
Space-Based Approach to High-Throughput
Computations in UNICORE 6 Grids

Bernd Schuller and Miriam Schumacher

Jülich Supercomputer Centre
Distributed Systems and Grid Computing Division

Forschungszentrum Jülich GmbH
Jülich, Germany

Abstract. We explore a novel approach to high-throughput, embarass-
ingly parallel applications in UNICORE 6 based Grids. This is an XML
centric tuple space based approach inspired by JavaSpaces, with an
implementation using the UNICORE 6 WSRF framework. Other ap-
proaches such as the layered workflow and data splitting architecture
developed in the Chemomentum project, batch processing using the
UNICORE commandline client UCC and concurrent programming using
the HiLA Java API are discussed as well. Performance and scalability
evaluations are presented, backed up by preliminary experimental results
comparing our approach to the standard batch mode of the UNICORE
commandline client.

1 Introduction

In this paper we explore an approach to high-throughput computing on
UNICORE Grids that is based on an XML tuple space, i.e. a globally shared
storage, that offers a simple API for storing,reading and removing arbitrary XML
documents. The term high-throughput computing is used here in the sense that
many relatively small computational jobs are run on a Grid system composed
of relatively many compute nodes. To give an example, a typical run might in-
volve several thousands of jobs, where each job consumes about 15 minutes of
computational time, and with a number of compute nodes that is on the order
of 100. For the purposes of this paper, the application throughput is assumed
to be limited by the computation itself, not by the associated data transfers.
High-throughput computing as defined here is highly relevant in many appli-
cation fields from drug discovery to multi-media applications such as image or
video rendering. A prominent example is in-silico screening of chemical sub-
stances using docking techniques, for example in the WISDOM initiative [2].
The main problems to be overcome are scalability, efficient resource discovery,
selection and usage. Conventional approaches to resource discovery and selec-
tion involve information systems, where the resource providers have to publish
detailed information about the state of their resources. This is often undesir-
able, as this information may be confidential. It is difficult to keep this infor-
mation up-to-date, and the information system may become the bottleneck.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 75–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 B. Schuller and M. Schumacher

Additionally, sites may have to give up some of their autonomy to allow efficient
resource management by the Grid scheduling systems. As will be shown, the tu-
ple space-based approach removes the need for these information systems, and
the sites can trivially enforce their local policies.

The remainder of the paper is organised as follows. Section 2 introduces the
UNICORE 6 Grid middleware. Existing approaches to high-throughput comput-
ing using UNICORE are summarised in section 3, while our tuple space-based
approach is introduced in section 4, Some preliminary performance results are
given in section 5. A summary and outlook concludes the paper.

2 The UNICORE 6 Grid Middleware

UNICORE, developed in the course of several German and European projects
since 1997 [1], is a mature Grid middleware that is deployed and used in a
variety of settings, from small projects to large (multi-site) infrastructures in-
volving high-performance computing resources. UNICORE can be characterised
as a vertically integrated Grid system, that comprises the full software stack
from clients to various server components down to the components for access-
ing the actual compute or data resources. Its basic principles are abstraction of
site-specific details, openness, interoperability, operating system independence,
security, and autonomy of resource providers. In addition, the software is easy to
install, configure and administrate. The latest version is UNICORE 6 [4], which
is based on Web Services and particularly the Web Service Resource Framework
(WSRF). UNICORE is licensed under the liberal BSD license, and is available
as open source from the SourceForge repository [3].

UNICORE 6 is a four-tiered system, consisting of the client, gateway, services
and target system tiers. A wide variety of clients exist, from programming APIs
[14], commandline client [15], simple Java clients to a rich client based on the
Eclipse framework. The Gateway is a thin authentication and routing service
that can be considered as a web service firewall and router. It resides outside
the networking firewall, protecting the services behind it. Thus, UNICORE by
default only requires a single open port to the public internet. The basic services
(UNICORE atomic services) provide resource discovery (Registry service), job
execution (Target System Factory and Target System services), and file access
(Storage and FileTransfer services).

The target system tier consists of the interface to the local operating sys-
tem, file system and resource management (batch) system. UNICORE 6 uses
XML based standards in all functional areas: WS(RF)/SOAP for communica-
tion, JSDL for job submission, SAML assertions and XACML for authentication
and authorisation.

The UNICORE 6 service registry contains the available target system factory
(TSF) services, not the target system services (TSS) themselves. The reason for
this is that each client (i.e. Grid user) creates their own target systems, which are
accessible only for that particular client. The TSFs keep a list of TSS created
by them. Thus, the discovery of available target systems is a fairly expensive

Space-Based Approach to High-Throughput Computations 77

operation involving several web service calls, because clients have to iterate over
these TSS lists, and check for accessible services.

The basic sequence to run a computational job on UNICORE 6 is as follows.

– A suitable computational resource (target system service, TSS) needs to be
found. If no TSS is available to the client, a suitable target system factory
(TSF) must be discovered and invoked to create a TSS

– The job is submitted to the TSS, resulting in a new job management service
(JMS) instance

– Input data can be staged in to the job’s working directory
– The job is started. Usually the client sends a “start” message to indicate it

has finished staging data in.
– After the job finishes, output data can be staged out.

At the time of writing (April 2008), UNICORE does not support client notifica-
tion on job status changes, so a polling approach has to be used to find out if a
job has finished.

3 High-Thoughput Approaches for UNICORE 6

3.1 Batch Mode of the Commandline Client

The UNICORE commandline client (UCC) [15] is a core component of UNICORE
6 and offers full access to the functions of a UNICORE 6 Grid. The UCC includes
a batch processing mode, where a set of job files is read and jobs are submitted to
the available compute resources.This batch mode can be used for high-throughput
computation, where the user just has to generate the individual job files. There
is no built-in fault handling, so the user has to deal with job failures herself, for
example by re-running failed computations. Fault-handling features could how-
ever be added to UCC in the future. Resource discovery is performed by looking
up target systems that offer the required application. More detailed brokering,
for example by operating system or number of processors is not done by UCC.
UCC selects resources using a round-robin strategy. A number of jobs are submit-
ted concurrently, and their status is checked using a polling approach. The total
number of concurrent jobs, the number of client threads used, and the polling in-
terval used for job status updates can be controlled. This allows some tuning of
the batch mode performance and controlling of the load generated on the Grid.
UCC seems well suited for simple batch applications that do not require complex
brokering or fault-handling strategies. Its scaling behaviour is fairly good due to
its simplicity.

3.2 HiLA Java API

HiLA [14] is a Java API to a UNICORE Grid, offering a simple set of abstractions
(such as Grid, Site, Task and File) and a familiar programming model. Using
HiLA, applications can make use of Grid resources and run remote computations
easily. HiLA can be used to develop high-throughput applications, with expected
characteristics similar to the UCC batch mode.

78 B. Schuller and M. Schumacher

3.3 UNICORE 6 / Chemomentum Workflow System

This workflow system has been developed within the European Chemomentum
project [12]. It is fully integrated with the UNICORE middleware since the 6.1
release. The workflow system adds two layers to the basic UNICORE 6 architec-
ture. A workflow engine layer deals with execution of high-level workflows, while
a service orchestrator deals with resource discovery, selection and job execution.
The system has been designed to allow easy scaling. The service orchestrator
component is stateless in the sense that it operates on a per-job basis. Thus,
multiple service orchestrator instances can be deployed to allow load-balancing.
This workflow system can be used as-is for high-throughput computations, be-
cause it supports semi-automated data splitting and the service orchestrator
component. The system is very simple to use for end-users, and needs no further
programming or customisation work. The workflow engine receives a simple XML
description of the task to be performed, with some workflow options that con-
trol the data splitting. The workflow engine then auto-generates a more detailed
workflow with all sub-tasks specified.The sub-tasks are then sent to the service
orchestrator which executes them on a suitable UNICORE 6 resource. The work-
flow system supports fault handling in the sense that failed computations can be
repeated, and the system can deal with disappearing and newly appearing exe-
cution systems. At the time of writing, more elaborate, rule-based fault-handling
is still under some development. The split and merge operations are performed
internally, because a suitable UNICORE application for data splitting/merging
has to be available on the Grid, and will be invoked automatically by the work-
flow engine. A special Resource Information Service (GRIS) is used for resource
discovery. This service keeps Grid resource information which is periodically
updated. Resource selection is performed by a brokering sub-component of the
service orchestrator, which queries the GRIS and selects an execution resource
based on current GRIS data and a set of configurable strategies. The basic strat-
egy is based on application availability, combined with a round-robin approach
in the common case of multiple execution host candidates. The Service orches-
trator deals with job control, submitting jobs to the selected resources, checking
their status, and sending notifications to the workflow engine when jobs succeed
or fail. At the time of writing it is not yet clear how well this architecture scales
in practice with increasing number of Grid sites, due to the limited deployment
experiences.

4 Tuple Space Based Approach

The bottlenecks when using Grid systems for high-throughput computations are
usually the resource discovery and selection processes. These are expensive op-
erations, involve many web service calls, and tend to scale badly with increasing
number of Grid resources. To completely bypass this procedures, we propose a
different approach based on the tuple space concept.

A tuple space is essentially a shared memory accessible by distributed clients
and servers. It stores data as records with typed fields (called tuples). The tuple

Space-Based Approach to High-Throughput Computations 79

space provides a small number of operations to insert, read and remove (take)
tuples from the space, using template-based queries. The original concept was
designed by David Gelernter and others for the Linda system in the mid-80s
[5] and many implementations exist, for example several Java implementations
based on SUNs JavaSpaces APIs [7]. Commercial implementations such as Gi-
gaSpaces [8] have gotten a lot of publicity recently due to their promise to deliver
horizontally scalable, "share-nothing" enterprise architectures.

In an XML centric web-services system such as UNICORE 6 the idea to
build a tuple space for XML documents is quite natural. XML-based tuple space
implementations are not very common, however. It has been noted that XML
and web services might be a promising way forward for Linda-like systems [6]
especially in conjunction with web services. A .NET based XML tuple space was
implemented by Tolksdorf et al. [9].

In the course of a diploma thesis [10], a tuple space for storing and retrieving
arbitrary XML documents has been designed and implemented, based on the
WSRFlite web services framework used in UNICORE 6. It is composed of two
services, the Space service itself and a WSRF service for storing the tuple space
entries. Each entry corresponds to a WS-Resource. Reading and taking entries
involves matching the entries in a brute-force manner against a template.

4.1 Job Execution Using the Tuple Space

The XML documents used for realising the job execution application look as
follows

<Job xmlns="http://www.unicore.eu/unicore6/spaces/job">
<JobID>
<ServerJobID>
<ServerID>
<Status>
<Address>
<JSDL>

</Job>

Here, the "JSDL" element stores the job description, and the "Status" field can
take the values NEW, SUBMITTED and DONE. The other fields are used to
store information relevant to the client, such as the endpoint reference of the
UNICORE 6 job management service for managing the job.

As Figure 1 shows, the basic scheme is as follows:

– The client submit jobs to the space
– At the target system, a worker component (“job taker”) takes jobs from the

tuple space and submits them to the target system and thus to the underlying
UNICORE 6 XNJS execution manager

– When the job is done, the XNJS notifies the worker, and the job is written
to the tuple space with status "DONE".

– The client checks for done jobs, and can download results

80 B. Schuller and M. Schumacher

Fig. 1. Tuple space based job execution

This approach promises several advantages to the usual schemes. The tuple
space can be seen as a globally shared queue, thus resource usage should be
very efficient. The crucial point is that the job takers at the TSS decide when
to fetch and submit the next job. This makes applying local scheduling policies
trivial. Resource discovery and explicit resource selection by Grid clients are not
necessary, nor is publishing of local scheduling information to a Grid scheduler.
Another major benefit is that workers can be added (and removed) easily and
transparently, without the need to make their presence known to other Grid
components such as Grid schedulers or information systems.

The existing implementation is very simple, each job taker will just process
exactly one job at a time. Of course, more complex policies are quite easy to
implement (for example, on a cluster system it would be better to accept one
job per compute node). Another limitation of the current implementation is that
there is no well-defined order (e.g. FIFO) in which the jobs will be processed.

The UNICORE Spaces module including a prototype of the job execution
application discussed in this section is available on the UNICORE Subversion
repository [11]. This prototype does not include any security functionality (ex-
cept for the standard TLS), the space is freely accessible, and jobs are submit-
ted under the worker node’s identity. However, we note that reasonable security
mechanisms would be straightforward to add.

5 Some Performance Results

We performed some preliminary performance measurements on a small test Grid
composed of six AMD Opteron 2GHz machines, with 2GB of memory, connected

Space-Based Approach to High-Throughput Computations 81

to the LAN with Gigabit Ethernet. They are running SUSE Linux 10.1 and
Sun Java 1.5. Each UNICORE 6 service container is configured to use 128Mb of
memory, and persistence is activated using the HSQLDB database. Node 1 hosts
Gateway, Registry, XUUDB and the Space service, Nodes 2-5 are the workers,
and Node 6 is used as client. The worker nodes are configured to run at most
two jobs at a time.

Running 100 "Date" jobs (no data staging) on 4 worker nodes using the UCC
batch mode took about 120 seconds, where we switched off the download of
result files and the checks for application availability.

Our tuple space based job execution performed significantly better. Even us-
ing just a single worker, the 100 jobs were finished in about 100 seconds. This
shows that in the space-based case there is much less overhead associated with
each job.

Using two and four worker nodes, the 100 jobs were finished in 48 and 26 sec-
onds respectively, showing linear scaling in this region. Also, each node consumed
an approximately equal share of the total workload.

Similar scaling behaviour can be achieved with higher numbers of jobs, since
the client limits the number of concurrent jobs to 100. When this limitation
is removed, performance decreases slightly due to the longer lookup times in
the space.

We have also measured the average time needed to lookup 100 random entries
in the space, while varying the total number of entries. We find the linear increase
that would be expected due to the brute-force lookup algorithm. The average
lookup times are 12ms for 2000 entries, rising to 40ms for 10000 entries. This
indicates a potential bottleneck: as the number of clients increases, the tuple
space will become blocked for longer periods of time and the throughput will
decrease. More measurements are needed to find the true limits here.

6 Summary and Outlook

The space-based approach presented here is highly promising for applications
that do not have complex resource requirements, and that do not requiring high-
level Grid features such as co-scheduling. For example, docking or other types of
high-throughput screening are very well suited for this approach. Several issues
remain though. Most importantly, real-world security requirements still have
to be implemented. However, we are convinced that the XML space is flexible
enough to handle these requirements. The excellent scalability characteristics
would be very hard to achieve with other, more traditional Grid tools. Also, the
space-based approach is very simple, and does not require complex broker and
scheduler components.

Our preliminary performance numbers confirm the expectations we had when
designing the system. Still, it remains to be seen how well the space-based ap-
proach scales up to higher numbers of worker nodes and concurrent clients. It
should be expected that the performance of the central Space service will degrade
under heavier loads, and load-balancing and clustering techniques will have to

82 B. Schuller and M. Schumacher

be employed. Also, the storage and lookup techniques for tuple space entries will
have to be improved, to avoid needless searches and XML matching. For exam-
ple, in the job execution application it would be highly beneficial to partition
the tuple space using the job’s Status field, which is used as the major search
criterion in the application. Of course, the tuple space itself is generic, so the
application programmer needs to provide some hints to the system how to do
the partitiong. Similarly, indexes could be built on selected parts of the XML to
decrease lookup times.

In summary, the basic overall simplicity of the tuple space concept and the
applications in facilitates is clearly attractive and fits in very well with the
UNICORE philosophy.

Acknowledgement

Part of this work was funded by the European Commission in the Chemomentum
project (IST-5-033437).

References

1. Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., Riedel,
M., Romberg, M., Schuller, B., Wieder, P.: In: Grandinetti, L. (ed.) Grid Com-
puting: The New Frontiers of High Performance Processing Advances in Parallel
Computing, vol. 14, pp. 357–376. Elsevier, Amsterdam (2005)

2. Initiative for grid-enabled drug discovery against neglected and emergent diseases
(April 2008), http://wisdom.eu-egee.fr

3. UNICORE website (April 2008), http://www.unicore.eu
4. UNICORE 6 overview (April 2008),

http://www.unicore.eu/documentation/files/Unicore6Overview.pdf
5. Gelernter, D.: Generative communication in Linda. ACM Trans. Program.

Lang.Syst. 7, 80–112 (1985)
6. Wells, G.: Back to the future with Linda. In: Second international workshop on

coordination and apaptation techniques for software entities (in conjuction with
ECOOP 2005), Oslo 2005 (April 2008),
http://wcat05.unex.es/Documents/Wells.pdf

7. SUN Microsystems: Jini (April 2008),
http://java.sun.com/software/jini

8. Gigaspaces commercial JavaSpaces implementation (April 2008),
http://www.gigaspaces.com

9. Tolksdorf, R., Liebsch, F., Nguyen, D.M.: XMLSpaces.NET: An extensible Tuple
Space as XML Middleware. In: 2nd International Workshop on.NET Technologies
2004 (submitted) (April 2008),
http://www.ag-nbi.de/research/xmlspaces.net

10. Schumacher, M.: Realisierung eines XML-Tupelraumes unter Verwendung des
Web Service Resource Framework, University of Applied Science Aachen/Juelich
(February 2008)

11. UNICORE Spaces Subversion repository (April 2008),
http://unicore.svn.sourceforge.net/svnroot/unicore/contributions/
unicore-spaces/trunk

http://wisdom.eu-egee.fr
http://www.unicore.eu
http://www.unicore.eu/documentation/files/Unicore6Overview.pdf
http://wcat05.unex.es/Documents/Wells.pdf
http://java.sun.com/software/jini
http://www.gigaspaces.com
http://www.ag-nbi.de/research/xmlspaces.net
http://unicore.svn.sourceforge.net/svnroot/unicore/contributions/unicore-spaces/trunk
http://unicore.svn.sourceforge.net/svnroot/unicore/contributions/unicore-spaces/trunk

Space-Based Approach to High-Throughput Computations 83

12. Chemomentum: Grid-Services based Environment for enabling Innovative Research
(April 2008), http://www.chemomentum.org

13. Schuller, B., Demuth, B., Mix, H., Rasch, K., Romberg, M., Sild, S., Maran, U.,
Bała, P., del Grosso, E., Casalegno, M., Piclin, N., Pintore, M., Sudholt, W.,
Baldridge, K.K.: Chemomentum - UNICORE 6 based infrastructure for complex
applications in science and technology. In: Bougé, L., Forsell, M., Träff, J.L., Streit,
A., Ziegler, W., Alexander, M., Childs, S. (eds.) Euro-Par Workshops 2007. LNCS,
vol. 4854, pp. 82–93. Springer, Heidelberg (2008)

14. HiLA High-level API for Grids (April 2008),
http://www.unicore.eu/community/development/hila-reference.pdf

15. UNICORE commandline client (April 2008),
http://www.unicore.eu/documentation/unicore6/manuals/ucc

http://www.chemomentum.org
http://www.unicore.eu/community/development/hila-reference.pdf
http://www.unicore.eu/documentation/unicore6/manuals/ucc

	Space-Based Approach to High-Throughput Computations in UNICORE 6 Grids
	Introduction
	The UNICORE 6 Grid Middleware
	High-Thoughput Approaches for UNICORE 6
	Batch Mode of the Commandline Client
	HiLA Java API
	UNICORE 6 / Chemomentum Workflow System

	Tuple Space Based Approach
	Job Execution Using the Tuple Space

	Some Performance Results
	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

