Complementarity between Virtualization and
Single System Image Technologies*

Jérome Gallard!, Geoffroy Vallée?, Adrien Lebre!, Christine Morin®,
Pascal Gallard3, and Stephen L. Scott?

1 INRIA Rennes - Bretagne Atlantique, PARIS project-team, Rennes, France
2 Oak Ridge National Laboratory, Oak Ridge, USA
3 KERLABS, Rennes, France
{jerome.gallard, adrien.lebre, christine.morin}@inria.fr
{valleegr, scottsl}@ornl.gov
pascal.gallard@kerlabs.com

Abstract. Nowadays, the use of clusters in research centers or industries
is undeniable. Since few years, the usage of virtual machines (VM) offers
more advanced resource management capabilities, using features such as
virtual machine live migration. Because of the latest contributions in the
domain, some may argue that single system image (SSI) technologies are
now deprecated, without considering some complementarities between
VMs and SSI technologies are possible.

After evaluating different configurations, we show that combining
both approaches allows us to better address cluster challenges such as
flexibility for the usage of available resources and simplicity of use. In
other terms, the study shows that VMs add a level of management flex-
ibility between the hardware and the application, whereas, SSIs give an
abstraction of the distributed resources. The simultaneous usage of both
technologies could improve the overall platform resources utilization, the
cluster productivity and the efficiency of the running applications.

Keywords: cluster, virtualization, SSI, resource management.

1 Introduction

Clusters are today a standard computation platform for both research and pro-
duction. Batch schedulers or single system image systems (SSI) are frequently
used to manage clusters. In the first case, a head node is in charge of scheduling
applications whereas in the second case, the SSI makes an abstraction of the
cluster resources creating the illusion of an SMP machine. Several studies have
focused on combining virtual machines (VMs) and batch schedulers in order

* The INRIA team carries out this research work in the framework of the XtreemOS
project partially funded by the European Commission under contract #FP6-033576.
ORNL’s research sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC
for the U. S. Department of Energy under Contract No. DE-AC05-000R22725.

E. César ot al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 43/-52] 2009.
© Springer-Verlag Berlin Heidelberg 2009

44 J. Gallard et al.

to provide better resource control [I]. Features provided by virtualization tech-
nologies (such as isolation and suspend /resume) enable more advanced resources
management capabilities. For instance, one VM can be suspended or migrated
to another node. Thus, administrators are able to make maintenance operations
without impacting the platform availability. On the other side, isolation mecha-
nisms simply the management of security constraints.

This trend around virtualization seems to impact directly cluster management
and more precisely SSI technology which enables, in some ways, similar capa-
bilities. For instance, the openMosix SSI project [2] has recently closed. In that
sense, we wonder whether virtualization technology will surpass the SSI systems
or if these two models are complementary.

This paper addresses these questions and investigates in which extends the
association of both virtualization and SSI technologies could improve the usage
and management of distributed architectures as well as application execution
(e.g., administration, application debugging, and security).

To our best knowledge, virtualization and SST approaches have been used only
in the Peta-SSI project [3], using VMs in order to study the system scalability,
“emulating” a large number of nodes. In other terms, only one capability (virtual
machine stacking) provided by virtualization solutions has been studied. In this
document, we analyze the potential benefits of all major capabilities provided by
the usage of VMs in an SSI context. This study has been done in a theoretical
way (no results of experiences are presented in this document).

The remainder of this paper is organized as follows: Section [clarifies the
notion of virtualization and virtualization. Section [gives a brief background
on SSI systems. Section [4] investigates the complementarity of virtualization and
SSI. Section [{] reports lessons learnt. Section [concludes.

2 Introduction to Virtualization

Virtualization is an active research topic in operating systems (OS) since the
70’s but regained popularity with the latest technologies which provide extra
computational capabilities (new machines such as multi-core processors can com-
pete with multiple individual servers that are few years old). A way to use this
extra capabilities is to execute VMs on top of physical machines. From our
point of view, the concept of VM includes five major features: (i) isolation (i.e.,
degree of isolation between VMs, the bare hardware and applications running
in different VMs), (ii) server consolidation (i.e., capability of changing on de-
mand resources allocated to a specific VM), (iii) application portability (i.e.,
capability of executing an unmodified application), (iv) wvirtual machine porta-
bility (i.e., capability of migrating virtual environments to different hardware
architectures), (v) suspend/restart (i.e., possibility to take a snapshot/resume
of VMs).

Nowadays, two typical virtualization approaches are possible: one which im-
plements the virtualization at the system-level (well-known Goldberg classifi-
cation [4]) and the other at the process-level (containers). Part (a) of Table[Il
summarizes functionalities supported by virtualization solutions.

Complementarity between Virtualization and SSI Technologies 45

Table 1. Selected Capabilities Enabled by Virtualization (a) or SSI (b)

Virtualization (a) SSI (b)
Container Type-1 Virt. Type-II Virt. Partial-SSI SSI (full-SST)
Isolation - + + - -
Server conso. + + + - +
App. Portability - + + - -
VM Portability - - + - -
Suspend /Restart + + + + +

System-level Virtualization (Type-I, Type-II). This approach aims at vir-
tualizing a full OS. For that, a virtual hardware is exposed to a full OS within
a VM. The system running in a VM is named a guest OS. According to isola-
tion properties associated with virtualization, the VM cannot execute privileged
instructions at the processor level. To access the physical devices, drivers are
hosted in a privileged OS, called host OS. Moreover, VMs run concurrently and
their execution is scheduled by the hypervisor. The hypervisor is also in charge
of forwarding all privileged instructions from VMs to the host OS.

Goldberg created a model for system-level virtualization, model based on two
functions, ¢ and f. The function ¢ makes the correspondence between process
running on the guest OS and the resources (exposed within the VM) whereas
f makes the correspondence between resources allocated to a VM and the bare
hardware. Based on those functions, Goldberg identified two different types of
system-level virtualization: type-I (e.g., Xen [B]) and type-II (e.g., QEMU [6]
and VMware [7]).

Process-level Virtualization (Container). It consists of running several pro-
cesses concurrently on top of the same OS, each having its own view of available
resources (e.g., OpenVZ [§], chroot [9] and containers capabilities provided by
recent kernels). The Goldberg classification is only focusing on the former level
virtualization solutions and does not integrate such process-level virtualization
solutions. In this paper, we only consider OpenVZ-like solutions. Recent kernel
containers approach are not taken into account.

3 Introduction to Single System Image

An SSI is an OS that aims to abstract the distributed nature of the cluster
in order to ease users, administrators and programmers tasks. For that, a SSI
globally manages distributed resources. Because a transparent management of
resources is difficult to implement at user-space (it is typically the responsibility
of the OS), most of the SSIs are implemented at OS-level. Two kinds of SSI
exist: (i) partial-SST and (ii) SSI (or full-SSI).

Partial Single System Image. A partial-SSI only allows a global management
of a subset of cluster resources (typically processes) and only from a central

46 J. Gallard et al.

location (i.e., a “head node”). All processes are manipulable from this head
node like if they were local processes; on other nodes, resources are still viewed as
distributed. The abstraction of the distribution of resource is therefore “partial”.
Glunix [10], Bproc [1I] or Cplan [12] are examples of partial-SSIs.

Full Single System Image. A SSI (or full-SSI) provides not only a global
management of processes but also a global management of all other resources,
and therefore gives to users the illusion to use an SMP machine. In such sys-
tems, there is no head node; each node is equal and has a global view of the
distributed resources. Users are able to run SMP applications on the cluster
without application modification or recompilation. For instance, SSIs implement
a Distributed Shared Memory (DSM). This functionality enables the execution
of OpenMP parallel applications based on the shared memory programming
paradigm. Therefore, a SSI abstracts the complexity created by the resource
distribution. Kerrighed [I3] and OpenMosix [14] are examples of such SSIs.

The SSI technology has several interesting capabilities for cluster manage-
ment, high performance, high availability, and, ease of use and programming.
However, in this document, we focus only on the functionalities described in
Section 2l Part (b) of Table [[l summarizes them.

4 Combining Virtualization and Single System Image

In this section, we present a systematic analysis of the combination of SSI and
virtualization technologies. To realize this study, we selected three different tar-
get applications: (i) a web server such as Apache [15], (ii) an MPI-like application
(based on message passing), and (iii) an OpenMP-like application (based on a
shared memory). We think that these kinds of application are representative of a
large part of business and scientific software. To achieve our main objective, we
analyze the benefits of the five capabilities enabled by virtualization (cf. Section
) with configurations exploiting SSIs.

4.1 Single System Image and Containers

Containers (e.g., OpenVZ-like solutions) allow applications to be isolated from
each other on the same node. Moreover, it is generally possible to assign an IP
address, to allocate memory and CPU time to each container. Hence, a container
could be migrated in most cases from one node to another.

Container Upon Single System Image. Figure[lldepicts the architecture of
a typical system running containers upon an SSI. With this architecture, the SSI
abstracts the distributed resources. Based on this “simplified” and “unified” view
of the distributed system, global resources can be dynamically and transparently
assigned to containers in order to fit at best applications needs. In other terms,
containers could dispose of more resources that is available on one node.

Isolation: Applications are isolated from the bare hardware by containers that
are running on top of the SSI. However, an application could hijack a container,

Complementarity between Virtualization and SSI Technologies 47

| Application .
Isolation Little squares represent the amount of resources
Container A Container C . .
L Processlevel provided by the system. For instance, each node
irtualization
Resources provides 2 resources and the SSI provides 4 re-
Abstraction - -
- sources (aggregation of resources provided by node
Single System Image Resources
ot Abstraction A and node B)
Container Support
L Node A L Node B B vare

Fig. 1. Containers Upon Single System Image

and in consequence, compromise the security of the whole system (there is one
kernel for all containers). This property is not validated.

Server Consolidation: The SSI globally manages all resources, it is possible to
change on demand the resources allocated to each container. These capabilities
are very interesting for an Apache server administrator: according to the fre-
quentation of a web site, it is possible to allocate more or less physical resources
to the cluster (resizing the containers accordingly). This property is validated.

Application Portability (AP1): Thanks to the SSI, containers can span multiple
nodes. Thus, an OpenMP application or an Apache server could take advantage
of the SSI DSM (spanning nodes) whereas, an MPT application could take advan-
tage of several containers each of them having their own IP address. Application
portability is therefore guaranteed by such an architecture.

Virtual Machine Portability: Containers have not been designed to create a vir-
tual hardware different from the hardware it is running on. Thus, the virtual
machine portability is not validated.

Suspend/Restart: Containers can be suspended/restarted at any time by any
other entity running with the correct privileges inside the system. Moreover, the
SSI can suspend/restart any containers since a container is a set of standard
resource from the SSI point of view. This property is validated.

Single System Image Upon Containers. Figure[2 presents the use of an SSI
upon containers. The architecture is not realistic because no individual kernel
can run in a container, only user-level applications can be hosted.

Resources

Single System Image Abstraction

(Non-compatible Granularity)

Process-leve/

Container A Container C ContainerD |\ ur = rmation

Bare

Node A
Node C Hardware

Fig. 2. Single System Image Upon Containers

48 J. Gallard et al.
4.2 Single System Image and Type-I Virtualization

Type-I virtualization solutions have an hypervisor running directly on top of the
bare hardware and “hosting” the host OS and the VMs.

Type-I Virtualization Upon Single System Image. Figure [3] shows the
architecture of a type-I virtualization solution running upon a SSI. This ap-
proach enables the implementation of a “global type-I hypervisor”, including
SSI features into the hypervisor. Such a global hypervisor can transparently
and globally manage resources (creation of an SMP illusion) and typically the
resource allocated to VMs is not restricted to the local resources.

Isolation (12): The type-I hypervisor isolates applications from both the bare
hardware and others VMs. For instance, if a hacker is able to become root on
one VM, only the local VM is compromised: isolation is validated.

Server Consolidation (SC2): In case of a node addition, VMs can be moved to
the new node; in case of node eviction, VMs can be transparently moved away.
This propriety is validated.

Application Portability: Same as AP1, substituting containers by VMs.

Virtual Machine Portability: Currently no type-I virtualization solution provides
emulation capabilities. Moreover, the SSI running on the side of the type-I hy-
pervisor does not support by definition hardware architecture heterogeneity. It is
therefore not possible to migrate VMs between nodes having different hardware
architectures. VM portability cannot be achieved.

Suspend/Restart (SR2): Type-1 hypervisor enables VM suspend/restart. How-
ever, if two applications are running in the same VM, it is not possible to suspend
only one of them. Property of suspend/restart is not totally validated.

Single System Image Upon Type-I Virtualization. Figure d shows the
architecture of an SSI upon the VMs of a type-I virtualization solution. In this

i i
i i
! !
::
i ;
! {
H i Resources
I !
{. 1
!
:

T Rbstraction
|
| Application
Isolation

Resources

s Abstraction

HostOS VM1 VM2 HostOS VM1 VM2 VM1 HostOS

Dom0 Dom0 Dom0
part2 of Ss| System-level
Virtualization

Abstraction |

System-level
Virtualization

Hypervisor Hypervisor
Resources

Hypervisor + Partl of SSI

Abstraction

L Node A ‘ Node B Bare
Node A Node B Bare ardware
Hardware

Fig. 3. Type-I Virtualization Upon SSI Fig. 4. SSI Upon Type-I Virtualization

Complementarity between Virtualization and SSI Technologies 49

case, an hypervisor is deployed on all cluster nodes and the SSI is executed in
different VMs; each VM being potentially hosted by different hypervisors.

Isolation (I3): The type-I virtualization isolates both the SSI and applications
from the bare hardware. However, if the SSI is compromized the management of
all resources and thus all running applications may be compromized. Isolation
is therefore partially achieved.

Server Consolidation: The type-I hypervisor enables VMs migration and the SSI
provides process migration between VMs. This property is validated.

Application Portability: Applications are actually running on top of the SSI,
providing an SMP illusion. This enables the execution of MPI-like, OpenMP-
like and Apache-like applications compiled for the native OS of the SSI. This
property is validated.

Virtual Machine Portability: Today no type-I virtualization solution allows the
emulation of an architecture at the VM level that is different from the bare
hardware. Portability is, for the moment, not achieved.

Suspend/Restart (SR3): Both virtualization and SSI solutions provide suspend/
restart mechanisms, respectively suspending/restarting VMs and processes. This
property is validated.

4.3 Single System Image and Type-1I Virtualization

Type-II virtualization solutions run VMs upon a host OS and generally provide
live migration and suspend/resume capabilities.

Type-II Virtualization Upon Single System Image. Figure [l shows the
execution of VMs upon an SSI. The SSI globally manages all the distributed
resources; the type-II virtualization hypervisor can therefore allocate distributed
resources to VMs on demand in a transparent manner.

Isolation: Same as 12, substituting type-I hypervisor by type-II hypervisor.
Server Consolidation: Same as SC2, substituting type-1 by type-II.
Application Portability: Same as AP1, substituting containers by VMs.

Virtual Machine Portability: It is possible to migrate a VM between nodes (ac-
cording to VM resource needs) or SSIs compiled for other architectures. This
property is validated.

Suspend/Restart: Same as SR2, substituting type-I by type-II.

Single System Image Upon Type-II Virtualization. Figure [f] shows the
architecture of an SSI upon VMs. As for the type-I, each node runs VMs, and
the SSI is deployed upon them.

Isolation: Same as I3, substituting type-I hypervisor by type-II hypervisor.

Server Consolidation: In case of node addition/removal, there are two cases: (i)
an automatic reconfiguration of the SSI (e.g., the SSI “knows” that nodes are

50 J. Gallard et al.

Apphication

€3 CD))
i EDIED)
H H

Resources
IApplication ___________ emeeemeeenCSROMIRSS Abstraction

Resources

Rbstraction
Isolation -
Resources
VAL iz ssi2
VMI| [Vmz VMT ﬂ i
temlevel system-level

Hypervisor |
| 0s3 |
Node B L Node C

Fig. 5. Type-II Virtualiza- Fig. 6. SSI Upon Type-II Fig.7. Isolation of Two
tion Upon SSI Virtualization Distinct SSIs

Hypervisor

Hypervisor | | Hypervisor

‘Abstraction Hypervisor Hypervisor

y Resources
Single System Image Abetraction o052

|
di

os1 ‘

Bare ’
Node B
ode Hardware

Bare
Node B
ode Hardware L Node A

Node A

dHE

Node A Bare

Hardware

added or removed), and (ii) a VM live migration to another node (e.g., the SSI
is deployed on top of several VMs, and this number is static). In each case, the
property of server consolidation is validated.

Application Portability: Same as AP1, substituting containers by VMs.

Virtual Machine Portability: The type-II virtualization enables the emulation
of different hardware architectures. It is therefore possible to migrate VMs to
different hardware architectures, only the architecture of the virtual hardware
exposed inside the VMs has to be consistent (the SST does not support hetero-
geneity). This property is validated.

Suspend/Restart: Same as SR3, substituting type-I by type-II.

5 Lessons

Containers on Top of Single System Image Clusters. Using the container
based solution in an SSI, resources exposed to applications can span multiple
cluster nodes. By providing the illusion that a cluster is a virtual SMP, the SSI
retains all the advantages enabled by containers on a real SMP machine in a
cluster environment; removing frontiers between cluster nodes.

Virtual Machines on Top of Single System Image Clusters. This config-
uration has a major advantage: application portability. For instance, with VMs,
it is possible to execute an application developed for processor technology “A”
and OS “B” on top of a computer running an SSIT OS based on OS “C” and devel-
oped for processor technology “D”. This means that any application binary can
be executed on top of an SSI OS, provided that the appropriate virtualization
technology is available. For example, an IIS web server compiled for Windows
OS could be deployed on the top of a VM running on an SSI compiled for Linux.

Single System Image on Top of Virtual Machines. Executing an SSI OS
on top of a virtual cluster provides a flexible, simple and on demand resource

Complementarity between Virtualization and SSI Technologies 51

allocation to applications, but also system-level adaptation in case of cluster con-
figuration changes (node addition and eviction). The idea is to simplify manage-
ment tasks and to reduce cost of power consumption. If an application requires
more (respectively less) resources and more (respectively less) physical cluster
nodes, the virtual machines are simply migrated to remote physical nodes. For
instance, a multi-threaded Apache server could be deployed on more or less phys-
ical nodes according to the amount of requests. Moreover, it becomes possible
to execute multiple virtual clusters on the same real cluster, each of them been
isolated from the others (for instance, two OpenMP applications can be executed
in an isolated way on two different virtual clusters, see Figure [7]).

6 Conclusion and Future Works

Nowadays, virtualization technologies are very popular for the execution of ap-
plications and services on top of computers. The motivation of this paper was
to answer the following question. Do these trends make the SSI for clusters
irrelevant for the future?

Based on the current state of the art on SSI and on virtualization techniques,
we analysed different configurations combining SSI and virtualization techniques
in clusters. From the analysis presented in this paper, we conclude that virtual-
ization and SSI complement each other. A full SSI makes transparent resource
distribution in cluster nodes, providing the illusion of a virtual SMP machine
(abstraction of distributed resources, see Table 2l cases 4 and 6), whereas the
virtualization technologies provide flexibility in resource management (cases 1,
3, and 5).

Table 2. Summary of the different cases studied in this document: (1) Container upon
SSI; (2) SSI upon container; (3) type-I upon SSI; (4) SSI upon type-I; (5) type-1I upon
SSI; (6) SSI upon type-II

1 2 3 4 5 6

Isolation - N/A + + + +
Server conso. + N/A+ + + +
Application Portability + N/A + + + +
VM Portability - N/A - - + +
Suspend /restart + N/A - + - +

We have started experimentations on Kerrighed [I3] on top of VMware Server
1.0.4 [7] (no porting effort is required in the current state of the technology).
These experiments are realized on a cluster of Grid5000 [16]. We test sev-
eral kinds of applications: bags of tasks, parallel applications (MPI, OpenMP),
servers (Apache with different configurations based on multiple processes or
threads). This would allow us to compare the behavior of these applications on
clusters running an SSI, running VMs or running one of the combinations of SSI
and virtualization solutions that have been identified as attractive. In particular,
we plan to measure the applications performance in such environments.

52

J. Gallard et al.

From a more theoretical point of view, we work on designing a model ex-

tending the one proposed by Goldberg to present in a uniform framework the
hardware, the emulated hardware, the OS, the different virtualization techniques,
containers and SSIs.

Hence, we plan to investigate the use of virtualization techniques in a Grid

environment for commercial applications requiring strong isolation.

References

11.

12.

13.

14.

15.
16.

e ©»

. Grit, L., Irwin, D., Marupadi, V., Shivam, P., Yumerefendi, A., Chase, J., Al-

brecht, J.: Harnessing virtual machine resource control for job management. In:
Proceedings of the First International Workshop on Virtualization Technology in
Distributed Computing (VITDC) (November 2006)

OpenMosix, http://openmosix.sourceforge.net/

Studham, R.S., Cox, A., Walker, B.: Petascale single system image and other stuff
(2007)

Goldberg, R.P.: Architecture of virtual machines. In: Proceedings of the Workshop
on Virtual Computer Systems

. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, 1., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pp.
164-177. ACM, New York (2003)

Bellard, F.: Qemu, a fast and portable dynamic translator. Technical report,
USENIX Association (2005)

VMware: http://www.vmware.com

OpenVZ: http://wiki.openvz.org/Main_Page

Chroot: ion, http://www.gnu.org/software/coreutils/manual/coreutils.html
Ghormley, D.P., Petrou, D., Rodrigues, S.H., Vahdat, A.M., Anderson, T.E.: GLU-
nix: A Global Layer Unix for a network of workstations. Software Practice and
Experience 28(9), 929-961 (1998)

Hendriks, E.: BProc: the Beowulf Distributed Process Space. In: ICS 2002: Pro-
ceedings of the 16th international conference on Supercomputing, pp. 129-136.
ACM Press, New York (2002)

Riesen, R., Brightwell, R., Fisk, L.A., Hudson, T., Otto, J., Maccabe, A.B.: Cplant.
In: Proceedings of the Second Extreme Linux workshop at the 1999 USENIX An-
nual Technical Conference (1999)

Morin, C., Lottiaux, R., Vallée, G., Gallard, P., Margery, D., Berthou, J.Y., Scher-
son, I.: Kerrighed and data parallelism: Cluster computing on single system image
operating systems. In: Proc. of Cluster 2004. IEEE, Los Alamitos (2004)

Barak, A., La’adan, O.: The MOSIX multicomputer operating system for high
performance cluster computing. Future Gener. Comput. Syst. 13(4-5), 361-372
(1998)

Foundation, A.S.: http://httpd.apache.org

Grid5000, http://www.grid5000. fr

http://openmosix.sourceforge.net/
http://www.vmware.com
http://wiki.openvz.org/Main_Page
http://www.gnu.org/software/coreutils/manual/coreutils.html
http://httpd.apache.org
http://www.grid5000.fr

	Complementarity between Virtualization and Single System Image Technologies
	Introduction
	Introduction to Virtualization
	Introduction to Single System Image
	Combining Virtualization and Single System Image
	Single System Image and Containers
	Single System Image and Type-I Virtualization
	Single System Image and Type-II Virtualization

	Lessons
	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

