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Abstract. Standard analysis on recursive data structures restrict their
attention to shape properties (for instance, a program that manipulates
a list returns a list), excluding properties that deal with the actual con-
tent of these structures. For instance, these analysis would not establish
that the result of merging two ordered lists is an ordered list. Separation
logic, one of the prominent framework for these kind of analysis, pro-
posed a heap model that could represent data, but, to our knowledge, no
predicate dealing with data has ever been integrated to the logic while
preserving decidability. We establish decidability for (first-order) separa-
tion logic with a predicate that allows to compare two successive data in a
list. We then consider the extension where two data in arbitrary positions
may be compared, and establish the undecidability in general. We define
a guarded fragment that turns out to be both decidable and sufficiently
expressive to prove the preservation of the loop invariant of a standard
program merging ordered lists. We finally consider the extension with the
magic-wand and prove that, by constrast with the data-free case, even a
very restricted use of the magic wand already introduces undecidability.

1 Introduction

Data-ordering and shape analysis. Providing automatic methods for faults
detection in programs manipulating recursive mutable data structures is a long-
standing problem. Shape analysis is a well established approach that may de-
tect faults due to in-depth properties of the heap, like creating a cycle in an
acyclic list. Prominent logics that integrate such an analysis are separation
logic [1], pointer assertion logic PAL [9], TVLA [10], LRP (logic of reachable
patterns) [16], or alias logic [4], to quote a few examples. A common feature
in these analyses is that they completely forget the data held in the recursive
structures, focusing on the shape of the structure. As a consequence, ordering
properties are out of the scope of these analyses: for instance, one cannot check
or even specify that the reverse of a sorted list is a sorted list. Extensions of
shape analysis have been proposed for ordering properties, stability properties,
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and size properties, in shape graphs [3], in the TVLA approach [11], and in the
separation logic approach [12] to cite a few. This paper studies the rather more
theoretical issue of the decidability of the satisfiability problem. It proposes a
general approach for reducing the shapes handling ordering properties to pure
shapes, and stress some natural limitations we should put on the data properties
we would like to check automatically.

Data-ordering in separation logic. Our approach lies in the framework of sepa-
ration logic [14]. In essence, separation logic extends first order logic with two
substructural connectives: the separation connective (∗) and its adjoint (the sep-
arating implication −−∗, also known as the magic wand). These connectives are
convenient to express pre and post conditions of all standard heap-manipulating
instructions. For instance, the strongest post condition Post(x := new, A) of a
memory allocation instruction can be expressed by x�→ − ∗∃x.A{x/x}. This for-
mula involves two more ingredients : the use of first-order logical variables, that
here quantify over the memory location of x before allocation, and the points-to
predicate .↪→. (or its precise version in this example). We extend the logic with
the predicate val(x) ≤ val(y) that asserts that the value stored at the location
x is smaller than the one stored at y, which in particular allows to define the
predicate

x
≤
↪→y

def≡ x↪→y ∧ val(x) ≤ val(y)

and x
≥
↪→y accordingly. We call these predicates short-distance comparisons, and

by contrast val(x) ≤ val(y) is called long-distance comparison. We moreover say
that such a long-distance comparison is guarded if x or y is an open variable.

Separation logic’s decidability. The decidability of the satisfiability problem for
separation logic has been intensively studied so far: first-order separation logic
over heap models with at least two selectors (record fields) is known to be un-
decidable [7] by containment of finite satisfiability for classical predicate logic
with one binary relation [15] (even with no separating connectives). On the other
hand, first-order separation logic over heaps with one selector has been proved
to be decidable when the magic-wand is dropped [6], by reduction to monadic
second order logic over functional graphs, but becomes undecidable in presence
of magic wand. To our knowledge, nothing was known about first-order separa-
tion logic with data. The following table summarizes the results we present in
this paper:

Undecidable long distance comparison without −−∗
short distance comparison with (restricted) −−∗

Decidable short + guarded long distance comparisons without −−∗
The decidability result comes from a reduction to monadic second order logic

over functional graphs. The translation is strongly inspired by the one for separa-
tion logic over lists without data [6], but involves some non-trivial complications
for ensuring the coherence of data abstraction. The undecidability results are
obtained by reduction to first-order logic over (finite) data words, which was
proved undecidable [2,8].
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Case study. In order to illustrate the practical relevance of our results, we con-
sider a very standard merge-sort program. Checking that any formula is a correct
loop invariant requires in general to deal with the magic-wand connective, which
leads to our undecidable fragments. However, for the loop invariant one may
think about (that is, all working lists are ordered lists) the magic wand can be
eliminated, and the formula considered falls into the decidable fragment.

Outline of the paper. Section 2 introduces our separation logic over lists with
data. In Section 3, we illustrate on the merge program how the logic can deal
with relevant loop invariants. In Section 4, we establish the decidability of the
short distance comparison. Section 5 deals with the case of guarded and non-
guarded long-distance comparison, whereas Section 6 explains the undecidability
of the logic in the presence of the magic wand.

2 Preliminaries

In this section, we introduce first the separation logic with data considered in
this work, then the monadic second order logic to which we reduce to. These
logics are based on different classes of models: our separation logic deals with
lists with data, whereas the monadic second order logic deals with shapes, e.g.
lists without data.

2.1 A Separation Logic for Lists with Ordered Data

Memory model. We assume an infinite, totally ordered set (Dat,≤) of data, and
range over a particular datum with α, β. We moreover assume an infinite set
Loc of locations, ranged over with l, l′ etc. and an infinite set Var of variables,
ranged over with either x, y, z or x,y, z etc. Variables can be interpreted as both
variables from the programs or logical variables quantifying over locations; the
main difference between both is that program variables are never quantified in
the formula. We safely identify them and will use the font convention x, y to
emphasize that a variable should be understood as a program variable. In the
latter, we may use the standard notation A{y/x} for the formula A in which x
replaces y.

Following the standard semantics of separation logic, we define a memory
state as a pair of a store s and a heap h such that:

– s : Var → Loc,
– h : Loc⇀ (Loc× Dat) is a partial function with finite domain.

We write dom(h) to denote the domain of h and ran(h) to denote its range. For
Z ⊆ dom(h), We write h| Z to denote the restriction of h to Z. We write fst and
snd to denote the first and second projection on a product set. We write h ⊥ h′

if dom(h)∩dom(h′) = ∅, and the heap composition h∗h′ is defined as h∪h′ when
h ⊥ h′.
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Example 1 (Ordered lists). Programs manipulating ordered lists of integers can
be modeled choosing Dat = Z with the standard order. The same holds for lists
of reals, lists of naturals, and so on.

Example 2 (Fine-grained concurrent lists). Dat could be thought as the state
of a lock at the current node, that is the identifier of the thread holding the
node (or some constant for an available lock). Here, the ordering on data is not
relevant, but the equality between data is. For such a model, one may want to
express, for instance, that every thread holds the locks of at most two nodes of
a list, and that these nodes are necessarily consecutive.

Separation logic. We now define our assertion language SL< by extending the
standard separation logic with a comparison predicate. We assume a set DVar of
data variables, ranged over with v, w, etc. A valuation interpreting data variables
is a function ρ : DVar→Dat.

Formulae of SL< are defined by the grammar below.

φ ::= ¬φ | φ ∧ φ | ∃x.φ | ∃v.φ |x ↪→ y | val(x) ≤ v | val(x) ≥ v |x = y |φ ∗ φ |φ −−∗ φ

The semantics of the formulae is defined as usual, with the expected definition
for the predicates val(x) ≤ v and val(x) ≥ v.

(s, h), ρ |=SL φ ∧ ψ iff (s, h), ρ |=SL φ and (s, h), ρ |=SL ψ
(s, h), ρ |=SL ¬φ iff not (s, h), ρ |=SL φ
(s, h), ρ |=SL ∃x. φ iff there is l ∈ Loc such that (s[x �→ l], h), ρ |=SL φ
(s, h), ρ |=SL ∃v. φ iff there is α ∈ Dat such that (s, h), ρ[v �→ α] |=SL φ
(s, h), ρ |=SL x ↪→ y iff there is α ∈ Dat such that h(s(x)) = (s(y), α)
(s, h), ρ |=SL val(x) ≤ v iff there is α ∈ Dat and l ∈ Loc such that

h(s(x)) = (l, α), and α ≤ ρ(v)
(s, h), ρ |=SL val(x) ≥ v iff there is α ∈ Dat and l ∈ Loc such that

h(s(x)) = (l, α), and α ≥ ρ(v)
(s, h), ρ |=SL x = y iff s(x) = s(y)
(s, h), ρ |=SL φ1 ∗ φ2 iff there are two heaps h1, h2 such that

h = h1 ∗ h2 and (s, hi), ρ |=SL φi, i = 1, 2
(s, h), ρ |=SL φ1 −−∗ φ2 iff for all h′, if h ⊥ h′ and (s, h′), ρ |=SL φ1,

then (s, h ∗ h′), ρ |=SL φ2

Note that, due to our memory model, the natural semantics of val(x) ≤ v
implies in particular ∃z.x↪→z.

Derived formulae. We use standard notations ∨, ∀,⇒, and write val(x) = v,
val(x) ≤ val(y),... for the obvious combinations of comparison predicates. We
write precisely(A) to denote A ∧ ¬(A ∗ ∃x, y.x↪→y). We also abbreviate φ −−∗¬ ψ
for the sometimes called septraction connective defined by ¬(φ −−∗ ¬ψ). We use
the wildcard notation, e.g. x↪→− for ∃y.x↪→y, the so-called precise predicates �→
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(e.g. x�→y abbreviates precisely(x↪→y)), and equality over vectors (x1, .., xn) =
(y1, .., yn). We will also use the following shorthands:

x
≤
↪→y for x↪→y ∧ val(x) ≤ val(y), and x

≥
↪→y accordingly,

x�→(y, v) for x�→y ∧ val(x) = v

x↪→∗y for x = y ∨
(
� ∗ ( (x↪→−) ∧ (−↪→y) ∧ ¬(−↪→x) ∧ ¬(y↪→−)

∧ ∀z �∈ {x, y}. ((z↪→−) ⇔ (−↪→z)
)))

x↪→+y for ∃z.x↪→z ∧ z↪→∗y,
decls(x, y) for precisely(x = y) ∨ x�→y

∨ precisely
(∃y′. x↪→+y′ ∧ y′↪→y ∧ ∀z.(z↪→+y′) ⇒ (z

≥
↪→−)

)

We christen the
≤
↪→ predicate short-distance comparison, and by contrast refer

to val(x) ≤ val(y) as long-distance comparison. The binary predicate x↪→∗y is
the accessibility relation (see [6]); it asserts that (fst ◦ h)n(s(x)) = s(y) for some
n ≥ 0.

The binary predicate decls(x, y) characterises a heap composed of a single list
segment with data sorted in the decreasing order.

2.2 A Monadic Second Order Logic over Memory Shapes

Memory shapes. We define memory shapes as the abstraction of a memory heap
forgetting the whole data component of all cells, while retaining the graphical
aspect. A memory shape is hence a pair composed of a store and a heap shape,
(s, h) such that

– s is a variable valuation of the form s : Var → Loc,
– h is a partial function h : Loc⇀ Loc with finite domain.

We will use the typographic convention to differentiate a memory state (s, h)
from a memory shape (s, h). Note that concrete stores can be safely identified to
abstract stores. We will write shape(.) for the obvious map from concrete heaps
to heap shapes:

shape(h)
def≡ Loc⇀ Loc

l �→ fst(h(l)) with dom(shape(h)) = dom(h)

MSO over memory shapes. We assume a set VAR of monadic second-order vari-
ables, denoted by P, Q, R, . . . . An environment E is a map E : VAR→Pfin(Loc)
that associates to every second order variable a finite set of locations. Since we
require finiteness of models, the version of monadic second-order logic we shall
consider is usually called weak.

Formulae of (weak) monadic second-order logic (MSO) are defined by the gram-
mar below:

φ := ¬φ |φ ∧ φ | ∃x.φ | x ↪→ y |x = y | ∃P.φ | P(x)
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and are interpreted with the expected semantics:

(s, h), E |=MSO ¬φ iff not (s, h), E |=MSO φ
(s, h), E |=MSO φ ∧ ψ iff (s, h), E |=MSO φ and (s, h), E |=MSO ψ
(s, h), E |=MSO ∃x. φ iff there is l ∈ Loc such that (s[x �→ l], h), E |=MSO φ
(s, h), E |=MSO x ↪→ y iff h(s(x)) = s(y)
(s, h), E |=MSO x = y iff s(x) = s(y)
(s, h), E |=MSO ∃P. φ iff there is a finite subset P of Loc,

such that (s, h), E [P �→ P ] |=MSO φ
(s, h), E |=MSO P(x) iff s(x) ∈ E(P)

As usual, we will write P ⊆ Q for ∀x.P(x) ⇒ Q(x), P � Q for P ⊆ Q∧ ∃x.P(x) ∧
¬Q(x), and all set operators P ∩ Q, P ∪ Q, etc.

The following result is an almost straightforward consequence of the decid-
ability of monadic second-order logic over structures with one function symbol
[13] (see also [6] for details):

Theorem 1. The satisfiability of MSO formulae interpreted over memory
shapes is a decidable problem.

3 Motivations

The merge function, that builds an ordered list from two ordered lists, will be
our running example in this section. We consider the following C-like code :

struct cell {
int val;
struct cell *next;

};

function merge(cell *x, cell *y){
cell *z, *head;
if (x==NULL) return y;
if (y==NULL) return x;
if ((x->val) >= (y->val)){

head = x; x=x->next;
else {

head = y; y=y->next;
}
z= head;

while((x!=NULL)&&(y!=NULL)) {
/* MAIN LOOP P */
if ((x->val) >= (y->val)) {

z->next = x;
x = x->next;

} else {
z->next = y;
y = y->next;

}
z = z->next;
/* END OF LOOP P*/

}
[...]
}

Let P denote the instruction block of the while loop. In order to prove the
merge program, one usually needs at some point to provide a loop invariant A.
This invariant may be automatically found, using some acceleration techniques,
or might be provided by the user. In both cases, proving that the invariant is
preserved is equivalent to showing that

Post(P,A ∧ x �= null ∧ y �= null) ⇒ A (1)
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is a valid formula, where Post denotes the strongest postcondition. There are
several ways to compute the strongest postcondition of a loop-free sequence of
instructions. We sketch here two approaches: the original one in separation logic
theory [14], and the one followed by the tool Smallfoot [1].

The original approach does not make any assumption on the invariant A, and
fully exploits the magic wand connective. To give an idea, in our case, the post-
condition of the loop P of the merge program would look like

Post(P,B) = ∃x′, y′, z′. z′↪→z

∧val(x′) ≥ val(y′) ⇒
(

x′↪→x ∧ y′ = y

∧
(
∃v. z′ �→(x′, v) ∗ (z′ �→(−, v) −−∗¬ B{x′,z′

/x,z}
)))

∧val(x′) < val(y′) ⇒
(

y′↪→y ∧ x′ = x

∧
(
∃v. z′ �→(y′, v) ∗ (z′ �→(−, v) −−∗¬ B{x′,z′

/x,z}
)))

.

where primed variables quantify over the value of the corresponding program
variable before the execution of the loop. What should be underlined concerning
this approach is that automatically checking (1) would involve to solve the satis-
fiability of the logic in presence of magic wand, which is known to be undecidable
even with only one selector [6].

In the Smallfoot approach, on the contrary, the symbolic computation is not
parametric in the invariant. Usually, symbolic memory states are represented by
(disjunctions of) formulae of the form ∃x1, . . . , xn.Π ∧Σ, where Σ (the “spatial”
part) is a ∗-conjunct of the elementary list segments present in memory, and Π
(the “pure” part) handles all other informations that are not properly adressed
by local reasoning. For instance, a reasonable loop invariant following this format
could be:

A
def≡ ∃z1, z′1

(
( z1 = x ∨ z1 = y )

∧ z′1
≥
↪→z ∧ val(z) ≥ val(x) ∧ val(z) ≥ val(y)

)

∧ decls(head, z) ∗ z�→z1 ∗ decls(x, null) ∗ decls(y, null)
(2)

Symbolic computation over lists with values has not been defined in Smallfoot,
but taking inspiration from it, we may consider that for such an invariant the
result of the symbolic computation would look like:

Post(P,A ∧ x �= null ∧ y �= null)
def≡ ∃z′1, z2, z3, z4, x′, y′, z′.⎛

⎜⎝

(
(z2, z3, z4, y′) = (x′,x,y,y) ∨ (z2, z3, z4, x′) = (y′,y,x,x)

)

∧ z = z2 ∧ z′1
≥
↪→z′ ∧ z2

≥
↪→z3

∧ val(z′) ≥ val(x′) ∧ val(z′) ≥ val(y′) ∧ val(z2) ≥ val(z4)

⎞
⎟⎠

∧ decls(head, z′) ∗ z′ �→z2 ∗ z2 �→z3 ∗ decls(x, null) ∗ decls(y, null)

(3)

where again primed variables should be thought as the past values of the cor-
responding program variables. We may underline that, unlike for (2), there are
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long-distance comparisons in the pure part of (3) that involve two quantified
variables. As we will see in Section 5, this formula belongs to a fragment for
which we obtain an undecidability result. However, looking more carefully to it,
one may notice that, out of z′ and z′1, all quantified variables are aliased to pro-
gram variables, which allows to rewrite the formula so that each long-distance
comparison involves at least one open variable. Up to that, one may then use
our decidability result of Section 5 to automatically check (1).

4 Decidability of Short-Distance Comparisons

In this section, we establish the decidability of the short-distance fragment of
SL<. This fragment is defined by the following grammar:

φ ::= ¬φ |φ ∧ φ | ∃x.φ | x ↪→ y |x ≤
↪→y |x ≥

↪→y |x = y |φ ∗ φ
(short-distance fragment)

The decidability of satisfiability for this fragment is obtained by reduction to
the satisfiability of MSO over shapes.

Colored shapes. We hence have to abstract the values taking care of their local
comparisons. To do so, we use a colored shape, with three colors on the edges3:
‘<’, ‘>’, and ‘=’. In logical terms, these colors will be defined by two second
order variables, noted X and Y , and we will observe the color ‘=’ if both X and
Y holds for the source location of the edge, ‘<’ if X holds but not Y , and ‘>’
if Y holds but not X . The case where neither X nor Y holds is irrelevant since
we assumed a total order on data values, so we should constrain the possible
choices for X and Y to avoid this situation. Moreover, some extra constraints
will be involved by the necessity to manipulate only colored shapes for which
it is possible to assign data respecting the colors (for instance, a cycle of ‘<’
cannot be assigned data).

The graph of constraints. Given a shape (s, h), and the interpretations X ,Y ⊆
dom(h) of the second-order variables mentioned before, we define the associated
graph of constraints G = (V,E) where:

– V is dom(h) quotiented by the equivalence l ∼ l′ relating locations connected
by a non oriented, ’=’-labeled path in the colored shape. Note that each
∼-equivalence class contains at most one location l whose image under h
lies outside the equivalence class of l. In such a situation, [l] denotes this
equivalence class.

– E is the set of pairs of equivalence classes ([l], [l′]) such that
• either h(l) = l′ and the color on l is ’>’
• or h(l′) = l and the color on l′ is ’<’

3 Formally, on vertices, but each edge can be non-ambiguously identified to its source
vertex in a shape.
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Fig. 1. A concrete heap (1), its colored abstraction (2), and the associated graph of
constraints (3). Here X = {c, d, f, g} and Y = {a, d, e, f, g}.

Figure 1 gives an example of a colored shape and its associated graph of constraints.
Note that an edge towards a dangling pointer cannot be colored, and this is in fact
the unique situation in which one allows ¬X ∧¬Y . The graph of constraints helps
us to decide whether or not it is possible to assign values to a colored shape: in-
deed, this problem is equivalent to defining a topological order on the graph of con-
straints, which is known to be equivalent to this graph being acyclic. What remains
to be explained now is: (1) how to define the graph of constraints in MSO, (2) how
to express acyclicity, (3) how to treat separating conjunction.

The reduction. The reduction from SL< over memory states to MSO over shapes
is defined by rdSL<→MSO(φ) = ∃X.∃Y.∃Z.Cons(X,Y, Z) ∧ rd(φ,X, Y, Z) where:

– Z is an extra second-order variable that is needed to define the current
focus, that is the subheap of the original heap on which the (sub)formula is
currently evaluated.

– rd is an auxiliary reduction that works assuming that X,Y and Z have
been correctly guessed, updating these parameters appropriately when ∗ is
translated.

– Cons are constraints imposed on X , Y and Z to guarantee that the first
guess is a valid one: Z is the domain of the heap, and X and Y define a
colored shape to which one may assign values.

Constraints. We impose three contraints : Cons(X,Y, Z)
def≡ Cons1(X,Y, Z) ∧

Cons2(X,Y, Z) ∧ Cons3(X,Y, Z)

1. the only admitted color on a monochromatic cycle is ’=’ (this is indeed
equivalent to the acyclicity condition on the graph of constraints):

Cons1(X,Y, Z)
def≡ ∀U ⊆ Z. Loop(U) ⇒ (U ⊆ X ⇔ U ⊆ Y )

where Loop(U) is defined as SetOfLoops(U)∧∀V � U.¬SetOfLoops(V ) and
SetOfLoops(U) is ∀x.U(x) ⇒ ∃y.U(y) ∧ y ↪→ x

2. every edge that should be colored is colored with ’<, ’>’ or ’=’

Cons2(X,Y, Z)
def≡ ∀x. (Z(x) ∧ (∃y.Z(y) ∧ x ↪→ y)) ⇔ (X(x) ∨ Y (x))

3. Z is the domain of the heap: Cons3(X,Y, Z)
def≡ ∀x.(x ↪→ −) ⇔ Z(x).
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Let us now state the results we may derive from these definitions. We say that
a location l is an increasing (resp. decreasing) node if there are l′, l′′ ∈ Loc and
α, β ∈ Dat such that h(l) = (l′, α), h(l′) = (l′′, β), and α ≤ β (resp. α ≥ β). We
write dom+(h) (resp. dom−(h)) to denote the set of increasing (resp. decreasing)
nodes of h, and Eh denotes [X �→ dom+(h), Y �→ dom−(h), Z �→ dom(h)].

Lemma 1 (Constraints soundness). If (s, h), E |=MSO Cons(X,Y, Z) then
there is a h : Loc ⇀ Loc × Dat such that shape(h) = h, E(Z) = dom(h),
E(X) = dom+(h) and E(Y ) = dom−(h).

Lemma 2 (Constraints completeness). For all models with data (s, h):

(s, shape(h)), Eh |=MSO Cons(X,Y, Z).

Auxiliary recursive translation. The auxiliary recursive translation rd is defined
as follows: (1) it is isomorphic on the cases of φ ∧ ψ, ¬φ, ∃x.φ, and x = y, and
(2) for other connectives, parameters X,Y, Z come into play:

rd(x ↪→ y,X, Y, Z)
def≡ Z(x) ∧ x ↪→ y

rd(x
≤
↪→y,X, Y, Z)

def≡ Z(x) ∧ Z(y) ∧X(x) ∧ x ↪→ y

rd(x
≥
↪→y,X, Y, Z)

def≡ Z(x) ∧ Z(y) ∧ Y (x) ∧ x ↪→ y

rd(φ1 ∗ φ2, X, Y, Z)
def≡ ∃Z1, Z2.

rd(φ1, X, Y, Z1) ∧ rd(φ2, X, Y, Z2) ∧ Z = Z1 ∪ Z2 ∧ Z1 ∩ Z2 = ∅
Lemma 3 (Reduction Lemma). For all s, h, for all Z ⊆ dom(h),

(s, shape(h)), Eh[Z �→Z] |=MSO rd(φ,X, Y, Z) if and only if (s, h| Z) |=SL φ.

Theorem 2. For all formulae φ of SL<, there exists (s, h) such that (s, h) |=SL φ
if and only if there exists (s, h) such that (s, h) |=MSO rdSL<→MSO(φ)

Thanks to Theorem 2 and Theorem 1, we have established the announced result:

Corollary 1. The satisfiability problem for the fragment of SL< with short-
distance comparisons is decidable.

5 Long-Distance Comparisons

5.1 An Undecidablity Result

We consider now the fragment of SL< where magic wand is still dropped, but
long-distance comparison is considered:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | ∃v.φ |x ↪→ y | val(x) ≤ v | val(x) ≥ v |x = y |φ ∗ φ.
(long-distance fragment)

We show that, without any further restriction, long-distance comparisons yield
undecidability, even for a simpler fragment:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | x ↪→ y | val(x) = val(y) |x = y |φ ∗ φ.
(equality long-distance fragment)
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Theorem 3. The satisfiability problem for the equality long-distance fragment
is undecidable.

The proof goes by reduction to the satisfiability problem of first-order formulae
over data words. Before giving the intuition of the reduction, we first recall this
logic.

First-order logic over data words. We assume a finite set Σ. A finite data word
is a sequence w = w1..wn, where wi = (ai, αi) ∈ Σ×Dat; we write |w | to denote
the length n ∈ N of w. Note that, so far, we assumed a total order on Dat, but
this aspect is not essential for this reduction, and one may think of Dat as any
arbitrary infinite set. The first-order formulae we will evaluate over these models
are defined by the following grammar:

(FO over data words) φ ::= ¬φ |φ ∧ φ | ∃x.φ | a(x) | x = y + 1 |x ∼Dat y

where a ∈ Σ. Variables are interpreted as positions in the word through a
valuation σ : Var→{1.. |w |}, +1 is the standard addition over N, and ∼Dat

relates positions holding the same datum. More formally

w, σ |=FO ∃x.φ if there is n ∈ {1.. |w |} s.t. w, σ[x�→n] |=FO φ
w, σ |=FO a(x) if aσ(x) = a
w, σ |=FO x = y + 1 if σ(x) = σ(y) + 1
w, σ |=FO x ∼Dat y if ασ(x) = ασ(y)

Theorem 4 (see [2], Prop. 27). The satisfiability problem for a closed sen-
tence of FO over data words is undecidable.

The reduction. To prove Theorem 3, we define a translation from FO to the
long-distance fragment such that a formula φ admits a data word model if and
only if its translation admits a memory state model. A data word of length n is
encoded as a list segment of length 2n, placing the sequence of letters of Σ in
the even positions, and the data sequence in odd positions. Then x = y + 1 can
be encoded by y↪→2x, and x ∼Dat y can be encoded by val(x) = val(y).

5.2 Decidability of Guarded Long-Distance Comparisons

We now consider the fragment of formulae where every quantification over val-
ues is restricted to values stored in the cells that are pointed by the program
variables:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | ∃v.val(x) = v ∧ φ
|x ≤
↪→y |x ≥

↪→y |x ↪→ y | val(x) ≤ v | val(x) ≥ v |x = y |φ ∗ φ.
(guarded long-distance fragment)

Note that guarded long-distance comparisons are quite weak, and we need to
add short-distance comparisons as basic predicates if we still want to use them.

Theorem 5. The satisfiability problem for the guarded long-distance fragment
is decidable.
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Proof of Theorem 5. We only sketch the proof. We adapt the proof of Theo-
rem 2 by extending the notions of colored shapes and graphs of constraints. Let
ProgVar = {x1, ..,xn} � Var be a finite set of variables such that every formula
to be translated will have all its open variables in ProgVar. To every variable
x ∈ ProgVar, we associate two second-order variable Xx, Yx. A colored shape is
then a tuple

CS =
(

(s, h) , X ,Y, Xx1 ,Yx1 , . . . ,Xxn ,Yxn

)

where Xx,Yx are finite sets of locations; it is well defined if X ∪ Y = dom(h) ∩
h−1(dom(h)) and Xx ∪ Yx = dom(h) for every program variable x such that
s(x) ∈ dom(h). Let (s, h) be a fixed shape. We define the relation ∼ on dom(h)
as the smallest equivalence relation such that:

– if l ∈ Xx ∩ Yx and s(x) ∈ dom(h), then s(x) ∼ l;
– if h(l) = l′, and l ∈ X ∩ Y, then l ∼ l′.

The graph of constraints associated to CS is the pair (V,E) where the vertex
set V is the quotient of dom(h) by ∼, and there is an edge from the equivalence
class c1 to c2 if at least one of the following conditions holds:

– either there is s(x) ∈ c1 and l ∈ c2 such that l ∈ Yx −Xx;
– or there is s(x) ∈ c2 and l ∈ c1 such that l ∈ Xx − Yx;
– or there is l ∈ c1, l

′ ∈ c2 such that h(l) = l′ and l ∈ Y − X ;
– or there is l ∈ c1, l

′ ∈ c2 such that h(l′) = l and l′ ∈ X − Y.

It is possible to check that the graph of constraints and the acyclicity condition
on it are MSO definable. We may then adapt the reduction of Section 4: we guess
the Xxs and Yxs at start and check we made a valid guess, and we extend the
recursive translation rd(φ) with the following cases:

rd(∃v.val(x) = v ∧ φ)
def≡ rd(φ{val(x)/v})

rd(val(x) ≤ val(x))
def≡ Z(x) ∧ Z(x) ∧ Yx(x) ∧ ¬Xx(x)

rd(val(x) ≥ val(x))
def≡ Z(x) ∧ Z(x) ∧Xx(x) ∧ ¬Yx(x)

Perspectives. We expect this decidability result to extend to more complex
data structures that would have a decidable MSO theory (trees, doubly-linked
lists, lists of lists, and more generally tree-width bounded structures), and to
more complex short-distance comparisons (n-th successor, brothers,...). More-
over, such restrictions may be sufficient to handle other interesting applications,
for instance search-trees. In this sense, we claim that the graph of constraints is
the “right” general concept for logics dealing with sorted data structures.

6 Magic Wand and Restricted Magic Wand

Even without data, the logic with the operator −−∗ is proved to be undecid-
able in [6]. In the technical report [5] corresponding to the paper, a decidable
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separation logic with a restricted magic wand is presented. Let us write the def-
inition of this binary operator, −−∗n (for n an integer). Unlike the plain operator
−−∗, the quantification on disjoint heaps of −−∗n considers only heaps for which
the cardinality of the domain is bounded by n. More formally, we define that
(s, h) |= φ1−−∗nφ2 if and only if for all h′ such that h′ ⊥ h and | dom(h′) | ≤ n,
if (s, h′) |= φ1 then (s, h ∗ h′) |= φ2. It can be seen as an abbreviation of
(φ1 ∧ ¬∃x1, . . . , xn+1.

∧
i�=j xi �= xj ∧ ∧i ∃y.xi ↪→ y) −−∗ φ2. In the sequel, we

will prove that, in the context of heaps with data, −−∗1 is sufficient to obtain
undecidability.

Let R denote an arbitrary binary relation on Dat. Let us call ∼R the equiv-
alence relation defined as α ∼R α′ iff {β, βRRα} = {β, βRRα′}. We consider
the atomic formula val(x)Rval(y) stating that values stored in x and y com-
pare through R. Formally, (s, h) |=SL val(x)Rval(y) iff there are α, β ∈ Val and
l, l′ ∈ Loc such that h(s(x)) = (l, α), h(s(y)) = (l′, β), and αRβ.

We now introduce the relation x
R
↪→y for x↪→y ∧ val(x)Rval(y), and define the

logic SL(R,−−∗1) with the grammar:

φ ::= ¬φ | φ ∧ φ | ∃x.φ |x ↪→ y |x R
↪→y |x = y |φ ∗ φ |φ−−∗1φ.

We are going to prove that satisfiability and validity problems are undecidable
for SL(R,−−∗1), for any R ∈ {≤,≥,=, <,>}. We will rely on the previous section,
especially Theorem 3, by simulating a long-distance equality. We first need the
following fact:

Lemma 4. Let R ∈ {≤,≥,=, <,>}. Then ∼R has an infinite number of equiv-
alence classes.

Let ∼ be an equivalence relation on Dat with infinitely many equivalence classes.
Let us define the following fragment:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | x ↪→ y | val(x) ∼ val(y) |x = y |φ ∗ φ.
(equivalence long-distance fragment)

Then the following lemma, a slight variation of Theorem 3, also holds in this
generalised framework:

Lemma 5. The satisfiability problem for the equivalence long-distance fragment
is undecidable.
Proof. By the same encoding as the one of Theorem 3, one may reduce a
satisfiability problem of an FO sentence over data words, where data taken from
the infinite quotient set Dat/ ∼R, to the satisfiability problem for the equivalence
long-distance fragment. �

Lemma 6. There is a formula φR(x, x′) ∈ SL(R,−−∗1) such that for all (s, h)
with {s(x), s(x′)} ⊆ dom(h):

(s, h) |= φR(x, x′) iff (s, h) |= val(x) ∼R val(x′)
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We only sketch the proof. φ−−∗¬1ψ will abbreviate ¬(φ−−∗1¬ψ). Then (s, h) |= φ−−∗¬1ψ
iff there is h′ such that (s, h′) |= φ, (s, h ∗ h′) |= ψ and | dom(h′) | ≤ 1. The
operators −−∗1 and −−∗¬1 will be used to simulate restricted quantifications over
Dat, respectively universal and existential. Consider the formula φ

∃x1.∃x2.
(¬∃x3.x1 ↪→ x3 ∨ x2 ↪→ x3

)
∧(x1 ↪→ x2) −−∗1

(
(val(x1) RR val(x)) ⇔ (val(x1) RR val(x′))

)

where val(x1)RRval(x) abbreviates (x2 ↪→ x)−−∗¬1[(x1
R
↪→x2) ∧ x2

R
↪→x]. The for-

mula φ expresses that for all α, there is β such that αRβRsnd(h(s(x))) if and
only if there is β such that αRβRsnd(h(s(x′))), that is val(x) ∼R val(x′). As a
consequence:

Theorem 6. For any R ∈ {≤,≥, <,>,=}, the validity and satisfiability prob-
lems for SL(R,−−∗1) are undecidable.

7 Conclusion

Our results give a wide picture of the decidability status of the satisfiability
problem for separation logic dealing with data.

With the ability to describe lists and quantify over locations, allowing long-
distance comparisons brings undecidability, and so does allowing the operator
−−∗, even strongly restricted. Yet, there is a very positive result: dropping these
two features makes the satisfiability problem decidable, still being able to do
local reasoning and express properties about ordered recursive structures. The
decidability even holds when a finite set of references can be compared to all the
rest of the memory.

Some ways to restrict the full language are still unexplored, for instance
bounding the amount of quantified variables. With the same hope to obtain
decidability for satisfiability problems, one may look at extension of our de-
cidable fragment. For instance, our results are general for any totally ordered
infinite set, and questions remain open about partially ordered sets.
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