of the resources (COMP SPEC) required for its
instantiation and the data format of the component. If it is specified as a reference
to source code file (src), the platform assumes a component for the PromethOS NP
processing environment for GPPs [13], and creates the respective binary component.
Otherwise, in case of a binary component specification (bin), the SPL demands for
the definition of the processor core type. This specification is relevant since different,
incompatible ISAs may be available on a node. In both cases, the processor core can
be specified (ID) on which the service component must be installed. This ID identifies
a particular core per processor, and is required, for example, if not all processor cores
are able to access particular hardware accelerators. The service component is then
identified by the name of an object followed by its component instance identifier (ID).
In case a service component instance is reused, the ID of a previously created instance
is defined in the string of components. The router platform provides three pseudo
components named NIL, DROP and CLASSIFY that exploit respective platform
internal capabilities. Conceptually, they provide the interfaces like other service com-
ponents, and their instances are identified by the same methods. Service components
export CCIs optionally. In the SPL, they are specified by the ” : ID” term. Control in-
formation (CTRL INFO) to initialize a service component at service configuration time

Network Services on Service Extensible Routers 61

is specified then. It represents either a string of ASCII4 characters or by a reference to
an arbitrary object.

Control service components (CTRL COMP) are service components that may be
triggered by a timer event (TIMED), and that are bound to the control interfaces of
other service components by the !ID@NUMBER statement. There, an ID references
the control port exported by another service component, and NUMBER provides the
control port multiplexing functionality needed to bind controlled service components
to specific control mechanisms of a control component.

Guards are defined by the respective GUARD production according to its model in-
troduced above. Please note that the specification of bandwidth limits and the maximal
number of packets per second (BW RES) are specified as part of the guard production
since the dispatching function of hooks needs to control these limits already for the
packet dispatching to guards such as to separate control from service function.

Hooks are specified by their respective productions (HOOK IN and HOOK OUT).
Reuse of a hook is specified by the notion of a previously created hook identifier (ID).
The creation of hooks is initiated by the literal ” > ”, followed by the hook identifier
(ID), the optional specification of the ”copy” method for the hook’s dispatching seman-
tics and the binding of a hook to an interface ”?INTF”. In case no ”copy” method is
specified at hook creation time, the dispatching semantics follow the first-match-first-
consume method. Note that the definition of the dispatching semantics for outbound
hooks (HOOK OUT) is needed since they are reused for further service chains po-
tentially. Ingress hooks bound to network interfaces receive packets from the router
platform following the copy method, i.e. all hooks bound to a network interface re-
ceive every incoming network packet. Analogous to the service components, the router
platform provides a pseudo hook named NIL that is used to satisfy the SPL syntax for
dangling hooks that are never extended, or for service chains that do not receive but just
generate data.

Service chains are then specified by the SERV CHAIN production that provides the
aforementioned semantics of the service chain concept. Note the optional definition of
a maximal delay (TIMED) the service chain is allowed to add on a packet processed
by the service chain. The optional definition of the guard production allows for the
specification of catch-all service chains as required for fall-back service paths if no
previously defined guard accepted a packet.

The service (SERVICE) is identified by its service identifier (ID) that specifies the
service name space. Optionally, a service consists of a control chain (CTRL CHAIN)
that contains the control service components, followed by the definition of the con-
stituent service chains for data path packet processing.

4 Evaluation

For proof of concept of our SPL, we illustrate its capabilities by a service program and
its corresponding visualization hereafter.

4 ASCII – American Standard Code for Information Interchange as defined by the ISO/IEC
standard 646.

62 L. Ruf et al.

Table 1. Three Parallel Service Chains

Visualization Chain 1 Chain 2 Chain 3

hook2

hook1

NIF2

NIF1

demux1 demux3
demux2

co
m

po
ne

nt

co
m

po
ne

nt

co
m

po
ne

nt
1 2 3

{ # t h r e e p a r a l l e l
> # hook1
? NIF1
@/∗ HOOK ∗ /
[/∗DEMUX1∗ /]
{ /∗COMP STRING ∗ /

(b i n i a 3 2)
component1
i n s t a n c e 1 I D
(/∗CTRL INFO ∗ /)

}
@/∗ HOOK ∗ /
> # hook2
? NIF2

/∗ e x t e nd hook1 ∗ /
hook1

@/∗ HOOK ∗ /
[/∗DEMUX2∗ /]
{ /∗COMP STRING∗ /

(b i n i a 3 2)
component2
i n s t a n c e 2 I D

(/∗CTRL INFO ∗ /)
}
@/∗ HOOK ∗ /
hook2

/∗ e x t e nd hook1 ∗ /
hook1

@/∗ HOOK ∗ /
[/∗DEMUX3∗ /]
{ /∗COMP STRING ∗ /

(b i n i a 3 2)
component3
i n s t a n c e 3 I D

(/∗CTRL INFO ∗ /)
}
@/∗ HOOK ∗ /
hook2
} /∗ S e r v i c e End ∗ /

Three Parallel Service Chains. Table 1 presents a simple exemplary service program
that defines a network service with three parallel service chains. The service program il-
lustrates the linear specification of a service graph with parallel service chains. The ser-
vice identifier (#threeparallel) is followed by the creation of hook1. No copy method is
specified. Hence, its packet dispatching semantics follow the first-match-first-consume
method in the top-down order of specified service chains. Hook1 is bound to one net-
work interface (NIF) that is symbolized by the term NIF1. The service chain that con-
sists of component1 is attached to hook1, first. While the figure in Table 1 illustrates
the demultiplexing of flows to the particular service chains by attaching abstract demux
conditions to the links between hook1 and the respective service chain, no real demul-
tiplexing is specified in the service program. However, demultiplexing conditions are
indicated in the service program by the respective comments. All service chains lead
into hook2, which is bound to the second NIF (NIF2). The second and third service
chains follow the same principle. Their specification differs from the first service chain
by that hooks are re-used, i.e. the newly defined service chains are attached to the ex-
isting hooks.

5 Summary and Conclusions

In this paper, we have introduced the PromethOS NP service model and presented its
Service Programming Language (SPL) that is used to specify network services. The
SPL provides, hence, the Service Programming Interface (SPI) of PromethOS NP to
create new network services and to define additions to previously deployed ones on
extensible routers.

The service model provides the concept of a name space that is used to create the
environment for network services of which multiple may reside in parallel on an exten-
sible router platform like PromethOS NP. Within a name space, services are defined as
a graph of service chains with constituent service components for data path processing.
They are controlled by the service control chain realizing distributed, service internal
control relations. Service chains are embedded between pairs of hooks. Hooks provide

Network Services on Service Extensible Routers 63

the dispatching functionality of network traffic to service chains that accept packets
depending on their guards. Hooks are dynamically created within a service and serve
from thereon as the reference point for service additions to extend previously deployed
network services.

The SPL has been proposed as a context-free service programming language of our
service model. Its syntax has been defined in a modified EBNF notation, and the se-
mantics of the important production have been introduced extensively. For a proof of
concept, we have applied our SPL to define an exemplary service program that illus-
trates the fundamental concept of a linear specification of arbitrary service graphs and
their internal data path and control communications.

We are convinced that our service model with the SPL provide a suitable way to spec-
ify distributed network services for service extensible routers. The model contributes to
research by three novelties: 1.) flexible service extensibility based on hooks that are
dynamically created, 2.) the 1:n bi-directional control relation between a control and
multiple controlled service components, and 3.) the service control bus that propagates
signals between subsequent data path service components. The SPL proposes a con-
cise method to specify network services that are based on our service model. Our SPL
extends previous work by the concepts resource constraints assigned to service chains.
The definition of the pseudo component NIL provides the methods to define syntacti-
cally correct service programs with cut-through channels, the DROP element supports
explicit packet dropping, and the CLASSIFY component is used to exploit platform in-
ternal classification mechanisms like hardware supported packet classification engines.
Moreover, the CLASSIFY component together with the instance re-use method pro-
vides the capability to exploit mechanisms of advanced network processors in which
multiple disjoint rules may be compiled into an advanced matrix-based packet classifi-
cation that all lead to the same service component.

Based on our service model, the service infrastructure of the PromethOS NP router
platform has been designed and implemented. The SPL is currently used as the SPI to
the PromethOS NP router platform for service creation and extension. However, we are
convinced that our service model with its SPL provides the concepts for applications
in a larger scope than only for node-local network service creation. As an example, we
envision their use for other distributed component-based data processing applications,
such as staged image processing that need service internal data and control relations.

References

1. Becker, T., Bossardt, M., Denazis, S., Dittrich, J., Guo, H., Karetsos, G., Takada, O., Tan, A.:
Enabling customer oriented service provisioning by flexible code and resource management
in active and programmable networks. In: IEEE International Conference on Telecommuni-
cations (ICT), Bucharest, Romania. IEEE, Los Alamitos (2001)

2. Bossardt, M., Antink, R.H., Moser, A., Plattner, B.: Chameleon: Realizing automatic service
composition for extensible active routers. In: Wakamiya, N., Solarski, M., Sterbenz, J.P.G.
(eds.) IWAN 2003. LNCS, vol. 2982. Springer, Heidelberg (2004)

3. The FAIN Consortium. D14: Overview FAIN Programmable Network and Management Ar-
chitecture (May 2003)

4. da Silva, S., Florissi, D., Yemini, Y.: Composing active services with NetScript. In: Proc.
DARPA Active Networks Worshop, Tucson, AZ (March 1998)

64 L. Ruf et al.

5. Decasper, D., Dittia, Z., Parulkar, G., Plattner, B.: Router Plugins: A Software Architecture
for Next Generation Routers. In: Proc. of the ACM SIGCOMM 1998 Conf., Vancouver,
British Columbia, Canada. ACM Press, New York (1998)

6. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of Programs.
Commun. ACM 18(8) (1975)

7. IBM Corp. Datasheet IBM NP4GS3(March 2004), http://www.ibm.com
8. Intel Corp. Intel IXP2xxx hardware reference manual (2003), http://www.intel.com
9. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M., Modular, C.: The Click Modular

Router. ACM Transactions on Computer Systems 18(3) (August 2000)
10. Peterson, L. (ed.): NodeOS Interface Specification. Active Network Working Group (January

2001)
11. Object Management Group (OMG). The Common Object Request Broker: Architecture and

Specification. TC Document 91.12.1, Revision 1.1, OMG (December 1991)
12. Object Management Group (OMG). CORBA Components. Technical Report Version 3.0,

OMG (June 2002)
13. Ruf, L., Keller, R., Plattner, B.: A Scalable High-performance Router Platform Supporting

Dynamic Service Extensibility On Network and Host Processors. In: Proc. of 2004 AC-
S/IEEE Int. Conf. on Pervasive Services (ICPS 2004), Beirut, Lebanon. IEEE, Los Alamitos
(2004)

14. Ruf, L., Pletka, R., Erni, P., Droz, P., Plattner, B.: Towards High-performance Active
Networking. In: Wakamiya, N., Solarski, M., Sterbenz, J.P.G. (eds.) IWAN 2003. LNCS,
vol. 2982. Springer, Heidelberg (2004)

15. Ruf, L., Wagner, A., Farkas, K., Plattner, B.: A Detection and Filter System for Use Against
Large-Scale DDoS Attacks in the Internet Backbone. In: Minden, G.J., Calvert, K.L., So-
larski, M., Yamamoto, M. (eds.) Active Networks. LNCS, vol. 3912, pp. 169–187. Springer,
Heidelberg (2007)

16. W3C XML Working Group. Extensible Markup Language (XML). Recommendation 6,
W3C (October 2000), http://www.w3c.org

17. Wirth, N.: What can we do about the unnecessary diversity of notation for syntactic defini-
tions? Communication of the ACM 20 (1977)

http://www.ibm.com
http://www.intel.com
http://www.w3c.org

	Network Services on Service Extensible Routers
	Introduction and Motivation
	Related Work
	Click
	NetScript
	Chameleon
	CORBA

	Network Services
	Service Model
	The Service Programming Language

	Evaluation
	Summary and Conclusions
	References

