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Abstract. Context-bounded analysis has been shown to be both efficient and
effective at finding bugs in concurrent programs. According to its original defi-
nition, context-bounded analysis explores all behaviors of a concurrent program
up to some fixed number of context switches between threads. This definition is
inadequate for programs that create threads dynamically because bounding the
number of context switches in a computation also bounds the number of threads
involved in the computation. In this paper, we propose a more general definition
of context-bounded analysis useful for programs with dynamic thread creation.
The idea is to bound the number of context switches for each thread instead of
bounding the number of switches of all threads. We consider several variants
based on this new definition, and we establish decidability and complexity results
for the analysis induced by them.

1 Introduction

The verification of multithreaded programs is a challenging problem both from the theo-
retical and the practical point of view. (We consider here programs with parallel threads
which may use local variables as well as shared (global) variables.) Assuming that the
variables of the program range over a finite domain (which can be obtained using some
abstraction on the manipulated data), there are several aspects in multithreaded pro-
grams which make their analysis complex or even undecidable in general [13].

Indeed, it is well known that for instance in the case where each thread can be mod-
eled as a finite-state system, the state space of the program grows exponentially w.r.t. the
number of threads, and the reachability problem is PSPACE-hard. Moreover, if threads
are modeled as pushdown systems, which corresponds to allowing unbounded depth
(recursive) procedure calls in the program, then the reachability problem becomes un-
decidable as soon as two threads are considered.

Context-bounding has been proposed in [10] as a suitable technique for the anal-
ysis of multithreaded programs. The idea is to consider only the computations of the
program that perform at most some fixed number of context switches between threads.
(At each point only one thread is active and can modify the global variables, and a
context-switch happens when the active thread terminates or is interrupted, and a pend-
ing one is activated.) The state space which must be explored may still be unbounded
in presence of recursive procedure calls, but the context-bounded reachability problem
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is decidable even in this case. In fact, context-bounding provides a very useful tradeoff
between computational complexity and verification coverage. This tradeoff is based on
three important properties. First, context-bounded verification can be performed more
efficiently than unbounded verification. From the complexity-theoretic point of view, it
can be seen that context-bounded reachability is an NP-complete problem (even in the
case of pushdown threads). Second, many concurrency errors, such as data races and
atomicity violations, are manifested in executions with few context switches [9]. Fi-
nally, verifying all executions of a concurrent program up to a context bound provides
an intuitive and meaningful notion of coverage to the programmer.

In the last few years, several implementations and algorithmic improvements have
been proposed for context-bounded verification [2,9,16,7,6]. For instance, context-
bounded verification has been implemented in explicit-state model checkers such as
CHESS [9] and SPIN [18]; it has also been implemented in symbolic model checkers
such as SLAM [11], jMoped [16], and in [6].

While the concept of context-bounding is adequate for multithreaded programs with
a (fixed) finite number of threads, the question we consider in this paper is whether this
concept is still adequate when dynamic creation of threads is considered.

Dynamic thread creation is useful for modeling several important aspects, e.g., (1)
unbounded number of concurrently execution of software modules such as file systems,
device drivers, non-blocking data structures etc., or (2) creation of asynchronous activ-
ity such as forking a thread, queuing a closure to a threadpool with or without timers,
callbacks, etc. Both these sources are very important for modeling operating system
components; they are likely to become important even for application software as it
becomes increasingly parallel in order to harness the power of multi-core architectures.

We argue that the “classical” notion of context-bounding which has been used so far
in the existing work is actually too restrictive in this case. Indeed, bounding the number
of context switches in a computation also bounds the number of threads involved. In
this paper, we propose a more general definition of context-bounded analysis useful for
programs with dynamic thread creation. The idea is to bound the number of context
switches for each thread instead of bounding the number of switches of all threads. We
consider several variants based on this new definition, and we establish decidability and
complexity results for the analysis induced by them.

We introduce a notion of K-bounded computations where each of the involved
threads can be interrupted and resumed at most K times. (We consider that when a
thread is created, the number of context switches it can perform is the one of its ances-
tor minus 1.) Notice that the number of context switches by all threads in a computation
is not bounded since the number of threads involved is not bounded.

In the case of finite-state threads, we prove that this problem is as hard as the cover-
ability problem for Petri nets (which is EXPSPACE-complete). The reduction from our
problem to the coverability problem of Petri nets is based on the simple idea of count-
ing the number of pending threads for different values of the global and local states, as
well as of the number of switches that these threads are allowed to perform. conversely,
we prove that the coverability problem of Petri nets can be reduced to the 2-bounded
reachability problem. These results show that in the case of dynamic thread cre-
ation, considering the notion of context-bounding for each individual thread makes the
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complexity jumps from NP-completeness to EXPSPACE-completeness, even in the
case of finite-state threads. Then, an interesting question is whether it is possible to have
a notion of context-bounding with a lower complexity. We propose for that the notion of
stratified context-bounding. The idea is to consider computations where the scheduling
of the threads is ordered according to their number of allowed switches: First, threads of
level K (the level means here the number of allowed switches) are scheduled generating
threads of level K −1, then threads of level K −1 are scheduled, and so on. Next, it is
possible to schedule again threads of level K and repeat the process, but this only for a
finite number of times L. Again, notice that (K,L)-stratified computations may have an
unbounded number of context switches since it is possible to schedule an unbounded
number of threads at each level. This concept generalizes obviously the “classical” no-
tion of context-bounding. We prove that, for finite-state threads, the (K,L)-stratified
context-bounded reachability problem is NP-complete (i.e., it matches the complexity
of the “classical” context-bounded reachability problem). The proof is by a reduction
to the satisfiability problem of existential Presburger formulas.

Then, we consider the case of dynamic creation of pushdown threads. We prove that,
surprisingly, the K-bounded reachability problem is in fact decidable, and that the same
holds also for the (K,L)-stratified context-bounded reachability problem. To establish
these results, we prove that these problems (for pushdown threads) can be reduced to
their corresponding problems for finite-state threads. This reduction is not trivial. The
main ideas behind the reduction are as follows: First, the K-bounded behaviors of each
single thread can be represented by a labeled pushdown system which (1) makes visible
(as labels) on its transitions the created threads, and (2) guesses points of interruption-
resumption and the corresponding values of the global states. (These guesses are also
made visible on the transitions.) Then, the main problem is to “synchronize” these la-
beled pushdown systems so that their guesses can be validated. The key observation is
that it is possible to abstract these systems without loss of preciseness by finite-state
systems. This is due to the fact that we can consider that some of the generated threads
can be lost (since they can be seen as threads that are never activated), and therefore
we can reason about the downward closure of the languages of the labeled pushdown
systems mentionned above (w.r.t. suitable sub-word relation). This downward closure
is in fact always regular and effectively constructible.

2 Preliminaries

Words and languages. Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set
of all words (resp. non empty words) over Σ, and by ε the empty word. A language L
is a (possibly infinite) set of words. Let u ∈ Σ∗ and a ∈ Σ. We denote by |u| the length
of u and by |u|a the number of occurrences of a in u. Consider a non empty word
u = a1 · · ·an. For any i such that 1 ≤ i ≤ n, we denote by ui the symbol ai.

Given an alphabet Σ, we denote by �⊆ Σ∗ × Σ∗ the subword relation defined as
follows: for every u = a1 · · ·an ∈ Σ∗, and every v = b1 · · ·bm ∈ Σ∗, u � v iff ∃i1, . . . , in ∈
{1, . . . ,m} such that i1 < i2 < .. . < in and ∀ j ∈ {1, . . . ,n},a j = bi j . Given a language
L ⊆ Σ∗, the downward closure of L (w.r.t. �) is the set L ↓= {u ∈ Σ∗ | ∃v ∈ L , u � v}.
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Finite State Automata. A Finite State Automaton (FSA) is a tuple S = (S,Σ,δ,sinit ,
s f inal) where S is a finite set of states, Σ is a finite input alphabet, δ ⊆ S×(

Σ∪{ε})×S
is a finite set of transitions, sinit ∈ S is the initial state, and s f inal ∈ S is the acceptor state.
The language accepted by the finite state automaton S is denoted L(S).

Labeled Pushdown Systems. A Labeled Pushdown System (LPDS) is defined by a
tuple P = (G,Σ,Γ,Δ) where G is a finite set of states, Σ is an input alphabet (actions), Γ
is a stack alphabet, and Δ is a finite set of transition rules of the form: gγ

a
↪→ g′w′ where

g,g′ ∈ G, a ∈ Σ∪{ε}, γ ∈ Γ, and w′ ∈ Γ∗ such that |w′| ≤ 2.
A configuration of P is a tuple 〈g,σ,w〉 where g ∈ G is a state, σ ∈ Σ∗ is an input

word, and w ∈ Γ∗ is a stack content. We define the binary relation ⇒P between configu-

rations as follows: 〈g,aσ,γw〉⇒P 〈g′,σ,w′w〉 iff gγ
a

↪→ g′w′ ∈ Δ. The transition relation
⇒∗

P is the reflexive transitive closure of the binary relation ⇒P .
Given a labeled pushdown system P = (G,Σ,Γ,Δ), two states g,g′ ∈ G, and a

stack symbol γ, let LP (gγ,g′) = {σ ∈ Σ∗ |∃w ∈ Γ∗ s.t 〈g,σ,γ〉 ⇒∗
P 〈g′,ε,w〉}. Clearly,

LP (gγ,g′) is a context-free language, and conversely, every context-free language can
be defined as a trace language of some labeled pushdown system.

We recall hereafter a result due to Courcelle [3] which will be used later in the paper.

Theorem 1. Let P = (G,Σ,Γ,Δ) be a LPDS, g,g′ ∈ G be two states, and γ ∈ Γ be a
stack symbol. Then, it is possible to construct a FSA S = (S,Σ,δ,sinit ,s f inal) such that
L(S) =

(
LP (gγ,g′)

) ↓, where in the worst case |S| is exponential in
(|G|+ |Σ|+ |Γ|).

Multi-sets. Let Ξ be a nonempty alphabet (possibly infinite). A multi-set over Ξ is a
function M : Ξ →N. We denote by M[Ξ] the collection of all multi-sets over Ξ and by /0
the empty multi-set. Given two multi-sets M and M′, we write M′ ≤M iff M′(a)≤M(a)
for every a ∈ Ξ; and M + M′ (resp. M −M′ if M′ ≤ M) to denote the multi-set where
(M +M′)(a) = M(a)+M′(a) (resp. (M−M′)(a) = M(a)−M′(a)) for every a ∈ Ξ. For
every word u∈Ξ∗, [u] is the multi-set such that [u](a)= |u|a for every a∈Ξ. Sometimes,
[u] is called the Parikh image of u. This definition is extended in the straightforward
manner to languages (sets of words) as follows [L] = {[u] : u ∈ L}.

Petri Nets. A Petri net is a pair N = (P,T ) where P is a finite set of places and T ⊆
P∗ ×P∗ is a finite set of transition rules. We often write w � w′ to denote a transition
(w,w′)∈ T . Given a transition t = w � w′ ∈ T , we define a relation

t→⊆ (
M[P]×M[P]

)

between multi-sets over P as follows: W
t→ W ′ iff W ≥ [w] and W ′ = W + [w′]− [w].

We define the transition relation →N on multi-sets over P by the union of
t→, i.e.,

→N =
⋃

t∈T
t→. The transition relation →∗

N is the reflexive transitive closure of →N .

The coverability problem for a Petri net N is the problem of deciding for two given
places p and p′ whether there is a multi-set W such that [p′] ≤W and [p] →∗

N W .

Theorem 2. The coverability problem for Petri nets is EXPSPACE-complete [8,12].

Existential Presburger Formulas (EPF). Let V be a set of variables. We use x,y, . . .
to range over variables in V . The set of existential Presburger formulas is defined by
the following grammar and interpreted over natural numbers:
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t ::= 0 | 1 | x | t1 + t2 φ ::= t1 > t2 | t1 = t2 | φ1 ∧φ2 | φ1 ∨φ2 | ∃x ·φ1

The semantics of these formulas is defined in the standard way. Given a formula φ
with free variables x1, . . . ,xn, and a valuation U : V → N, we denote φ(U) the truth
value of φ for the valuation U . We say that a formula φ is satisfiable if there is some
valuation U such that φ(U) is true. It is well-know that the satisfiability problem for
existential Presburger formulas is decidable [17], and that:

Theorem 3. The satisfiability problem for existential Presburger formulas is NP-
complete.

Given a language L over the alphabet Σ = {a1, . . . ,an}, the set [L] (called the Parikh
image of L) is definable by a formula φ with free variables xa1 , . . . ,xan if for every
valuation U , φ(U) is true iff there is a word u ∈ L such that U(xai) = [u](ai) for every
i ∈ {1, . . . ,n}. We recall a result about existential Presburger formulas given in [14,17].

Theorem 4. Let P = (G,Σ,Γ,Δ) be a LPDS, g,g′ ∈ G be two states, and γ ∈ Γ be a
stack symbol. Then, it is possible to compute in polynomial time an existential Pres-
burger formula φ which defines [LP (gγ,g′)].

3 Dynamic Networks of Concurrent Systems

3.1 Syntax

A Dynamic Network of Concurrent Pushdown System (DCPS) is a tuple A = (G,Γ,Δ,
g0,γ0) where G is a finite set of states, Γ is a finite set of stack symbols, g0 is the initial
state, γ0 is the initial stack symbol, and Δ is a finite sets of transition rules of the forms:
(1) gγ ↪→ g′w′, or (2) gγ ↪→ g′w′ � γ′ where g,g′ ∈ G, γ,γ′ ∈ Γ, w′ ∈ Γ∗, and |w′| ≤ 2.

A DCPS models dynamic multithreaded programs with (potentially recursive) pro-
cedure calls. Threads are modeled as pushdown processes which can spawn new pro-
cesses. They have local variables and have also access to global (shared) variables. The
values of the local variables are modeled using the stack alphabet Γ, whereas the val-
ues of the global variables are modeled using states in G. Rules of the form gγ ↪→ g′w′
correspond to standard transitions of pushdown systems (popping γ and then pushing
w′ while changing the control state from g to g′), and rules of the form gγ ↪→ g′w′ � γ′
are similar but in addition they create a new thread with an initial local state γ′. Notice
that push (resp. pop) operations allow to model procedure calls (resp. returns).

When unbounded recursion is not considered, threads can be modeled as finite-state
processes instead of pushdown systems. This corresponds to the special case where in
all the transition rules defined above the pushed sequence w′ is of size at most 1. We
use the acronym DCFS for dynamic networks of concurrent finite-state system.

3.2 Semantics

A configuration of A is given by (1) a state g (the current value of the global store),
(2) the local configuration of the active thread, which is a pair (w, i) where w is its call
stack and i is its switch number (the number of interruptions/resumptions of the thread
together with the switch number of its ancestor at the moment of its creation), and
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(3) a multiset of the local configurations of the idle threads. Formally, a configuration
of A is a tuple 〈g,(w, i),M〉 ∈ G× (

Γ∗ ×N
)×M[Γ∗ ×N]. We assume that the initial

configuration of A is (g0,(γ0,0), /0).
For a given i ∈ N, the relation ⇒i on configurations is →i ∪ �→i, where →i and �→i

are defined as follows:

– 〈g,(γw, i),M〉 →i 〈g′,(w′w, i),M′〉 iff (1) there is a rule gγ ↪→ g′w′ ∈ Δ and M = M′,
or (2) there is a rule gγ ↪→ g′w′ � γ′ ∈ Δ and M′ = M +[(γ′, i+ 1)].

– 〈g,(w, i),M +[(w′, j)]〉 �→i 〈g,(w′, j),M +[(w, i+ 1)]〉 for every j ∈ N, g ∈ G, M ∈
M[Γ∗ ×N], and w,w′ ∈ Γ∗.

The relations →i correspond to the execution of pushdown (pop and push) operations,
with the possibility of creating new threads (added to the multiset of idle threads). The
created threads get the switch number i + 1. The relations �→i correspond to context
switches: The local configuration (w′, j) of a waiting thread is taken from the multiset
and given the status of active, while the local configuration (w, i) of the interrupted task
is stored in the multiset after incrementing its switch number.

Let ⇒≤B=
⋃

i≤B ⇒i for every B ∈ N∪{∞}. We write simply ⇒ instead of ⇒≤∞.
Finally, ⇒∗

i and ⇒∗≤B denote the transitive closure of ⇒i and ⇒≤B, respectively.

3.3 Reachability Problems

We consider the three following notions of reachability:

State reachability: A state g is said to be reachable iff 〈g0,(γ0,0), /0〉⇒∗ 〈g,(w, j),M〉
for some (w, j)∈Γ∗ ×N and M ∈M[

(
Γ∗ ×N

)
]. The state reachability problem (SRP

for short) is, for a given DCPS A and g∈G, to determine whether g is reachable by A .

K-bounded state reachability: Given K ∈N, a state g∈ G is said to be K-reachable iff
〈g0,(γ0,0), /0〉 ⇒∗≤K 〈g,(w, j),M〉 for some (w, j) ∈ Γ∗ ×{0, . . . ,K}, and M ∈ M[Γ∗ ×
{0, . . . ,K + 1}]. The K-bounded state reachability problem (SRP[K] for short) is, for a
given DCPS A , K ∈ N, and g ∈ G, to determine whether g is K-reachable by A .

Observe that, in SRP[K], a bound K is imposed on the number of switches (interup-
tions/resumptions) performed by each thread (together with the switch number of its
ancestor at the moment of its creation). However, due to dynamic creation of threads,
bounding the number of switches of each thread does not bound the number of switches
in the whole computations of the system (since an arbitrarily large number of threads
can be involved in these computations).

L-stratified K-bounded state reachability: Given K,L ∈ N, a state g ∈ G is said to
be [K,L]-reachable iff 〈g0,(γ0,0), /0〉(⇒∗

0 ◦· · ·◦ ⇒∗
K)L 〈g,(w, j),M〉 for some (w, j) ∈

Γ∗ × {0, . . . ,K}, and M ∈ M[Γ∗ × {0, . . . ,K + 1}]. The L-stratified K-bounded state
reachability problem (SRP[K,L] for short) is, for a given DCPS A , g∈G , and K,L ∈N,
to determine whether g is [K,L]-reachable.

In SRP[K,L], a special kind of K-bounded computations (called stratified compu-
tations) are considered: In one stratum of such a computation, threads are scheduled
according to their increasing switch number (from 0 to K). This corresponds to the con-
sideration of the relation ⇒∗

0 ◦· · ·◦ ⇒∗
K . Then, a L-stratified computation is a sequence
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of L strata. Observe that even in the case of stratified computations, an arbitrarily large
number of context switches may occur along a computation due to dynamic creation of
threads. Moreover, relaxing the bound L, i.e. considering arbitrarily large sequences of
strata, corresponds to considering the SRP[K] problem. Very particular stratified com-
putations are those where the whole number of context switches is bounded [10].

4 Analysis of Dynamic Networks of Concurrent Finite-State
Systems

In this section, we show that SRP and SRP[K] are EXPSPACE-complete (Theorem 5),
whereas, the problem SRP[K,L] is NP-complete (Theorem 6).

Theorem 5. The problems SRP and SRP[K] for DCFSs, for every natural number K ≥
2, are EXPSPACE-complete.

Proof: We prove that SRP[K] for DCFSs is polynomially reducible to the coverability
problem for Petri nets and vice-versa. We give here a sketch of the proof (for more
details see [1]). The constructions presented below can be adapted to show that the SRP
problem for DCFSs is also EXPSPACE-complete.

From SRP[K] for DCFSs to coverability problem for Petri nets. Given a natural
number K and a DCFS A = (G,Γ,Δ,g0,γ0), we construct a Petri net N = (P,T ) which
has the following structure:

– The set of places:
• A place (w, j) is associated with each natural number j ∈ {0, . . . ,K + 1} and

each stack configuration w ∈ Γ∪{ε}. The number of tokens in the place (w, j)
is the number of pending threads of A with local configuration (w, j).

• A place (g,w, i) is associated with each i ∈ {0, . . . ,K}, each state g ∈ G, and
each stack configuration w ∈ Γ∪{ε}. A token in the place (g,w, i) represents
the fact that g is the current value of the global store of A and that (w, i) is the
local configuration of the active thread.

– The set of transitions:
• For each i ∈ {0, . . . ,K} and each rule g1γ ↪→ g2w (resp. g1γ ↪→ g2w � γ′) of A ,

N has a transition (g1,γ, i) � (g2,w, i) (resp. (g1,γ, i) � (g2,w, i)(γ′, i+ 1)).
• For each i, j ∈ {0, . . . ,K}, each state g ∈ G, and each pair of stack configura-

tions w,w′ ∈ Γ∪{ε}, there is a transition (g,w, i)(w′, j) � (g,w′, j)(w, i+1) in
T . This transition simulates a context switch of A .

Notice that the size of N is polynomial in the size of A .

Lemma 1. (g0,(γ0,0), /0) ⇒∗ (g,(w, i),M) for some (w, i) ∈ (Γ∪{ε})×{0, . . . ,K} and
M ∈ M[(Γ∪{ε})×{0, . . . ,K + 1}] iff [(g0,γ0,0)] →∗

N [(g,w, i)]+ M.

From coverability problem for Petri nets to SRP[2] for DCFSs. Given a Petri net
N = (P,T ) and two places p0, p f ∈ P, we construct a DCFS A = (G,Γ,Δ,g0,γ0) such
that: the state g f is 2-reachable by A iff there is a multi-set W ∈ M[P] such that [p0]→∗

P
W and [p f ] ≤ W . Intuitively, A has a special stack symbol γ1 such that the number
of pending threads with local configuration (γ1,1) gives an upper bound of the length
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of the run of N simulated by A . For each place p ∈ P, A has a stack symbol p; the
number of such pending threads with stack content p denotes the current number of
tokens in p. We now sketch the behavior of A . The DCFS A guesses the length of the
simulated run of N by creating a number of threads with local configuration (γ1,1)
from the initial configuration. Then, the simulation of a rule t = w � w′ ∈ T is done in
two steps. First, A checks if t can be fired by verifying if there is a pending thread with
local configuration (wi,2) for every i ∈ {1, . . . , |w|}. Second, A uses pending threads
with local configuration (γ1,1) to create, for every j ∈ {1, . . . , |w′|}, a thread with local
configuration (w′

j,2). Finally, to check if there is a token in the place p f , A verifies
if there a pending thread with local configuration (p f ,2) and moves its state to g f .
Formally, A is built up from N as follows:

– The set of states:
• A has two special states g0 and g f . The states g0 and g f are the initial state and

the final state, respectively.
• For each rule t = w � w′ ∈ T , A has the following sequences of

global states g(t,w1), . . . ,g(t,w|w|) and g(t,w′
1), . . . ,g(t,w′

|w′ |)
. The sequence of states

g(t,w1), . . . ,g(t,w|w|) is used to simulate taking iteratively a token from each place

wi for i = 1 to |w|. The sequence of states g(t,w′
1), . . . ,g(t,w′

|w′ |)
is used to simulate

adding iteratively a token to each place w′
j for j = 1 to |w′|.

– The set of stack alphabet:
• A has two special stack symbols γ0 and γ1. The symbol γ0 represents the initial

stack content. Symbols γ1 represent auxiliary threads that are ”consumed” for
simulating tokens generation by transitions of N .

• For each place p ∈ P, A has a stack symbol p. The number of pending threads
with stack content p denotes the current number of token in the place p.

– The set Δ is the smallest set of rules satisfying the following conditions:
• Guessing the length of the run of N : The rule g0γ0 ↪→ g0γ0 � γ1 is in Δ. This rule

creates an arbitrary number of threads γ1 with switch number 1. This gives an
upper bound of the length of the run of N simulated by A .

• Creation of the initial marking of N : The rule g0γ0 ↪→ g0 � p0 is in Δ. This rule
creates a thread p0. This corresponds to the initial multiset [p0] of N .

• Simulation of a transition rule of N : A transition t = w � w′ is simulated by
checking iteratively that there is a pending thread with stack content wi for
i = 1 to |w|, and then, by creating iteratively a thread with initial stack content
w′

j for j = 1 to |w′|.
∗ Initialization of the simulation: For each transition t = w � w′ ∈ T , the

rule g0w1 ↪→ g(t,w1) is in Δ. This rule corresponds to start simulating t and
to check that there is a pending thread with stack content w1.

∗ Checking if the transition rule can be fired: For each transition t = w �
w′ ∈ T and for each i ∈ {1, . . . , |w|−1}, the rules g(t,wi)wi+1 ↪→ g(t,wi+1)
are in Δ. These transitions simulate the operation of taking a token from
each place in w2, . . . ,w|w|.

∗ Generating the output tokens: For each transition t = w � w′ ∈ T and
for each j ∈ {1, . . . , |w′| − 1}, the rules g(t,w|w|)γ1 ↪→ g(t,w′

1)γ1 � w′
1 ,
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g(t,w′
j)

γ1 ↪→ g(t,w′
j+1)γ1 � w′

(t, j+1) , and g(t,w′
|w′ |)

γ1 � g0 are in Δ. These

transitions simulate the operation of adding a token to each place of
w′

1, . . . ,w
′
|w′ |. Notice that if the thread γ1 has a switch number 1, then the

created threads w′
1, . . . ,w

′
|w′ | have switch number 2.

• Checking the final marking: The rule g0 p f ↪→ g f is in Δ. This corresponds to
checking if there a multiset with at least one token in p f reachable by N .

The relation between N and A is given by the following lemma:

Lemma 2. The control state g f is 2-reachable by A iff there a marking W ∈ M[P] such
that W ≥ [p f ] and [p0] →∗

N W . ��
We consider now the problem SRP[K,L] for K,L ∈ N. We prove that:

Theorem 6. For every K,L ∈ N, the problem SRP[K,L] for DCFSs is NP-complete.

Proof: NP-hardness is proved by a reduction from the coverability problem for acyclic
Petri nets [15] to SRP[K,1]. This is done by a simple adaptation of the construction
given in Theorem 5. The upper-bound is obtained by a reduction to the satisfiability
problem of existential Presburger formulas. We sketch hereafter the proof for the special
when L = 1. The extension to L > 1 is straightforward [1].

Let A = (G,Γ,Δ,g0,γ0) be a DCFS and K be a natural number. We recall that a state
gK+1 ∈ G is [K,1]-reachable by A iff there is a sequence of states g1, . . . ,gK ∈ G, a
sequence of stack configurations w1, . . . ,wK+1 ∈ Γ∪{ε}, and a sequence of multi-sets
M1, . . . ,MK+1 ∈ M[(Γ∪{ε})×{0, . . . ,K + 1}] such that:

〈g0,(γ0,0), /0〉 ⇒∗
0 〈g1,(w1,1),M1〉 ⇒∗

1 · · · ⇒∗
K 〈gK+1,(wK+1,K + 1),MK+1〉 (a)

The problem of checking whether a state gK+1 is [K,1]-reachable by A can be
rewriting as follows: Whether there are some w0, . . . ,wK+1 ∈ Γ∪{ε}, g1, . . . ,gK ∈ G,
and Nj,N′

j ∈ M[Γ × { j}] for every j ∈ {0, . . . ,K + 1}, such that: (1) w0 = γ0, (2)
N0 = N′

0 = /0, (3) and for every i ∈ {0, . . . ,K}, we have:

〈gi,(wi, i),N′
i + ∑i−1

l=0(N
′
l −Nl)〉 ⇒∗

i 〈gi+1,(wi+1, i+ 1),N′
i+1 + ∑i

l=0(N
′
l −Nl)〉 (b)

Observe that for every i ∈ {0, . . . ,K +1}, we have that Mi = N′
i +∑i−1

l=0(N
′
l −Nl) and

that Ni + [(wi, i)] is the multi-set of executed threads with switch number i. Then, the
equation (b) can be rewritten as follows: For every i ∈ {0, . . . ,K}, we have:

〈gi,(wi, i),Ni〉 ⇒∗
i 〈gi+1,(wi+1, i+ 1),N′

i+1〉 and Ni ≤ N′
i (c)

This means that A can reach the configuration 〈gi+1,(wi+1, i + 1),N′
i+1〉 while ex-

ecuting all threads in the multiset [(wi, i)] + Ni which should be less than the num-
ber of generated threads with switch number i, i.e. [(wi, i)] + N′

i . We can further sim-
plify our problem as follows: A state gK+1 is [K,1]-reachable by A iff there are some
w0,w′

0,w1, . . . ,wK+1,w′
K+1 ∈ Γ∪{ε}, g1, . . . ,gK ∈ G, and Nj,N′′

j ∈ M[Γ×{ j}] for ev-
ery j ∈ {0, . . . ,K +1}, such that: (1) w0 = w′

0 = γ0, (2) N0 = N′′
0 = /0, (3) and for every

i ∈ {0, . . . ,K}, we have:

〈gi,(wi, i),Ni〉 ⇒∗
i 〈gi+1,(w′

i+1, i+ 1),N′′
i+1〉 and Ni +[(wi, i)] ≤ N′′

i +[(w′
i, i)] (d)
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Observe that if (c) holds, then (d) holds by simply considering w′
i = wi for every

i ∈ {0, . . . ,K + 1}. On the other hand, if (d) is true, then (c) is true by taking N′
K+1 =

N′′
K+1, wK+1 = w′

K+1, and for every i ∈ {0, . . . ,K}, N′
i = N′′

i +[(w′
i, i)]− [(wi, i)] which

possible since Ni + [(wi, i)] ≤ N′′
i + [(w′

i, i)]. In the latter case, we can show that for
every i ∈ {0, . . . ,K}, 〈gi,(wi, i),Ni〉 ⇒∗

i 〈gi+1,(wi+1, i+ 1),N′
i+1〉 and Ni ≤ N′

i .
Hence, a state gK+1 is [K,1]-reachable iff the three following requirements hold:

1. For each i ∈ {0, . . . ,K}, we have 〈gi,(wi, i),Ni〉 ⇒∗
i 〈gi+1,(w′

i+1, i+ 1),N′′
i+1〉.

2. For each i ∈ {1, . . . ,K}, we have Ni +[(wi, i)] ≤ N′′
i +[(w′

i, i)].
3. N0 = N′′

0 = /0 and w0 = w′
0 = γ0.

(Notice indeed that requirements 1, 2 and 3 are equivalent to (d)).
Let us fix (guess) a sequence of states σ = g1, . . . ,gK ∈ G. We show how to compute

an existential Presburger formula φσ, of polynomial size in the size of A , which is satis-
fiable iff the state gK+1 is [K,1]-reachable by A . To this end, we compute an existential
Presburger sub-formula for each of the previous three requirements. These sub-formulas
use the set V = {x(w,i),y(w,i) |w ∈ (Γ∪{ε}) ∧ 0 ≤ i ≤ K + 1} as a set of free variables
such that for each i ∈ {0, . . . ,K + 1} and for each w ∈ Γ∪{ε}, the variable x(w,i) (resp.
y(w,i)) stands for the number of occurrences of (w, i) in the multiset

(
[(wi, i)]+Ni

)
(resp.(

[(w′
i, i)]+N′′

i

)
), i.e.

(
[(wi, i)]+Ni

)(
(w, i)

)
(resp.

(
[(w′

i, i)]+N′′
i

)(
(w, i)

)
). Then, the for-

mula φσ is obtained as the conjunction of these subformulas computed as follows:

- Checking the first requirement: For each i ∈ {0, . . . ,K} and for each gi,gi+1 ∈ G,
we compute a formula φ(i,gi,gi+1) such that φ(i,gi,gi+1)(U) is true iff there are wi,w′

i+1 ∈
Γ∪{ε} and Ni ∈ M[(Γ∪{ε})×{i}], and N′′

i+1 ∈ M[(Γ∪{ε})×{i+ 1}] such that: (1)
〈gi,(wi, i),Ni〉 ⇒∗

i 〈gi+1,(w′
i+1, i+1),N′′

i+1〉, (2)
(
[(wi, i)]+Ni

)(
(w, i)

)
= U(x(w,i)), and

(3)
(
[(w′

i+1, i+ 1)]+ N′′
i+1

)(
(w, i+ 1)

)
= U(y(w,i+1)) for all w ∈ Γ∪{ε}.

To this end, we prove that the set of valuation U : V → N, such that there is a com-
putation 〈gi,(wi, i),Ni〉⇒∗

i 〈gi+1,(w′
i+1, i+1),N′′

i+1〉 of A , where for every w ∈ Γ∪{ε},(
[(wi, i)]+Ni

)(
(w, i)

)
= U(x(w,i)) and

(
[(w′

i+1, i+1)]+N′′
i+1

)(
(w, i+1)

)
= U(y(w,i+1)),

can be defined as the Parikh image of a language accepted by a finite state automaton
S(i,gi,gi+1) with the input alphabet (Γ∪ {ε})×{i, i + 1}. Then, we use Theorem 4 to
construct the formula φ(i,gi,gi+1). The automaton S(i,gi,gi+1) has the following structure:

– The set of states:

• S(i,gi,gi+1) has two special states: sinit as an initial state and s f inal as a final state.
• For each g ∈ G, the automaton S(i,gi,gi+1) has a state gc. This represents that the

current value of the global store of A is g when a context switch occurs.
• For each g ∈ G and for each w ∈ Γ∪{ε}, the automaton S(i,gi,gi+1) has a state

(g,w). This corresponds to the fact that the current value of the global store of
A is g and the local configuration of the active thread is (w, i).

– The set of transitions:
• Initialization For each wi ∈ Γ∪{ε}, the automaton S(i,gi,gi+1) has the transition

sinit (wi,i)−−−−→(gi,wi). This transition corresponds to a guess of the local configu-
ration of the first active thread (wi, i).
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• Simulation of a transition: For each rule gγ ↪→ g′w′ (resp. gγ ↪→ g′w′ � γ′) of A ,

S(i,gi,gi+1) has the transition (g,γ) (γ′,i+1)−−−−−→(g′,w′) (resp. (g,γ) ε−→(g′,w′)).
• Simulation of a context switch For each state g ∈ G and each pair of stack

configurations w and w′ in Γ∪ {ε}, the automaton S(i,gi,gi+1) has the transi-

tions (g,w) (w,i+1)−−−−−→gc and gc (w′,i)−−−−→(g,w′). These transitions simulate a con-
text switch between two threads with local configurations (w, i) and (w′, i).

• End of the simulation: For each w ∈ Γ∪{ε}, the automaton S(i,gi,gi+1) has the

transition (gi+1,w) (w,i+1)−−−−−→ s f inal . This corresponds to the interruption of the
thread with local configuration (w, i) and to the end of the simulation.

It can be checked that the size of the automaton S(i,gi,gi+1) is polynomial in the size
of A . The relation between S(i,gi,gi+1) and A is given by the following lemma:

Lemma 3. A word u is in L(S(i,gi,gi+1)) iff there are wi,w′
i+1 ∈ (Γ∪{ε}), Ni ∈ M[(Γ∪

{ε}) × {i}], and N′′
i+1 ∈ M[(Γ ∪ {ε}) × {i + 1}] such that: (1) 〈gi,(wi, i),Ni〉 ⇒∗

i

〈gi+1,(w′
i+1, i + 1),N′′

i+1〉, (2)
(
[(wi, i)] + Ni

)(
(w, i)

)
= [u]((w, i)), and (3)

(
[(w′

i+1, i +
1)]+ N′′

i+1

)(
(w, i+ 1)

)
= [u]((w, i+ 1)) for every stack configuration w ∈ Γ∪{ε}.

As a consequence of Theorem 4 and Lemma 3, it is possible to compute in polynomial
time and size an existential Presburger formula φ(i,gi,gi+1) that represents the Parikh
image of the language L(S(i,gi,gi+1)).

Lemma 4. For every valuation U, φ(i,gi,gi+1)(U) is true iff there are wi,w′
i+1 ∈ (Γ∪

{ε}), Ni ∈ M[(Γ ∪ {ε}) × {i}], and N′′
i+1 ∈ M[(Γ ∪ {ε}) × {i + 1}] such that: (1)

〈gi,(wi, i),Ni〉 ⇒∗
i 〈gi+1,(w′

i+1, i+1),N′′
i+1〉, (2)

(
[(wi, i)]+Ni

)(
(w, i)

)
= U(x(w,i)), and

(3)
(
[(w′

i+1, i+ 1)]+ N′′
i+1

)(
(w, i+ 1)

)
= U(y(w,i+1)) for every w ∈ Γ∪{ε}.

- Checking the second requirement: The requirement that Ni + [(wi, i)] ≤ N′′
i +

[(w′
i, i)], for every i ∈ {1, . . . ,K}, can be expressed by φ(i,2) =

∧
w∈(Γ∪{ε}) x(w,i) ≤ y(w,i).

- Checking the third requirement: To express the requirements that N0 = N′′
0 = /0

and w0 = w′
0 = γ0, we consider the formula φ3 as the conjunction of the formulas:

x(γ0,0) = y(γ0,0) = 1 and x(w,0) = y(w,0) = 0 for all w ∈ Γ∪{ε} such that w �= γ0.
Finally, the formula φσ is obtained as φ3 ∧

(∧
i∈{0,...,K} (φ(i,gi ,gi+1) ∧φ(i,2))

)
. It can

be checked that the size of φσ is polynomial in K and in the size of A . �

5 Analysis of Dynamic Networks of Concurrent Pushdown
Systems

We consider now the case of DCPSs. It is well-known that the SRP is undecidable
already for networks with two concurrent pushdown processes. We prove however that
both problems SRP[K] and SRP[K,L] are decidable, for any given bounds K and L. For
that, we prove the following fact.

Theorem 7. For every K,L ∈ N, the problems SRP[K] and the SRP[K,L] for DCPS are
exponentially reducible to the corresponding problems for DCFS.

The rest of this section is devoted to the proof of Theorem 7. Let us fix a DCPS
A = (G,Γ,Δ,g0,γ0). We show that it is possible to construct a DCFS A f s such that
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the problems SRP[K] and SRP[K,L] for A can be reduced to the corresponding prob-
lems for A f s. Let us present the main steps of this construction. For that, let us consider
the problem SRP[K], for some fixed K ∈ N. Then, let us concentrate on the computa-
tions of one thread, and assume that this thread will be interrupted and resumed i times
(with i ≤ K) during its execution from some initial global state g and initial local state γ
to some final global state g′. The computations of such a thread correspond to the run of
a labeled pushdown system, built out of A , which (1) performs the same operations on
the stack and global states as the ones specified by Δ, (2) makes visible as transition la-
bels the local state (element of Γ) of the spawned threads, and (3) nondeterministically
guesses jumps from a global state to another one corresponding to the effect of context
switches. These jumps are also made visible as transition labels under the form of pairs
(gl,gl+1) ∈ G×G (meaning that the computation of the thread is interrupted at state gl

and is resumed at state gl+1). The number of such jumps in each run is precisely i.
Then, the problem is to handle the composition of all the computations (unbounded

number) of the generated threads and to make sure that the guesses made by each one
of them (on their control state jumps due to context switches) are correct. The key ob-
servation which allows to solve this problem is that it is possible to assume without loss
of preciseness that some of the generated threads can be ignored (or lost). Indeed, these
threads can always be considered as threads which will never be scheduled. Therefore,
the behaviors of each thread can be modeled using a finite-state automaton which recog-
nizes the downward closure of the language of the labeled pushdown system of a thread
w.r.t. the ordering on words where u is less than v if u can be obtained from v by erasing
symbol in Γ. We know by Theorem 1 that this automaton is effectively constructible.
So, let S(i,g,γ,g′) be the automaton modeling the computations of threads starting from g
and γ and reaching g′ after i interruptions-resumptions.

The next step is to synchronize the so-defined finite-state automata in order to rep-
resent valid computations of the whole system. For that, we define a DCFS A f s which
simulates the composition of these automata as follows:

– Assume that the initial global state is g0 and that the initial thread has an starting
local state γ0. Then, A f s guesses for this thread the number of switches i and its
final state g, and starts simulating its behaviors according to the transitions of the
automaton S(i,g0,γ0,g). To initialize the simulation, A f s has a rule g0γ0 ↪→ $sinit

(i,g0,γ0,g),

where sinit
(i,g0,γ0,g) is the initial state of S(i,g0,γ0,g). This rule allows to check that the

control state is g0 and to move to a special control state $ corresponding to a simu-
lation phase without context switches.

– During the simulation, when a transition s
γ−→s′ is encountered, a new thread γ is

spawned by A f s. This is done using a rule $s ↪→ $s′ � γ. The new thread will stay
pending until A f s can dispatch it.

– A pending thread γ which has never been activated can be dispatched by A f s at the
moment of a context switch. For that, A f s has a rule gγ ↪→ $sinit

(i,g,γ,g′) where sinit
(i,g,γ,g′)is

the initial state of S(i,g,γ,g′), for every possible starting and ending states g and g′,
and every possible number of context switches i ≤ K.

– Encountering a transition s
(g1,g2)−−−−−→s′ means that the computation of the simulated

thread has lead to the global store g1, and that this computation will be interrupted
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at this point and will be resumed later when the global store will become g2 (due
to the execution of some other threads). Then, A f s moves from its control state
$ to a control state g1 so that the control can be taken by another thread (which
was waiting for g1), and transforms the local state of the current thread (which
may be interrupted) to (g2,s′). Both of these operations are done using a rule $s ↪→
g1(g2,s′). In the case of g1 �= g2, we observe that the only action that can be done by
A f s after executing this rule is a context switch, i.e., (g2,s′) becomes idle and some
pending thread is activated (either dispatched for the first time, or resumed after
some interruption). We have seen above how A f s dispatches pending threads for
the first time. The resumption of threads at control state g1 is done by having rules
of the form g1(g1,s′′) ↪→ $s′′ for all possible states s′′ in S(i,g,γ,g′) . Such a rule means
that if a pending thread (g1,s′′) exists, then it can be resumed and the simulation
of its behaviors is pursued from the state s′′ (at which it was stopped at the last
interruption). Similarly, (g2,s′) will be resumed when the rule g2(g2,s′) ↪→ $s′ can
be executed which can only happen if the global store becomes g2.

– Finally, when a final state s f inal
(i,g,γ,g′) of S(i,g,γ,g′) is reached, this means that the sim-

ulation of the current thread has been completed and therefore the global store
must be g′ (the guessed target state) at this point. Then, the execution of the rule
$s f inal

(i,g,γ,g′) ↪→ g′⊥ allows to release the control so that some pending thread waiting

for g′ can be resumed.

Let us give in more details the construction described above.

5.1 Simulating Threads with Finite-State Automata

First, we define the DCPS Alos obtained from A by allowing losses of the gener-
ated threads. Let Alos = (G,Γ,Δlos,g0,γ0) be the DCPS such that Δlos = Δ∪ {gγ ↪→
g′w′ |(gγ ↪→ g′w′ � γ′) ∈ Δ}.

Lemma 5. For every K,L ∈ N, a control state g ∈ G is K-reachable (resp. [K,L]-
reachable) in A if and only if g is K-reachable (resp. [K,L]-reachable) in Alos.

Next, we show the construction of the automaton S(i,g,γ,g′) for some given i∈ {0, . . . ,K},
γ ∈ Γ, and g,g′ ∈ G. For that, we start by considering a labeled pushdown system sim-
ulating the behaviors of thread that reaches the state g′ starting from g and the stack
configuration γ after some number of jumps in the control state (representing guesses
on the effect of context switches), The spawned thread as well as the guesses on the
control state jumps made during the computation are made visible as labels on the tran-
sitions. Let P = (G,Γ∪G×G,Γ,ΔP ) be the labeled pushdown system where ΔP is the
smallest set of rule such that (1) for every g1γ1 ↪→ g2w � γ2 (resp. g1γ1 ↪→ g2w) in Δlos,

the rule g1γ1
γ2
↪→ g2w (resp. g1γ1

ε
↪→ g2w) is in ΔP , and (2) for every (g1,g2) ∈ G×G,

and for every γ1 ∈ Γ, the rule g1γ1
(g1,g2)
↪→ g2γ1 is in ΔP .

Then, the set of behaviors represented by this labeled pushdown system which cor-
respond to precisely i control switches (interruption-resumptions) is

L(i,g,γ,g′) = LP (gγ,g′)∩ (Γ∗ · (G×G) ·Γ∗)i.
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This set is context-free in general (since it is the intersection of a context-free language
with a regular one). However, due to Lemma 5, we can consider without loss of pre-
ciseness the downward closure of L(i,g,γ,g′) w.r.t. the sub-word relation corresponding to
the deletion of symbols in Γ while preserving all symbols in G×G, i.e., the set

L(i,g,γ,g′) ↓ ∩(Γ∗ · (G×G) ·Γ∗)i.

By Theorem 1, this set regular an can be effectively represented by a finite-state au-
tomaton S(i,g,γ,g′) = (S(i,g,γ,g′),Γ∪G×G,δ(i,g,γ,g′),s

init
(i,g,γ,g′),s

f inal
(i,g,γ,g′)). We assume w.l.o.g

that all states in the automaton S(i,g,γ,g′) are co-reachable from the final state.

Lemma 6. Let i ∈ N be a natural number, γ ∈ Γ be a stack symbol,
g1,g′1,g2, . . . ,gi+1,g′i+1 ∈ G be a sequence of states, and w0, . . . ,wi ∈ Γ∗ be a se-
quence of stack contents. Then, w0(g′1,g2)w1(g′2,g3)w2 · · · (g′i,gi+1)wi is accepted by
S(i,g1,γ,g′i+1) iff there are u0, . . . ,ui+1 ∈ Γ∗ such that, for every l ∈ {1, . . . , i + 1} and

j ∈ N, 〈gl,(ul−1, j), /0〉 ⇒∗
j 〈g′l,(ul , j),Ml−1〉 is a computation of Alos where u0 = γ and

Ml−1((γ′, j + 1)) = [wl−1](γ′) for all γ′ ∈ Γ.

The lemma above says that a word w0(g′1,g2)w1(g′2,g3)w2 · · · (g′i,gi+1)wi is in
L(S(i,g1,γ,g′i+1)) iff the DCPS Alos is able to bring the value of the global variables from gl

to g′l and the stack configuration of the simulated thread from ul−1 to ul while creating
the set of threads with initial stack symbols in [wl−1] for every l ∈ {1, . . . , i+ 1}.

5.2 From DCPS to DCFS

We define the DCFS A f s = (G f s,Γ f s,Δ f s,g0,γ0) where:

– G f s = G∪{$} is a finite set of states with $ /∈ G.
– Γ f s is a finite set of stack alphabet defined as the union of the sets Γ∪{⊥}, S(i,g,γ,g′)

and G×S(i,g,γ,g′) for all (i,g,γ,g′) ∈ {0, . . . ,K}×G×Γ×G, where S(i,g,γ,g′) is the
set of states of S(i,g,γ,g′).

– Δ f s is the smallest set of transitions such that
• Initialize/Disptach: For every i ∈ {0, . . . ,K}, every γ ∈ Γ, and every g,g′ ∈ G,

the rule gγ ↪→ $sinit
(i,g,γ,g′) is in Δ f s where sinit

(i,g,γ,g′) is the initial state of S(i,g,γ,g′).

• Skip: For every transition s ε−→s′ of S(i,g,γ,g′), the rule $s ↪→ $s′ is in Δ f s.

• Spawn:For every transition s
γ−→s′ of S(i,g,γ,g′), the rule $s ↪→ $s′ � γ is in Δ f s.

• Interrupt: For every transition s
(g1,g2)−−−−−→s′ of S(i,g,γ,g′), the rule $s ↪→ g1(g2,s′)

is in Δ f s.
• Resume: For every (g,s) ∈ Γ f s, the rule g(g,s) ↪→ $s is in Δ f s.
• Terminate: The rule $s f inal

(i,g,γ,g′) ↪→ g′⊥ is in Δ f s, where s f inal
(i,g,γ,g′) is the final state

of S(i,g,γ,g′).

Lemma 7. For every K,L ∈N, a control state g is K-reachable (resp. [K,L]-reachable)
in A if and only if g is K-reachable (resp. [K,L]-reachable) in A f s.

The proof of the lemma above is technical and is given in details in [1]. We give here-
after a high level description of it. Let us consider a DCPS A+ which is the union of
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Alos and A f s in the sense that for each created thread with initial configuration γ ∈ Γ,
A+ chooses nondeterministically whether the thread will be executed according to the
rules of Alos, or simulated according to the rules of A f s. Then, we define the rank of
a computation of A+ to be the pair (m,n) ∈ N×N where m is the number of threads
involved in the computation that follow the rules of Alos and n is the number of threads
in the computation following the rules of A f s. Observe that computations of rank (m,n)
where n = 0 (resp. m = 0) are precisely the computations of Alos (resp. A f s). We prove
that for any computation of A+ of rank (m+1,n) (resp. (m,n+1)), there exists a com-
putations of A+ of rank (m,n+1) (resp. (m+1,n)). This computation is obtained from
the original one by simulating the execution of a thread that follows the rules of Alos

(resp. A f s) by a thread that follows the rules of A f s (resp. Alos). This is possible thanks
to Lemma 6. A consequence of this fact is that, for every m ∈ N, a control state is
K-reachable (resp. [K,L]-reachable) by a computation of rank (m,0) (i.e., by a compu-
tation of Alos with m threads) if and only if it is K-reachable (resp. [K,L]-reachable) by
a computation of rank (0,m) (i.e. by a computation of A f s with the m threads). This is
precisely what Lemma 7 is saying.

Finally, Theorem 7 is an immediate consequence of Lemma 7. A corollary of Theo-
rem 7 and Theorem 5 is the following fact.

Corollary 1. For every K ∈ N, the problem SRP[K] for DCPS is in 2-EXPSPACE, and
for every K,L ∈ N, the problem SRP[K,L] for DCPS is in NEXPTIME.

6 Conclusion

We have proposed new concepts for context-bounded verification we believe that are
natural and suitable for programs with dynamic thread creation. These concepts are
based on the idea of bounding the number of switches for each thread and not for all
the threads in a computation.

First, we have proved that even for finite-state threads, adopting such a notion of
context-bounding leads in general to a problem which is as hard as the coverability
problem of Petri nets. This means that, in theory, the complexity of this problem is high,
but in practice, there are quite efficient techniques (based on iterative computation of
under/upper approximations) developed recently for solving this problem which have
been implemented and used successfully in [5,4]. Moreover, we have proposed a notion
of stratified context-bounding for which the verification is in NP, i.e., as hard as in
the case without dynamic thread creation. An interesting question is how to implement
efficiently the analysis in this case using clever encodings in SMT solvers.

Moreover, we have proved that the considered problems are still decidable for the
case of pushdown threads. This is done by a nontrivial reduction to the correspond-
ing problems for finite-state threads. This reduction is based on computing the regular
downward closure of context-free languages w.r.t. the sub-word relation. The down-
ward closure computation may lead in general to an unavoidable exponential blow-up.
This is due to the succinctness of context-free grammars w.r.t. finite state automata: For
instance, the finite language {a2N}, for a fixed N ≥ 1, can be defined with a context-free
grammar of size N whereas a finite-state automaton representing it (or its downward
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closure) is necessarily of size at least 2N . An interesting open problem is whether there
is an alternative proof technique which allows to avoid the downward closure construc-
tion. In practice, we believe that it would be possible to overcome this problem by for
instance designing algorithms allowing to generate efficiently and incrementally (parts
of the) downward closure.

Finally, in our models, we consider that each created thread inherits a switch number
from its father (the one of its father plus 1). An alternative definition can be obtained
by considering that each created thread is given the switch number 0. (Therefore, each
thread can perform up to K switches.) For that model, we can prove (for more details see
[1]) that our results concerning the reachability problems SRP and SRP[K] hold with
the same complexity bounds. However, the problem SRP[K,L] for finite state threads
(resp. pushdown threads) becomes EXPSPACE-complete (in 2-EXPSPACE) instead of
NP-complete (NEXPTIME) for this definition.
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