
Towards an Intelligent Environment for

Programming Multi-core Computing Systems

Sabri Pllana1, Siegfried Benkner1, Eduard Mehofer1, Lasse Natvig2,
and Fatos Xhafa3

1 University of Vienna, Department of Scientific Computing,
Nordbergstrasse 15, 1090 Vienna, Austria

{pllana,sigi,mehofer}@par.univie.ac.at
2 NTNU, Department of Computer and Information Science,

Sem Saelands vei 9, NO-7491 Trondheim, Norway
Lasse.Natvig@idi.ntnu.no

3 UPC, Department of Languages and Informatics Systems,
C/Jordi Girona 1-3, 08034 Barcelona, Spain

fatos@lsi.upc.edu

Abstract. In this position paper we argue that an intelligent program de-
velopment environment that proactively supports the user helps a main-
streamprogrammer to overcome thedifficulties of programmingmulti-core
computing systems. We propose a programming environment based on
intelligent software agents that enables users to work at a high level of ab-
straction while automating low-level implementation activities. The pro-
gramming environment supports program composition in a model-driven
development fashion using parallel building blocks and proactively assists
the user during major phases of program development and performance
tuning. We highlight the potential benefits of using such a programming
environment with usage-scenarios. An experiment with a parallel building
block on a Sun UltraSPARC T2 Plus processor shows how the system may
assist the programmer in achieving performance improvements.

1 Introduction

While multi-core processors alleviate several problems that are related to single-
core processors - known as memory wall, power wall, or instruction-level par-
allelism wall - they raise the issue of the programmability wall. On the one
hand, program development for multi-core processors, especially for heteroge-
neous multi-core processors, is significantly more complex than for single-core
processors. On the other hand, programmers have been traditionally trained for
the development of sequential programs, and only a small percentage of them
have experience with parallel programming.

Additionally, there is a portability problem. In the past programmers could
trust that compilers succeeded to pass the increased computing power of next
processor generations without high porting effort. This was due to relatively
homogeneous processor designs even from different hardware vendors with in-
struction level parallelism (ILP) supported at hardware level. The architectural

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 141–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

142 S. Pllana et al.

change to multi-core processors, however, affects the programmer in several ways.
On the one hand, thread level parallelism (TLP) must be exploited effectively
and efficiently. In general, this cannot be done automatically by a compilation
system, but requires assistance by the programmer. On the other hand, multi-
core architectures differ significantly requiring that applications must be adapted
to the various platforms.

While in the past only a relatively small group of programmers interested
in HPC was concerned with the parallel programming issues, the situation has
changed dramatically with the appearance of multi-core processors on commonly
used computing systems. Traditionally parallel programs in HPC community
have been developed by heroic programmers1 using a simple text editor as pro-
gramming environment, programming at a low-level of abstraction, and doing
manual performance optimization. It is expected that with the pervasiveness
of multi-core processors parallel programming will become mainstream, but
it can not be expected that a mainstream programmer will like to become a
HPC hero.

In this paper we argue that the programming productivity of multi-core2 sys-
tems is increased if an intelligent programming environment would be available
that (1) enables the programmer to work during the process of program develop-
ment at a higher level of abstraction using domain-specific modeling languages in
a model-driven development fashion; and (2) provides context-specific knowledge
and performs iterative time-consuming tasks involved in program development
in a semi automatic/autonomic manner (for instance, performance tuning). We
propose a parallel programming methodology that combines model-driven and
agent-supported program development with the use of high-level parallel build-
ing blocks. The goal is to increase programming productivity without restricting
flexibility and creativity, allowing the programmer to fully use his/her intellec-
tual capacity for software design at model-level. Although software development
is considered to be an art, we anticipate that there are many implementation
activities that can be performed more automatically/autonomically.

The rest of this paper is organized as follows. Section 2 describes our vision
for programming of multi-core computing systems. We illustrate our approach
experimentally in Section 3. Section 4 reviews the state-of-the-art in program-
ming multi-core computing systems. We conclude the paper with a summary
and future work in Section 5.

2 Intelligent Programming of Multi-core Systems

In this section we outline our methodology and the corresponding environment
for programming multi-core systems.
1 Andrea: ”Unhappy is the land that breeds no hero.” Galileo: ”No, Andrea: Unhappy

is the land that needs a hero.” – Bertolt Brecht in Life of Galileo.
2 Although some authors have introduced the term many-core to denote multi-core sys-

tems with many cores (i.e. 100 or more), we will stick to the more established term
multi-core. We do not see a need to make a distinction between multi- and many.

Towards an Intelligent Environment 143

2.1 Methodology

Our parallel programming methodology combines model-driven agent-supported
program development with the use of high-level parallel building blocks (PBB).
We propose to address the complexity of programming multi-core systems as
follows:

– Raise the level of abstraction at which the programmer performs most of
the activities during the process of software development, by using a model-
driven development approach combined with PBBs;

– Support the programmer during the software development, by using intelli-
gent software agents for providing context-specific knowledge and automa-
tion of iterative activities involved in software development and optimization.

Model-Driven Development (MDD) [13]. MDD is a software development
method that advocates to first model a program and then build the program
code. It is inspired by mature engineering disciplines such as civil engineering,
where before an artifact (for instance a bridge) is built first the corresponding
model is developed. In software engineering the models are usually described
graphically using the Unified Modeling Language (UML). The model should
preferably describe the program at an abstraction level that is independent
from a specific platform. Models may be used to study the functionality and
the performance of the program before the program code for a specific plat-
form is developed. MDD has the potential to reduce software development time
and complexity, by using tools for automatic model-to-code transformation and
thereby reducing the programmer’s effort for manual coding. Since multi-core ar-
chitectures differ significantly from each other, a significant effort is required to
adapt (that is port) programs to the various platforms. Since MDD captures the
program logic as a platform-independent model, then program models remain
largely unaffected from the changes in processor architectures. In our previous
work we have developed an extension of UML for the domain of performance-
oriented parallel/distributed programs [16] and the corresponding tool-support
Teuta [10]. Teuta allows to build models of parallel programs, enrich them with
performance-related information, and generate various textual representations
(such as XML or C++).

Parallel Building Blocks. The PBBs are inspired from research in program-
ming concepts such as skeletons [1,2,8] or dwarfs [3]. Basically, PBBs may be
thought of as program-independent generic programming units that support
software re-usability. A set of parameters is used to specify the functionality
of a PBB in the context of a certain program. For instance, as parameter may
serve the program-specific code (that is the code that PBB requires to perform
the expected functionality in the context of a certain program). PBBs may be
implemented for instance using C++ Templates or Java Generics. Parallelism is
described within the PBB, and therefore the programmer is not exposed directly
to the parallel programming complexity (such as dealing explicitly with the com-
munication and synchronization among processing units or deadlock avoidance).

144 S. Pllana et al.

Commonly various combinations of PBBs may be used for solving a certain
problem. In the context of programming environments PBBs lend themselves
to an increased level of automation of various activities such as program trans-
formation, code generation, performance optimization, and resource usage opti-
mization. In our previous work, in the context of MALLBA project [1], we have
developed a library of parallel skeletons (such as branch and bound, metropo-
lis, simulated annealing, genetic algorithms, or tabu search) for solving various
optimization problems.

Intelligent Software Agents. Software agents are programs that are reac-
tive, proactive, autonomic, and social [21]. Software agents that have learning
and adapting abilities are known as intelligent software agents. Reactiveness in-
dicates the ability to respond adequately to changes in the context in which
it operates. A proactive program performs activities to achieve a specific goal
based on its initiative (it does not wait passively for a request of another en-
tity to perform a certain activity). Autonomy indicates the ability to perform
activities independently of user intervention in order to achieve a specific goal.
Social programs are able to communicate and coordinate activities with other
programs (that is agents). A program is considered intelligent if it is able to learn
from the previous experience (for instance, via trial-and-error or generalization)
and is able to adapt accordingly to the perceived changes in the environment.
We have a vision about several intelligent software agents cooperating with each
other and the programmer during the process of program development. Our
vision is based on the idea that the programming environment should be bet-
ter at helping the programmer as a more active partner. In our previous work,
in the context of the AURORA project [4], we have used intelligent software
agents to automate systematic performance analysis for parallel and distributed
programs. Although software development is considered to be an art, we antici-
pate that there are many implementation activities that can be performed more
automatically/autonomically using intelligent software agents.

In the following sub-section we propose a programming environment for multi-
core computing systems that uses MDD, PBBs, and intelligent software agents.

2.2 Programming Environment

The proposed programming environment comprises a set of intelligent software
agents that may help to automate the programming process at several levels.
Some agents will advice the composition of programs using PBBs, while others
will guide the exploration of different possible parallel strategies, load balancing
and performance optimization (see Figure 1).

The programming environment provides the programmer with information
feedback useful in the process of developing a program for a multi-core sys-
tem. This information is collected at several levels, from program composition
to information about resource usage (such as the cache behavior) obtained by
execution or simulated execution. Also, information is exchanged between the
agents at the system level in an automated manner continuously looking for ways
of obtaining and improving knowledge about the performance of the program

Towards an Intelligent Environment 145

Fig. 1. Agent supported program development. The programming environment com-
prises multiple intelligent software agents that support program composition, design
space exploration and resource usage optimization.

being developed. In this way, a parallel program with good performance can be
developed with high programmer productivity.

In what follows in this section we highlight the major program development
and tuning phases: (i) high-level program composition, (2) design space explo-
ration, (3) resource usage optimization.

High-level Program Composition. This phase deals with the composition
and coordination of PBBs. The granularity of PBBs may range from frequently
used programming idioms, to larger patterns or dwarfs [3]. High-level descrip-
tors are used to capture the main parallelization aspects of PBBs and serve as
interface to agents in the design space exploration phase. The user composes the
program graphically using a UML extension for multi-core systems.

{code_parameters,
performance_parameters}

«PBB_Type»

pbb_instance
code_template()
performance_model()

Fig. 2. UML representation of a PBB

The UML may be extended by defining new modeling elements, stereotypes,
based on existing elements (also known as base classes or metaclasses). Stereo-
types are notated by the stereotype name enclosed in guillemets <<Stereotype
Name>>. Figure 2 depicts the graphical representation of a PBB. <<PBB Type>>
indicates the kind of PBB. With a PBB is associated the corresponding
parametrised code and performance model. Parameters determine the behavior
of the PBB instance in the context of a specific program.

The programming environment assists the user proactively during the pro-
gram composition. For instance while the user is loading some old BLAS code
for some dense linear algebra operations – the composer agent interrupts and
suggests using the PBB for dense linear algebra tailored for efficient execution on

146 S. Pllana et al.

multi-core systems. Additionally, it may offer a list of other PBBs that often are
used together with this one, as well as presenting typical compositional patterns
in a graphical way.

Design Space Exploration. High level discrete-event simulation is used for
rapid model-based performance evaluation of programs, using a hybrid method
that combines mathematical modeling with high level discrete-event
simulation [15].

For instance, after the completion of the program composition phase the pro-
gramming environment may suggest to the user doing some high level rapid de-
sign space exploration. The estimated performance of various possible program
implementations is presented by a visualization agent. While the user is studying
the graphs, and gets some ideas for improvement, the programming environment
is also analyzing the results and suggests changing some of the parameters in
one of the PBBs (such as the parallelization granularity), and to perform some
more detailed simulations for getting better knowledge of the performance that
can be obtained with different task allocation and scheduling policies.

Resource Usage Optimization. Instruction-level simulation is used for more
detailed studies of the utilization of shared resources such as shared on-chip
memory and off-chip bandwidth. For instance, in [9] an efficient utilization of
the shared cache resources has been found to have great affect on multi-core
performance. This is integrated with the use of performance counters. A per-
formance monitoring agent provides information about the state of the system
(resource characteristics and usage). Instruction-level simulation is time consum-
ing (may take several hours or days), and therefore should run in background.
When finished, the findings will be propagated upwards back to the higher level
performance models, as a model calibration process. It is a systematic way of
bringing performance information from the execution (or simulated execution)
environment back to the development environment. Please note that this kind
of optimization is architecture-dependent.

For instance, the user may get hints from the programming environment for
changes that will improve performance of the program. The programming envi-
ronment may offer some detailed simulations at the instruction level, and helps
the user to select those simulation experiments that are likely to be the most
relevant. For instance, if higher-level simulations show that some of the processor
cores were waiting for data for long periods, a more detailed study of the on-chip
shared memory resources should be done.

3 Example

In this section we illustrate how best practices from HPC combined with agent
based program development offer new opportunities to obtain efficient solutions.

PBBs allow a programmer to specify various parallelization strategies together
with the code and a first guess for individual parameters which are subject
to the tuning process. This follows our assumption that only semi-automatic

Towards an Intelligent Environment 147

parallelization is reasonable. The programmer specifies the main strategies for
parallelizing the code and the system explores this restricted optimization space
to generate efficient code. Two factors back up this approach. First, rich analysis
work has been done in the past by the HPC community, including the authors
institutions (Vienna Fortran Compilation System [6]), which can be reused. Sec-
ond, in the past the strong emphasis on the target-code performance and manual
performance tuning resulted in low programming productivity. The increasing
importance of development of economically viable software nowadays reveals
opportunities for semi-automatic parallelization, even at the price of achieving
lower performance compared to a hand-tuned version.

In our example we use as hardware platform the Sun UltraSPARC T2 Plus, co-
denamed Niagara-2, multi-core processor (shown in Figure 3(a)) which is an SMP
extended version of the T2 allowing multiple Chip-level MultiThreading (CMT)
processors to be used within a single system. The T2 Plus was presented in April
2008 and has up to 8 cores per processorwith 8 hardware threads per core resulting
in a maximum number of 64 threads per processor or logical CPUs as reported by
the operating system. T2 Plus offers only poor support for instruction-level par-
allelism emphasizing thread-level parallelism. Two integer units are provided per
core with four threads sharing one unit, and one FPU is provided per core with
all eight threads sharing it. The L1 data cache has 8 KB per core and the on-chip
L2 cache offers 4 MB which are shared between the cores.

In what follows in this section we present an example scenario to illustrate
the agent-supported software development cycle. Different forms of PBBs are
possible, but in the simplest case a PBB can be some loop nest together with data
layout and work distribution annotations. Consider e.g. an application written
in C consisting of a series of PBBs with one of them denoting a floating point
matrix-matrix multiplication, i.e. C[i,j] = C[i,j] + A[i,k] * B[k,j] with
loop nest (i,j,k). As parallelization strategy the programmer specifies that the
elements of result matrix C should be assigned to processor cores in a row-
wise manner and calculated by them. Since the target architecture is a Sun T2
Plus with 8 cores and 8 FPUs, the programmer specifies that the rows shall be
assigned to 8 threads.

When submitted to the design space exploration agent and its analysis frame-
work (cf. [6,7]), the framework detects poor spatial cache locality and performs

Cross Bar

L2$ L2$ L2$L2$ L2$ L2$ L2$ L2$

Coherency Unit Coherency Unit Coherency UnitCoherency Unit

Memory Controller Unit Memory Controller Unit

System Interface PCI Express

UltraSPARC T2 Plus

FPU

SPU

Core 2

FPU

SPU

Core 3

FPU

SPU

Core 4

FPU

SPU

Core 5

FPU

SPU

Core 6

FPU

SPU

Core 7

FPU

SPU

Core 8

FPU

SPU

Core 1

(a) Sun UltraSPARC T2 Plus.

0

0.2

0.4

0.6

0.8

1

1 2 4 6

ti
m
e

threads

(i,j,k) loop

(i,k,j) loop

(b) Performance improvements.

Fig. 3. Processor block diagram and optimization results

148 S. Pllana et al.

loop interchange resulting in loop nest (i,k,j). Then the code is split up in 8
threads as suggested by the programmer and assigned to the 8 cores of T2 Plus
and executed. The monitoring component of the resource usage agent reveals
low memory bandwidth utilization and low FPU utilization for this PBB and
reports this feedback information to the agent. The resource usage agent is aware
of the hardware characteristics of T2 Plus and knows about the hyper-threading
(HT) technology provided by this kind of architecture with up to 8 hardware
threads. Therefore the agent suggests to use HT technology to increase FPU
utilization and reports to the design space agent to explore possibilities to in-
crease the number of threads. Consequently, the design space agent proposes to
assign the rows of result matrix C to 2, 4, 6 hardware threads per core resulting
in a total number of 16, 32, 48 threads, respectively. Three versions are gener-
ated and submitted for execution. Moreover, feedback information is used by the
compilation system to perform further optimizations (cf. [11]).

The key point is that this time-consuming tuning task is done automatically by
the system and not by the programmer. The different versions are automatically
generated and run on T2 Plus and the monitoring results are reported back to the
agents and the programmer. Figure 3(b) shows the normalized execution times
(longest execution time denoted by time unit 1.0) for the different versions with
1, 2, 4, 6 threads per core and the improvements achieved by the optimizations
taking programmer annotations and hardware characteristics into account. The
performance improvement of loop interchange is considerable and amounts to
26% for 1 thread per core, approx. 20% for 2 and 4 threads per core, and 66%
for 6 threads per core. The performance improvement for increasing the number
of threads per core to deal with memory latency is even more significant. The
performance improvement assigning 2 and 4 threads to one core was for both
loop nest versions approx. a factor of 1.7 and 2.5, respectively. For 6 threads
per core we got for (i,j,k) loop nest a factor of 2.8 and for (i,k,j) loop nest up
to 3.7. Based on this experience, the resource usage agent classifies increasing
the number of threads to deal with memory latency as valuable optimization
which has proven beneficial for this processor. The programming environment
may suggest this kind of optimization for similar processor architectures as well.

4 A Review of the State-of-the-Art

An increasing number of research projects is addressing the challenge of program-
ming multi-core computing systems. The Habanero project [12], which started in
Fall 2007 at Rice University, aims to develop languages and compilers for the de-
velopment of portable software for multi-core systems. The SALSA project [19] at
Indiana University is investigating the use of services as building blocks for com-
posing parallel data-mining applications based on the workflow paradigm. Linked
Sequential Activities in SALSA, which are conceptually based on Communicating
Sequential Processes of Hoare, are used to build services. The Berkeley View [3]
project investigates the influence of multi-core processors in applications, hard-
ware, programming models, and systems software for parallel computing. The

Towards an Intelligent Environment 149

Berkeley View proposes to use a set of dwarfs (a dwarf defines a specific computa-
tion and communication pattern) for evaluation of parallel programming models.
The recently established Pervasive Parallelism Laboratory (PPL) [17] at Stan-
ford University is investigating future parallel computing platforms. PPL is sup-
ported by six computer and chip makers that are convinced that their product
sales may decline if software is not able to use effectively the new multi-core-
based hardware. SWARM [5], developed at Georgia Institute of Technology, is
a parallel programming framework that provides a collection of primitives for
programming multi-core processors. The Programming Environments Labora-
tory (PELAB) [18] at Linköping University is investigating the applicability of
round-trip engineering techniques to parallelization of sequential programs. The
Cell Superscalar (CellSs) [14] project at Barcelona Supercomputing Center fo-
cuses on parallelization of sequential programs for Cell BE processor. The CellSs
parallelization involves the functional decomposition, code annotation and the
use of a source-to-source compiler. The IT Research Division of the NEC Labo-
ratories Europe [20] is investigating the use of work stealing concept to achieve
load balancing.

In contrast to the related work we propose an intelligent programming envi-
ronment that proactively supports the user during major phases of program de-
velopment and performance tuning by providing context-specific knowledge and
performing iterative time-consuming tasks involved in program development in
a semi automatic/autonomic manner.

5 Conclusions

We have outlined an intelligent programming environment, which proactively
supports the user during high-level program composition, design space explo-
ration, and resource usage optimization. We have highlighted the potential ben-
efits of using such a programming environment with usage-scenarios.

We have observed that even for a rather simple parallel building block such
as matrix multiplication the exploration of the parameter space may be time
prohibitive on one hand, but on the other hand there is a big potential for per-
formance improvement. The example scenario described a first and manageable
step towards an intelligent program environment for multi-core architectures.
Several projects at the authors’ home institutions are currently pursued towards
the realization of such an intelligent programming environment for multi-core
computing systems.

References

1. Alba, E., Almeida, F., Blesa, M., Cabeza, J., Cotta, C., Diaz, M., Dorta, I.,
Gabarro, J., Leon, C., Luna, J., Moreno, L., Pablos, C., Petit, J., Rojas, A., Xhafa,
F.: MALLBA: A Library of Skeletons for Combinatorial Optimisation (Research
Note). In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, p.
927. Springer, Heidelberg (2002)

150 S. Pllana et al.

2. Alind, M., Eriksson, M., Kessler, C.: BlockLib: A Skeleton Library for Cell
Broadband Engine. In: International Workshop on Multicore Software Engineer-
ing (IWMSE 2008) at ICSE 2008, Leipzig, Germany, May 2008. ACM, New York
(2008)

3. Asanovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K.,
Patterson, D., Plishker, W., Shalf, J., Williams, S., Yelick, K.: The Landscape of
Parallel Computing Research: A View from Berkeley. EECS Department, Univer-
sity of California, Berkeley, Technical Report No. UCB/EECS-2006-183, December
18 (2006)

4. AURORA: A Priority Research Program on Advanced Models, Applications and
Software Systems for High Performance Computing (1997–2007),
http://www.vcpc.univie.ac.at/aurora/

5. Bader, D., Kanade, V., Madduri, K.: SWARM: A Parallel Programming Framework
for Multi-Core Processors. In: First Workshop on Multithreaded Architectures and
Applications (MTAAP) at IPDPS 2007, Long Beach, CA, USA, March 2007. IEEE,
Los Alamitos (2007)

6. Benkner, S., Andel, S., Blasko, R., Brezany, P., Celic, A., Chapman, B., Egg, M.,
Fahringer, T., Hulman, J., Kelc, E., Mehofer, E., Moritsch, H., Paul, M., Sanjari,
K., Sipkova, V., Velkov, B., Wender, B., Zima, H.: Vienna Fortran Compilation
System - Version 1.2 - User’s Guide. Technical report, Institute for Software Tech-
nology and Parallel Systems, University of Vienna (February 1996)

7. Benkner, S.: VFC: The Vienna Fortran Compiler. Scientific Programming 7(1),
67–81 (1999)

8. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3), 389–406 (2004)

9. Dybdahl, H., Stenström, P., Natvig, L.: A cache-partitioning aware replacement
policy for chip multiprocessors. In: Robert, Y., Parashar, M., Badrinath, R.,
Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 22–34. Springer, Heidelberg
(2006)

10. Fahringer, T., Pllana, S., Testori, J.: Teuta: Tool Support for Performance Modeling
of Distributed and Parallel Applications. In: Bubak, M., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 456–463. Springer,
Heidelberg (2004)

11. Gupta, R., Mehofer, E., Zhang, Y.: Profile Guided Code Optimizations. In: Srikant,
Y.N., Shankar, P. (eds.) The Compiler Design Handbook: Optimizations & Machine
Code Generation. CRC Press, Boca Raton (2002)

12. Habanero Multicore Software Project, http://www.cs.rice.edu/~vs3/habanero/
13. Model Driven Architecture, http://www.omg.org/mda/
14. Perez, J., Bellens, P., Badia, R., Labarta, J.: CellSs: Making it easier to program

the Cell Broadband Engine processor. IBM Journal of Research and Develop-
ment 51(5), 593–604 (2007)

15. Pllana, S., Benkner, S., Xhafa, F., Barolli, L.: Hybrid Performance Modeling and
Prediction of Large-Scale Computing Systems. In: 2008 International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS 2008), Barcelona,
Spain, March 2008. IEEE CS, Los Alamitos (2008)

16. Pllana, S., Fahringer, T.: On Customizing the UML for Modeling Performance-
Oriented Applications. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML
2002. LNCS, vol. 2460, p. 259. Springer, Heidelberg (2002)

17. Pervasive Parallelism Laboratory,
http://ppl.stanford.edu/wiki/index.php/Pervasive

Parallelism Laboratory

http://www.vcpc.univie.ac.at/aurora/
http://www.cs.rice.edu/~vs3/habanero/
http://www.omg.org/mda/
http://ppl.stanford.edu/wiki/index.php/Pervasive_Parallelism_Laboratory
http://ppl.stanford.edu/wiki/index.php/Pervasive_Parallelism_Laboratory

Towards an Intelligent Environment 151

18. Programming Environments Laboratory (PELAB),
http://www.ida.liu.se/labs/pelab/

19. Service Aggregated Linked Sequential Activities (SALSA),
http://www.infomall.org/multicore/

20. Wagner, J., Jahanpanah, A., Träff, J.: User-Land Work Stealing Schedulers: To-
wards a Standard. In: 2008 International Workshop on Multi-Core Computing
Systems (MuCoCoS 2008) at CISIS 2008, Barcelona, Spain, March 2008. IEEE
CS, Los Alamitos (2008)

21. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons Ltd.,
Chichester (2002)

http://www.ida.liu.se/labs/pelab/
http://www.infomall.org/multicore/

	Towards an Intelligent Environment for Programming Multi-core Computing Systems
	Introduction
	Intelligent Programming of Multi-core Systems
	Methodology
	Programming Environment

	Example
	A Review of the State-of-the-Art
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

