
Parameter Reduction in Grammar-Compressed Trees

Markus Lohrey1, Sebastian Maneth2, and Manfred Schmidt-Schauß3

1 Universität Leipzig, Institut für Informatik, Germany
2 NICTA and University of New South Wales, Australia

3 Johann Wolfgang Goethe-Universität Frankfurt, Institut für Informatik, Germany
lohrey@informatik.uni-leipzig.de, sebastian.maneth@nicta.com.au,

schauss@cs.uni-frankfurt.de

Abstract. Trees can be conveniently compressed with linear straight-line
context-free tree grammars. Such grammars generalize straight-line context-free
string grammars which are widely used in the development of algorithms that exe-
cute directly on compressed structures (without prior decompression). It is shown
that every linear straight-line context-free tree grammar can be transformed in
polynomial time into a monadic (and linear) one. A tree grammar is monadic
if each nonterminal uses at most one context parameter. Based on this result,
a polynomial time algorithm is presented for testing whether a given nondeter-
ministic tree automaton with sibling constraints accepts a tree given by a linear
straight-line context-free tree grammar. It is shown that if tree grammars are non-
deterministic or non-linear, then reducing their numbers of parameters cannot be
done without an exponential blow-up in grammar size.

1 Introduction

The current massive increase in data volumes motivates the development of algorithms
on compressed data, like for instance compressed strings, trees, and graphs. The general
goal is to construct algorithms that work directly on compressed data, without prior
decompression. Considerable amount of work has been done concerning algorithms
that execute on compressed strings, see [13] for a survey. In this field, a popular succinct
string representation are context-free grammars which generate exactly one string. It
can be statically guaranteed that only one string is generated, by restricting to acyclic
grammars with exactly one production per nonterminal. Such grammars are known as
straight-line programs, briefly SLPs. Since an SLP with n productions may generate a
string of length 2n, an SLP can be seen as a compressed representation of the generated
string. Some of the nice features of SLPs are:

– Many dictionary based compression schemes, like for instance LZ78 and LZ77 can
be converted efficiently into SLPs, see, e.g., [13] for further details.

– SLPs are based on context-free grammars and are apt for concise and clean mathe-
matical proofs.

– For many algorithmic problems, SLPs allow efficient algorithms that avoid prior
decompression. The most studied example in this context is the pattern matching
problem for compressed strings, see the references in [13].

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 212–226, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parameter Reduction in Grammar-Compressed Trees 213

Due to these appealing properties, it is natural to generalize SLPs to other more complex
data structures. For trees, this is done in [3,11]. In this context, a tree is represented by
a context-free tree grammar that generates exactly one tree. Such grammars are called
straight-line context-free tree grammars, briefly SLCF tree grammars in [3,11]. They
generalize the sharing of repeated subtrees in a tree as it is well-known from DAGs
(directed acyclic graphs) to the sharing of repeated subpatterns in a tree (a subpattern
is a connected subgraph of the tree). In the context of commonly used XML docu-
ments, experiments show that SLCF tree grammars can give approximately 2-3 times
higher compression ratios [3] than DAGs [2] when compressing document tree struc-
tures. Since sharing of patterns in an SLCF tree grammar can occur along the paths of
a tree, it is possible to have a grammar of size O(n)1 that generates a tree of height 2n;
this is not possible with a DAG (the DAG has the same height as its represented tree).
More dramatically, an SLCF tree grammar of size O(n) can even generate a full binary
tree of height 2n, which has 22n

many nodes. Hence, double exponential compression
rates can be achieved.

The downside of such extreme compression capabilities is that arbitrary SLCF tree
grammars do not inherit some of the nice algorithmic properties of (string) SLPs. For
instance, whereas evaluating a given automaton on an SLP representation of a string
can be done in polynomial time [13], this problem becomes PSPACE-complete for tree
automata and SLCF tree grammars [11]. This motivates the investigation of restricted
classes of SLCF tree grammars. Linearity is one of these restrictions: a context-free
tree grammar is linear if every context parameter occurs at most once in every right-
hand side. Note that our tree compression algorithm BPLEX [3] generates a small linear
SLCF tree grammar for a given input tree. It can be checked in polynomial time whether
two linear SLCF tree grammars generate the same tree [3,14]. This result generalizes
a corresponding result for (string) SLPs of Plandowski [12]. It remains open whether
polynomial time equality testing is also possible for non-linear SLCF tree grammars.

Another useful restriction on SLCF tree grammars is k-boundedness (for some
fixed k): a context-free tree grammar is k-bounded if every nonterminal uses at most
k context parameters; 1-bounded grammars are also called monadic. In this paper we
study the impact of the various restrictions on SLCF tree grammars with respect to
compression. Our main result is the following: a given linear SLCF tree grammar can
be transformed in polynomial time into an equivalent linear and monadic SLCF tree
grammar (Theorem 7). In other words, for the purpose of compression by linear gram-
mars, one parameter is already enough; the corresponding linear monadic grammars
offer the same kind of compression as linear SLCF tree grammars. Linear monadic
SLCF tree grammars are also used in [9,10,14], where they are called singleton tree
grammars. We present two algorithmic applications of Theorem 7: it can be tested in
polynomial time whether a given tree automaton accepts the tree given by a linear SLCF
tree grammar (Corollary 9). This solves our main open problem from [11], where we
could only present a polynomial time algorithm for linear k-bounded SLCF tree gram-
mars (when k is a fixed constant). Our second application generalizes Corollary 9 to tree
automata with equality and disequality constraints between sibling nodes [1,4]. These
are bottom-up tree automata which can test whether the subtrees rooted at children of

1 The size of a grammar is defined as the sum of the sizes of all right-hand sides of productions.

214 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

the current node are equal or not equal. Their recognized languages are closed under
Boolean operations and are strictly more general than regular tree languages (for a re-
cent generalization see [5]). The running time of this second polynomial time algorithm
is much worse than the running time stated in Corollary 9 for ordinary tree automata;
therefore we state the two results separately.

In Section 7 we show that Theorem 7 does not extend to larger classes of grammars.
First, we consider nondeterministic linear SLCF tree grammars, i.e., acyclic grammars
(no recursion) which may have several productions for each nonterminal. Such gram-
mars represent finite sets of trees. We give an example of a linear and n-bounded non-
deterministic SLCF tree grammar for which every equivalent k-bounded such grammar
(k < n) must be exponentially larger. Using a straightforward extension of our proof
of Theorem 7, we show that this exponential blow-up is also the worst case. Next,
we consider non-linear SLCF tree grammars. We present an example of a non-linear n-
bounded SLCF tree grammar of size O(n) for which every equivalent k-bounded SLCF
tree grammar (k < n) has size at least 2n−k.

A full version of this paper including all proofs will appear.

2 Trees and SLCF Tree Grammars

A ranked alphabet is a pair (F, rank), where F is a finite set of function symbols and
rank : F → IN assigns to each α ∈ F its rank. Let Fi = {α ∈ F | rank(α) = i}
and F≥i =

⋃
j≥i Fj . Symbols in F0 are called constants. We fix a ranked alphabet

(F, rank) in the following. An F-labeled ordered tree t (or ground term over F) is a
pair t = (domt, λt), where (i) domt ⊆ IN∗ is finite, (ii) λt : domt → F, (iii) if
w = vv′ ∈ domt, then also v ∈ domt, and (iv) if v ∈ domt and λt(v) ∈ Fn, then
vi ∈ domt if and only if 1 ≤ i ≤ n. The edge relation of t is implicitly given as
{(v, vi) ∈ domt × domt | v ∈ IN∗, i ∈ IN}. The size of t is |t| = |domt|. We identify
an F-labeled tree t with a term in the usual way: if λt(ε) = α ∈ Fi, then this term
is α(t1, . . . , ti), where tj is the term associated with the subtree of t rooted at node j.
The set of all F-labeled trees is T (F). Let us fix a countable set Y = {y1, y2, . . .} of
(formal context-) parameters (below we also use a distinguished parameter z �∈ Y).
The set of all F-labeled trees with parameters from Y ⊆ Y is T (F, Y). Formally, we
consider parameters as new constants and define T (F, Y) = T (F ∪ Y). The tree t ∈
T (F, Y) is linear, if every parameter y ∈ Y occurs at most once in t. For trees t ∈
T (F, {y1, . . . , yn}), t1, . . . , tn ∈ T (F, Y), by t[y1/t1 · · · yn/tn] we denote the tree that
is obtained by replacing in t every yi-labeled leaf with ti (1 ≤ i ≤ n). A context is a
tree C ∈ T (F, Y ∪ {z}), in which the distinguished parameter z appears exactly once.
Instead of C[z/t] we write briefly C[t]. When talking about algorithms on trees, we
assume the RAM model of computation, and we assume that trees are given by the
standard pointer representation.

For further consideration, let us fix a countable infinite set Ni of symbols of rank i
with Fi ∩ Ni = ∅. Hence, every finite subset N ⊆ ⋃

i≥0 Ni is a ranked alphabet. A
context-free tree grammar (over F) is a triple G = (N, P, S), where (i) N ⊆ ⋃

i≥0 Ni

is a finite set of nonterminals, (ii) P (the set of productions) is a finite set of pairs of
the form (A → t), where A ∈ N and t ∈ T (F ∪ N, {y1, . . . , yrank(A)}), and (iii)

Parameter Reduction in Grammar-Compressed Trees 215

S ∈ N ∩ N0 is the start nonterminal of rank 0. We assume that every nonterminal B ∈
N \{S} as well as every terminal symbol from F occurs in the right-hand side t of some
production (A → t) ∈ P . For a production (A → t) ∈ P with A ∈ N ∩ Nn, we also
write A(y1 . . . , yn) → t(y1, . . . , yn) in order to emphasize that rank(A) = n. The size
|G| of G is |G| =

∑
(A→t)∈P |t|. Let us define the derivation relation⇒G on T (F∪N, Y)

as follows: s ⇒G s′ if there exist a production (A → t) ∈ P with rank(A) = n,
a context C ∈ T (F ∪ N, Y ∪ {z}), and trees t1, . . . , tn ∈ T (F ∪ N, Y) such that
s = C[A(t1, . . . , tn)] and s′ = C[t[y1/t1 · · · yn/tn]]. Let L(G) = {t ∈ T (F) | S ⇒∗

G
t} ⊆ T (F). We consider several subclasses of context-free tree grammars:

– G is linear, if for every production (A → t) ∈ P the term t is linear.
– G is non-erasing, if t �∈ Y for every production (A → t) ∈ P .
– G is non-deleting, if for every production (A → t) ∈ P , each of the parameters

y1, . . . , yrank(A) appears in t.
– G is productive, if it is non-erasing and non-deleting.
– G is k-bounded (for k ∈ IN), if rank(A) ≤ k for every A ∈ N .
– G is monadic if it is 1-bounded.

Finally, a straight-line context-free tree grammar (SLCF tree grammar) is a context-
free tree grammar G = (N, P, S), where (i) for every A ∈ N there is exactly one
production (A → tA) ∈ P with left-hand side A and (ii) the relation {(A, B) ∈
N × N | B occurs in tA} is acyclic; we call the reflexive transitive closure of this
relation the hierarchical order of G. Conditions (i) and (ii) ensure that L(G) contains
exactly one tree, which we denote with val(G). Alternatively, for every term t ∈ T (F∪
N, {y1, . . . , yn}) we can define a term valG(t) ∈ T (F, {y1, . . . , yn}) by induction on
the hierarchical order as follows, where 1 ≤ i ≤ n, f ∈ Fm, and A ∈ N ∩ Nm:

– valG(yi) = yi

– valG(f(t1, . . . , tm)) = f(valG(t1), . . . , valG(tm))
– valG(A(t1, . . . , tm)) = valG(tA)[y1/valG(t1) · · · ym/valG(tm)]

Finally, let valG(A) = valG(A(y1, . . . , yrank(A))) and val(G) = valG(S). SLCF tree
grammars generalize string generating straight-line programs [13] in a natural way to
trees. The following example shows that SLCF tree grammars may lead to doubly expo-
nential compression ratios; thus, they can be exponentially more succinct than DAGs.

Example 1. Let the (non-linear) monadic SLCF tree grammar Gn consist of the produc-
tions S → A0(a), Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n, and An(y1) → f(y1, y1).
Then val(Gn) is a complete binary tree of height 2n + 1. Thus, |val(Gn)| = 2 · 22n − 1.

On the other hand, it is not difficult to show that for a linear SLCF tree grammar G
one has |val(G)| ≤ 2O(|G|). Thus, linear SLCF tree grammars have at most expo-
nential compression ratios, just like DAGs, which can be seen as 0-bounded SLCF
tree grammars. But even linear SLCF tree grammars can be exponentially more suc-
cinct than DAGs: the linear SLCF tree grammar Gn with the productions S → A0(a),
Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n, and An(y1) → f(y1) generates a monadic
tree of height 2n + 1. The minimal DAG for this tree is the tree itself and thus has size
2n + 1. The following result was shown in [3].

216 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Theorem 2. There exists a polynomial time algorithm that tests for two given linear
SLCF tree grammars G and H, whether val(G) = val(H).

It is open whether Theorem 2 can be generalized to non-linear SLCF tree grammars.
In [3] we could only prove a PSPACE upper bound for the equality problem for non-
linear SLCF tree grammars.

3 Tree Automata

Let F be a ranked alphabet. A nondeterministic tree automaton (over F), NTA for short,
is a tuple A = (Q, Δ, F), where (i) Q is a finite set of states, (ii) F ⊆ Q is the set of
final states, and (iii) Δ is a set of transitions of the form (q1, . . . , qrank(f), f, q), where

f ∈ F and q1, . . . , qrank(f), q ∈ Q. We define the mapping Δ̃ : T (F) → 2Q inductively
as follows, where n ≥ 0, f ∈ Fn, and t1, . . . , tn ∈ T (F):

Δ̃(f(t1, . . . , tn)) = {q ∈ Q | ∃(q1, . . . , qn, f, q) ∈ Δ : q1 ∈ Δ̃(t1), . . . , qn ∈ Δ̃(tn)}

The language defined by A is L(A) = {t ∈ T (F) | Δ̃(t) ∩ F �= ∅}. The size of the
NTA A = (Q, Δ, F) is defined as |A| =

∑
(q1,...,qn,f,q)∈Δ(n · log |Q| + log |F|).

A nondeterministic tree automaton with sibling-constraints (over F), NTAC for
short, is a tuple A = (Q, Δ, F), where Q and F are as for NTAs and Δ is a set of
transitions of the form (E, D, q1, . . . , qrank(f), f, q), where E, D ⊆ {1, . . . , rank(f)}2

are disjoint relations such that D is irreflexive, f ∈ F, and q1, . . . , qrank(f), q ∈ Q. The
relation E (resp. D) is a set of equality (resp. disequality) constraints between siblings.
We define the mapping Δ̃ : T (F) → 2Q inductively as follows, where n ≥ 0, f ∈ Fn,
and t1, . . . , tn ∈ T (F):

Δ̃(f(t1, . . . , tn)) = {q ∈ Q | ∃(E, D, q1, . . . , qn, f, q) ∈ Δ :

q1 ∈ Δ̃(t1), . . . , qn ∈ Δ̃(tn), ∀(i, j) ∈ E : ti = tj , ∀(i, j) ∈ D : ti �= tj}

Again, the language defined by A is L(A) = {t ∈ T (F) | Δ̃(t) ∩ F �= ∅}. The size of
the NTAC A is |A| =

∑
(E,D,q1,...,qn,f)∈Δ(n2 + n · log |Q| + log |F|).

4 Normal Forms for Linear SLCF Tree Grammars

In this section, we only deal with linear SLCF tree grammars. It is easy to see that
a linear SLCF tree grammar G = (N, P, S) can be transformed in linear time into
an equivalent linear and non-deleting SLCF tree grammar: if for a production A →
tA (with rank(A) = n) the parameters yi1 , . . . , yik

∈ {y1, . . . , yn} do not occur in
tA, then we can reduce the rank of A to n − k. Moreover, if A occurs in a right-
hand side tB at position v ∈ domtB , then we remove from tB the subtrees rooted at
positions vi1, . . . , vik. We now produce an equivalent non-deleting grammar in one
pass through G: starting from the leaves of the hierarchical order of G, we reduce the
rank of each nonterminal A and store with it the indices of removed parameters (so that

Parameter Reduction in Grammar-Compressed Trees 217

in later occurrences of A we know which subtrees to remove). Note that the size of the
new grammar is at most |G|.

Now, let G be a linear and non-deleting SLCF tree grammar. Again it is easy to
see that G can be transformed in linear time into an equivalent linear and productive
SLCF tree grammar: we remove each production with right hand side y1, and apply the
removed productions in all remaining right-hand sides. As before, this can be done in
one pass through the grammar G, and the resulting grammar has size at most |G|.

A linear SLCF tree grammar G = (N, P, S) is in Chomsky normal form (CNF) if it
is productive, and for every production (A → tA) ∈ P with rank(A) = n, the term tA
has one of the following two forms:

(a) f(y1, . . . , yn) with f ∈ Fn

(b) B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj , . . . , yn) with B, C ∈ N , 1 ≤ i ≤ j ≤ n + 1.

The proof of the following proposition is a straightforward extension of the correspond-
ing construction for context-free string grammars.

Proposition 3. Let G = (N, P, S) be a linear and productive SLCF tree grammar over
F and let r be the maximal rank in N ∪ F. We can construct in time O(r · |G|) a linear
SLCF tree grammar G′ = (N ′, P ′, S) in CNF such that N ′ ⊇ N , |N ′| ≤ 2 · |G|, G′ is
k′-bounded, k′ ≤ 2r − 1, and valG′(A) = valG(A) for all A ∈ N .

For macro grammars, a normal form similar to CNF exists (called IO standard form
in [7, Definition 3.1.7]), where the nonterminal C in the second type (b) can even be
assumed to be the first argument of B (for us this does not work, because in CNF the
parameters have to occur in the order y1, . . . , yrank(A) in the right-hand side for A).
Macro grammars are similar to context-free tree grammars except that they generate
strings. Since in an SLCF tree grammar, every nonterminal has exactly one production,
it is not difficult to see that the derivation order (IO or OI, see e.g. [4] for a definition)
does not matter for SLCF tree grammars. It is also known that for arbitrary linear and
non-deleting context-free tree grammars the derivation order again does not matter [8].

Example 4. Consider the linear and productive SLCF tree grammar with the two pro-
ductions S → X(X(a, b), X(b, a)) and X(y1, y2) → h(i(y1), i(y2)). An equivalent
linear SLCF tree grammar in CNF consists of the following productions:

S → X0(X1) X(y1, y2) → Y (I(y1), y2)
X0(y1) → X(y1, X2) Y (y1, y2) → H(y1, I(y2))

X1 → X3(A) A → a

X2 → X4(B) B → b

X3(y1) → X(y1, B) I(y1) → i(y1)
X4(y1) → X(y1, A) H(y1, y2) → h(y1, y2).

Linear SLCF tree grammars in CNF can be stored more efficiently than ordinary SLCF
tree grammars: if we know the rank of each (non)terminal, then for a right-hand side
B(y1, . . . , yi, C(yi+1, . . . , yj), yj+1, . . . , ym) (resp. f(y1, . . . , yn)) we only need to

218 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

store the triple (B, C, i) (resp. the symbol f) which has size O(log k) if the gram-
mar is k-bounded. We call this new representation of a CNF grammar its triple nota-
tion. From a given linear SLCF tree grammar G, we can construct an equivalent linear
SLCF tree grammar in CNF in time O(r · |G|) (where r is again the maximal rank of
(non)terminals) which needs only space O(log(r) · |G|) in triple notation.

5 Parameter Reduction in Linear SLCF Tree Grammars

In this section our main result is proved. We show that a given linear SLCF tree grammar
can be made monadic in polynomial time.

A skeleton tree of rank n ≥ 0 is a linear tree s ∈ T (N0 ∪ N1 ∪ F≥2, {y1, . . . , yn}),
such that every parameter yi (1 ≤ i ≤ n) occurs in s and the following additional
properties are satisfied.

(a) The tree s does not contain a subtree of the form X(Y (t)) for X, Y ∈ N1.
(b) For every subtree f(t1, . . . , tm) of s with f ∈ F≥2 there exist at least two distinct

i ∈ {1, . . . , m} such that ti contains a parameter from {y1, . . . , yn}.

In our construction, a skeleton tree will store the branching structure (with respect to
those leaf nodes that are parameters) of the tree generated by a certain nonterminal, i.e.,
the information on how the paths from the root to parameters branch. Nonterminals of
rank 1 in a skeleton tree represent those tree parts that are in between two branching
nodes in this branching structure. The crucial point about skeleton trees is that their size
can be bounded polynomially. For the following lemma, it is important that a skeleton
tree only contains function symbols of rank ≥ 2.

Lemma 5. Let r be the maximal rank of a symbol from F. A skeleton tree s of rank
n ≥ 1 contains at most 2(r · n − r + 1) many nodes.

Let G = (N, P, S) be a linear SLCF tree grammar. By Proposition 3 we may assume
that G is in CNF. The set of nonterminals N is a finite subset of

⋃
i≥0 Ni. We now define

in a bottom-up process, for every nonterminal A of rank n ≥ 1, a skeleton tree skA of
rank n. Simultaneously, we construct a new linear and monadic SLCF tree grammar
G′ = (N ′, P ′, S). Consider a production A → tA from P and let n = rank(A).

Case 1. tA = f(y1, . . . , yn), where f ∈ Fn: if n ≤ 1, then we add the production
A(y1, . . . , yn) → tA to P ′ and set skA = A(y1, . . . , yn). If n ≥ 2, then we set skA =
tA and do not add any new productions to P ′.

Case 2. tA = B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj , . . . , yn), where i ≤ j and the trees
skB , skC are already constructed. In a first step we define the tree

s = skB[yi/skC [y1/yi, y2/yi+1, . . . , yj−i/yj−1],
yi+1/yj, yi+2/yj+1, . . . , yn+i−j+1/yn]. (1)

But this tree is not necessarily a skeleton tree; it may locally violate the conditions (a)
and (b) on skeleton trees. Hence, we apply a contract-operation to s which yields the

Parameter Reduction in Grammar-Compressed Trees 219

Y

Z

s

XskB

skC

Fig. 1. Contract-1

f

· · · · · ·
Y1 Ym

γ1 γk
γm

t

X

t

Fig. 2. Contract-2

skeleton tree skA. Moreover, as a side effect, the contract-operation adds new produc-
tions and nonterminals to G′. The contract-operation works in two steps:

Contract-1. Assume that s contains a subtree of the form Y (Z(t)). There can be only
one subtree of this form in s, see the left tree in Figure 1. We now do the following:

1. Add a fresh nonterminal X ∈ N1 of rank 1 to N ′.
2. Add the production X(y1) → Y (Z(y1)) to P ′.
3. Replace the subtree Y (Z(t)) by X(t).

Contract-2. After contract-1, s can only violate condition (b) for skeleton trees. Hence,
assume that s contains a subtree of the form f(t1, . . . , tm) such that f ∈ F≥2 and there
is exactly one k ∈ {1, . . . , m} such that tk contains a parameter from {y1, . . . , yn}, say
yp. Again there can be only one subtree of this form in s. Moreover, this case may only
occur, if C has rank 0. In the following consideration, it is useful to set ε(t) = t for an
arbitrary term. Hence, ε is just the identity function on all terms.

Since condition (a) is already satisfied, every subtree t� (� �= k) is of the form γ�(Y�)
with Y� ∈ N0 and γ� ∈ {ε} ∪ N1, whereas tk can be written as γk(t), where γk ∈
{ε}∪N1 and t is a tree that does not start with a non-terminal of rank 1. We now do the
following:

1. Add a fresh nonterminal X ∈ N1 of rank 1 to N ′.
2. Add to P ′ the production

X(y1) → f(γ1(Y1), . . . , γk−1(Yk−1), γk(y1), γk+1(Yk+1), . . . , γm(Ym)).

3. Replace the subtree

f(γ1(Y1), . . . , γk−1(Yk−1), γk(t), γk+1(Yk+1), . . . , γm(Ym))

of s by X(t).

After this operation, another contract-1 operation might be necessary (if the new subtree
X(t) is below an N1-labeled node). The resulting tree is the skeleton tree skA.

Note that the SLCF tree grammar G′ is linear, productive, and monadic. The follow-
ing lemma can be shown by induction on the hierarchical order of G.

Lemma 6. For every nonterminal A of G we have valG(A) = valG′(skA).

220 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Theorem 7. Let r be the maximal rank of a symbol from F. From a given linear and
k-bounded SLCF tree grammar G = (N, P, S) we can construct in time O(k · r · |G|) a
linear, productive, and monadic SLCF tree grammar G′ = (N ′, P ′, S) of size O(r · |G|)
such that N ∩ (N0∪N1) ⊆ N ′ and valG′(A) = valG(A) for every A ∈ N ∩ (N0∪N1).

Proof. Using the constructions from Section 4, we first transform G into a linear CNF
grammar H with O(|G|) many nonterminals. This needs time O(max{k, r} · |G|). Now
we construct for every nonterminal A of H the skeleton tree skA and simultaneously
the linear and monadic SLCF tree grammar H′. In order to construct the tree s in Equa-
tion (1), we have to copy the already constructed skeleton trees skB and skC (since
we may need these trees in later steps), which by Lemma 5 needs time O(k · r). The
construction of skA from s needs at most three contraction steps, each of which re-
quires O(1) many pointer operations. Moreover, in every contraction step we add to
H′ a production of size at most O(r). Hence, the total size of H′ is O(r · |G|) and the
construction takes time O(k · r · |G|). We obtain the final grammar G′ by adding to H′

every nonterminal A ∈ N ∩ (N0 ∪ N1), which does not already belong to H′, together
with the production A → skA. By Lemma 6 we have valG′(A) = valG(A). Note that
in general G′ is not in CNF, and that it might contain useless productions. ��
Finite unions of linear monadic SLCF tree grammars are studied e.g. in [10] under the
name singleton tree grammar (STG). They are, by Theorem 7, polynomially equivalent
to finite unions of linear SLCF grammars and hence their results can be applied for
linear grammars.

Example 8. We transform the linear CNF grammar constructed in Example 4 into an
equivalent linear monadic SLCF tree grammar. We start with the set of productions
P ′ = {A → a, B → b, I(y1) → i(y1)} (see case 1) and the following skeleton trees:

skA = A, skB = B, skI = I(y1), skH = h(y1, y2).

Next, for X and Y we obtain without contract operations:

skY = h(y1, I(y2)), skX = h(I(y1), I(y2))

Let us now construct skX4 , skX3 , skX2 , skX1 , skX0 , and skS in this order:

– construction of skX4 : For the tree s in (1) we obtain s = h(I(y1), I(A)). With
contract-2, we obtain the new production C(y1) → h(I(y1), I(A)) and the skeleton
tree skX4 = C(y1).

– Construction of skX3 : we get s = h(I(y1), I(B)). With contract-2, we obtain the
new production D(y1) → h(I(y1), I(B)) and the skeleton tree skX3 = D(y1).

– Construction of skX2 : we get s = C(B). Thus, we do not add a new production to
P ′ and set skX2 = C(B).

– Construction of skX1 : we get s = D(A). Again, we do not add a new production
to P ′ and set skX1 = D(A).

– Construction of skX0 : we get s = h(I(y1), I(C(B))). A first contract-1 operation
adds the production E(y1) → I(C(y1)) to P ′ and updates s to s=h(I(y1), E(B)).
Now, we have to apply another contract-2 operation, which adds the production
F (y1) → h(I(y1), E(B)) to P ′. We set skX0 = F (y1).

Parameter Reduction in Grammar-Compressed Trees 221

– Construction of skS . We set s = F (D(A)). Hence, we add to P ′ the production
G(y1) → F (D(y1)) and set skS = G(A).

Thus, an equivalent linear and monadic SLCF tree grammar contains the following
productions:

S → G(A) C(y1) → h(I(y1), I(A)) F (y1) → h(I(y1), E(B))
A → a D(y1) → h(I(y1), I(B)) G(y1) → F (D(y1))
B → b E(y1) → I(C(y1)) I(y1) → i(y1)

6 Applications to Tree Automata Evaluation

In [11], we have shown how to check for (i) a given NTA A with n states and (ii) a
given linear and k-bounded SLCF tree grammar G in time O(|G| · |A| · nk+1), whether
val(G) ∈ L(A). If the automaton is a deterministic bottom-up tree automaton then time
O(|G| · |A| · nk) suffices. Together with Theorem 7 we obtain the following.

Corollary 9. For a given NTA A with n states and a given linear and k-bounded SLCF
tree grammar G such that r is the maximal rank of a terminal symbol from F, we can
check in time O(r · |G| · (k + |A| · n2)), whether val(G) ∈ L(A).

We may assume that r, k ≤ |G| in Corollary 9, since we assume for context-free
tree grammars that every (non)terminal occurs in a right-hand side. Moreover, we can
eliminate states from an NTA that do not occur in transition tuples. Hence, n ≤ |A|.
Thus, the time bound in Corollary 9 can be replaced by O(|G|3 + |G|2 · |A|3). Hence,
val(G) ∈ L(A) can be checked in polynomial time. In the rest of this section, we extend
this result to tree automata with sibling-constraints.

Theorem 10. The problem of checking val(G) ∈ L(A) for a given linear SLCF tree
grammar G and a given NTAC A can be solved in polynomial time.

Proof. By Theorem 7 we can assume that G = (N, P, S) is linear and monadic. More-
over, we can assume that all productions in P are of one of the following 4 types:

– A → f(A1, . . . , An) for A, A1 . . . , An ∈ N0 and f ∈ Fn

– A → B(C) for A, C ∈ N0 and B ∈ N1

– A(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An) for A ∈ N1, A1, . . . , An ∈ N0, f ∈
Fn+1

– A(y) → B(C(y)) for A, B, C ∈ N1

Let A = (Q, Δ, F) be an NTAC. We will compute for every A ∈ N0 ∩ N the set of
states Δ̃(valG(A)). Consider such a nonterminal A ∈ N0 ∩ N .

Case 1. The production for A is of the form A → f(A1, . . . , An). Assume that for
every 1 ≤ i ≤ n, the set of states Δ̃(valG(Ai)) is already computed. Using Theorem 2,
we can find out in polynomial time which of the trees valG(Ai) (1 ≤ i ≤ n) are equal or
disequal. Using this information, it is straightforward to compute the set Δ̃(valG(A)).

Case 2. The production for A is of the form A → B(C). This case requires more work.
Assume that the set of states Δ̃(valG(C)) is already computed. Define a straight-line
context-free string grammar GB as follows:

222 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

– The set of nonterminals is N1 ∩ N , i.e., the nonterminals of G of rank 1.
– The set of terminal symbols is Σ = {[A1, . . . , Ai−1, y, Ai, . . . , An, f] |

f ∈ Fn+1, A1, . . . , An ∈ N0 ∩ N, 1 ≤ i ≤ n + 1}.
– If (X(y) → Y (Z(y))) ∈ P , then GB contains the production X → ZY ; if

(X(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An)) ∈ P , then GB contains the produc-
tion X → [A1 . . . , Ai−1, y, Ai, . . . , An, f]. These are all productions of GB .

– The start nonterminal of GB is B.

The string generated by GB represents the outcome of a partial derivation from the
nonterminal B in the tree grammar G, where the derivation process is stopped as soon
as a nonterminal of rank 0 is reached.

Example 11. Let G contain the following four productions for nonterminals of rank
one: B(y) → B1(B1(y)), B2(y) → f(A2, A2, y, A3), B1(y) → B2(B3(y)), B3(y) →
g(A1, y, A1). Here A1, A2, A3 are nonterminals of rank 0. Then, the SLCF string gram-
mar GB consists of the productions B → B1B1, B2 → [A2, A2, y, A3, f], B1 →
B3B2, and B3 → [A1, y, A1, g] and generates the string

val(GB) = [A1, y, A1, g] [A2, A2, y, A3, f] [A1, y, A1, g] [A2, A2, y, A3, f].

This string represents the following tree:

A1

y

A1

g

A3

A2

A2

f

A1

A1

g

A3

A2

A2

f

For a nonterminal X ∈ N0 ∩ N of rank 0, let s(X) = |valG(X)| be the number
of nodes of the generated tree; this number can be computed in polynomial time. For
a terminal symbol [A1, . . . , Ai−1, y, Ai, . . . , An, f] ∈ Σ of the string grammar GB

let s([A1, . . . , Ai−1, y, Ai, . . . , An, f]) = 1 + s(A1) + · · · + s(An). The mapping
s : Σ → N is extended to Σ∗ in the natural way: s(a1 · · · an) = s(a1) + · · · + s(an)
for a1, . . . , an ∈ Σ. Finally, for a position 0 ≤ p ≤ |val(GB)| let s(p) = s(C) +
s(val(GB)[: p]), where w[: k] is the prefix of length k of the string w. Also the value
s(p) can be computed for a given position p in polynomial time by first constructing in
polynomial time an SLCF string grammar for the prefix val(GB)[: p]. Then the number
s(val(GB)[: p]) can be easily computed bottom-up. The value s(p) is the size of a
certain subtree of valG(A) = valG(B)[y/valG(C)], namely the subtree that is obtained
by going p steps up (towards the root) from the unique occurrence of y in valG(B)(y).

Let us next determine the set NB,0 ⊆ N0 ∩ N of all nonterminals of rank 0 that
appear in terminal symbols of val(GB): If X → [A1, . . . , Ai−1, y, Ai, . . . , An, f] is a
production of GB , then set NX,0 = {A1, . . . , An}. If X → Y Z is a production of GB ,
then set NX,0 = NY,0 ∪ NZ,0. In this way we can compute the set NB,0 in polynomial
time. Let {k1, k2, . . . , km} = {s(X) | X ∈ NB,0}, where k1 < k2 < · · · < km.
Also this enumeration can be computed in polynomial time. We now compute a certain
splitting of the string val(GB). More precisely, for every 1 ≤ i ≤ m we compute
the largest position (i.e. highest position in the tree) 0 ≤ pi ≤ |val(GB)| such that

Parameter Reduction in Grammar-Compressed Trees 223

s(pi) ≤ ki. This position pi can be computed in polynomial time with binary search
(using the fact that s(p) can be computed in polynomial time for a given p).

Example 11 (continued). Assume that s(C) = s(A1) = 2, s(A2) = 7 and s(A3) = 9.
Then, we obtain k1 = 2, k2 = 7, and k3 = 9, as well as s(0) = 2, s(1) = 7, s(2) = 31,
s(3) = 36, and s(4) = 60. Thus, p1 = 0, p2 = p3 = 1.

From the list 0 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ |val(GB)|, we remove every position pi

such that s(pi) �= ki or pi = |val(GB)|. Let 0 ≤ p′1 < p′2 < · · · < p′� < |val(GB)| be
the resulting list. In our example, we only keep p′1 = 0 and p′2 = 1. This list defines
our splitting of val(GB). More precisely, we compute in polynomial time the symbols
ai = val(GB)[p′i + 1] ∈ Σ (w[p] is the p-th symbol of the string w) and SLCF string
grammars G0, . . . ,G� such that

val(GB) = val(G0) a1 val(G1) a2 · · · val(G�−1) a� val(G�). (2)

Recall that every prefix of val(GB) represents a tree with a unique occurrence of the
parameter y (if this prefix is the empty string then the tree is just y). For 0 ≤ i ≤ � let
ti(y) be the tree represented by the prefix val(G0) a1 · · · val(Gi−1) ai (thus t0(y) = y)
and let ui(y) be the tree represented by the prefix val(G0) a1 · · · val(Gi−1) aival(Gi).
We compute the set of states Pi = Δ̃(ti[y/valG(C)]) and Qi = Δ̃(ui[y/valG(C)])
successively. We start with P0 = Δ̃(valG(C)); recall that this set is already computed.

Computing the set Pi from Qi−1 (i > 0) is straightforward: assume that ai =
[A1, . . . , Aj−1, y, Aj , . . . , An, f]. From (2) we can easily compute a monadic SLCF-
tree grammar for the tree ui−1[y/valG(C)]. Hence, using Theorem 2, we can check in
polynomial time, whether the tree ui−1[y/valG(C)] equals some valG(Aj). Using this
information, we can compute in polynomial time the set of states Pi from Qi−1.

In order to compute Qi from Pi, one has to note that when walking down from
the root of ui(y) to the unique occurrence of y for |val(Gi)| steps, then the current
subtree is never equal to one of its sibling nodes. Hence, for every terminal symbol
a = [A1, . . . , Aj−1, y, Aj+1, . . . , An, f] that occurs in the grammar Gi we can compute
a transition mapping δa : Q → 2Q as follows, where q ∈ Q (recall that the sets
Δ̃(valG(Ak)) for k ∈ {1, . . . , n} \ {j} are already computed):

δa(q) ={q′ ∈ Q | ∃(E, D, q1, . . . , qj−1, q, qj+1, . . . , qn, f, q′) ∈ Δ :

∀k ∈ {1, . . . , n} \ {j} : qk ∈ Δ̃(valG(Ak)),
∀(k, m) ∈ E : k = m ∨ (k �= j �= m ∧ valG(Ak) = valG(Am)),
∀(k, m) ∈ D : k = j ∨ m = j ∨ (k �= j �= m ∧ valG(Ak) �= valG(Am))}.

Using the mappings δa and the SLCF string grammar Gi, we can compute Qi from Pi

easily in polynomial time. ��

7 Adding Nondeterminism or Non-linearity
If we relax condition (i) of the definition of SLCF tree grammars to (i’) P contains
for every A ∈ N at least one production with left-hand side A (but keep the acyclic-
ity condition (ii)) then we obtain nondeterministic SLCF tree grammars (NSLCF tree
grammars). Such grammars generate finite sets of trees, which by the following exam-
ple may contain double-exponentially many trees.

224 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Example 12. For n ≥ 1, let the linear, productive, and monadic NSLCF tree grammar
Gn consist of the productions S → A0(a), Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n,
An(y1) → f(y1), and An(y1) → g(y1). Then L(Gn) consists of all monadic trees with
2n many internal nodes, each of which is labeled f or g. Thus |L(Gn)| = 22n

.

We now want to show that given a linear and productive NSLCF tree grammar G, we
can, in general, not obtain an equivalent monadic grammar of size |G|O(1). In fact,
there is a family Gn (n ≥ 1) of linear and productive NSLCF tree grammars such that
any monadic, linear, and productive NSLCF tree grammar that generates L(Gn) is of
size 2O(|Gn|1/2). Thus, for nondeterministic grammars an exponential blow-up cannot
be avoided when going to monadic grammars. Later we show that this is the worst
case blow-up and that in fact any linear and non-deleting NSLCF tree grammar can be
transformed into an equivalent monadic one which is at most exponentially larger.

Example 13. For n ≥ 1, let the symbol fn be of rank n and define the linear and
productive NSLCF tree grammar Gn (of size O(n2)) with the following productions:

S → A0(a, . . . , a)
Ai(y1, . . . , yn) → Ai+1(f(y1), . . . , f(yn)) for 0 ≤ i < n

Ai(y1, . . . , yn) → Ai+1(g(y1), . . . , g(yn)) for 0 ≤ i < n

An(y1, . . . , yn) → fn(y1, . . . , yn)

Then Ln = L(Gn) consists of all trees fn(t, t, . . . , t) where t is a monadic tree with n
many internal nodes, each of which is labeled f or g.

Lemma 14. Let n ≥ 1, k < n, and let G be a linear, non-deleting, and k-bounded
NSLCF grammar such that L(G) = Ln is the set from Example 13. Then |G| ≥ 2n.

Proof. Assume that G is a linear, non-deleting, and k-bounded NSLCF tree grammar
such that k < n and L(G) = Ln. W.l.o.g. we can assume that every nonterminal of
G appears in a successful derivation of G. Let P (fn) be the set of all productions of
the form A → t, where t contains a subtree of the form fn(t1, . . . , tn). Clearly, since
G is non-deleting, every right-hand side of a production from P (fn) contains a unique
such subtree. Moreover, in every successful derivation of G, a production from P (fn)
has to be applied exactly once. We claim that |P (fn)| ≥ 2n. Consider a production
(A → t) ∈ P (fn) and consider the unique subtree in t of the form fn(t1, . . . , tn). Since
rank(A) ≤ k < n and G is linear, there exists an i ∈ {1, . . . , n} such that ti does not
contain a parameter, i.e., ti ∈ T (F ∪ N). Assume that two different terminal trees can
be derived from ti. Then we can derive with G a tree, where the root has two different
subtrees, a contradiction. Hence, from ti we can generate exactly one tree. We denote
this tree by τ [A → t], since it can be associated with the production (A → t) ∈ P (fn).
Hence, for every successful derivation S ⇒∗

G s, where the production (A → t) ∈
P (fn) is applied (exactly once), we must have s = fn(τ [A → t], . . . , τ [A → t]).
Since we can generate 2n many terminal trees from S and in each derivation exactly
one production from P (fn) is applied, it follows that |P (fn)| ≥ 2n. ��
For arbitrary linear context-free tree grammars (thus, with recursion and nondetermin-
ism), the number of parameters gives rise to a hierarchy of languages which is strict at

Parameter Reduction in Grammar-Compressed Trees 225

each level. In fact, the family of languages that can be used to prove the strictness of
this hierarchy is similar to the one of Example 13.

Example 15. For n ≥ 1, let fn be a symbol of rank n and A be a nonterminal of
rank n. Define the linear and productive context-free tree grammar Gn with the produc-
tions S → A(a, . . . , a), A(y1, . . . , yn) → A(f(y1), . . . , f(yn)), and A(y1, . . . , yn) →
fn(y1, . . . , yn). Then L′

n = L(Gn) consists of all trees fn(t, t, . . . , t) where t is a
monadic tree of the form fm(a) for some m ≥ 0.

The proof of the following lemma is similar to the one of Lemma 14.

Lemma 16. Let n ≥ 1 and k < n. The set L′
n from Example 15 cannot be generated

by a linear, non-deleting, and k-bounded context-free tree grammar.

By the following theorem, the lower bound from Lemma 14 can be matched by an upper
bound. The proof of this result is similar to the proof of Theorem 7.

Theorem 17. For a given linear NSLCF tree grammar G = (N, P, S) we can construct
in time 2O(|G|) a linear and monadic NSLCF tree grammar G′ = (N ′, P ′, S) of size
2O(|G|) such that L(G′) = L(G).

One might also think about extending Theorem 7 to non-linear SLCF tree grammars.
But results from [11] make such an extension quite unlikely: it is PSPACE-complete to
check whether a deterministic bottom-up tree automaton accepts val(G), where G is a
given (non-linear) SLCF tree grammar. If we restrict this problem by requiring G to be
k-bounded for a fixed constant k, then it becomes P-complete. Here is an explicit ex-
ample showing that Theorem 7 cannot be extended to non-linear SLCF tree grammars.

Example 18. For n ≥ 1, let the symbol fn be of rank n, let g have rank 2, and let 0 and
1 have rank 0. Define the productive (but non-linear) SLCF tree grammar Gn with the
following productions, where Ai is a nonterminal of rank i (1 ≤ i ≤ n):

S → g(A1(0), A1(1))
Ai(y1, . . . , yi) → g(Ai+1(y1, . . . , yi, 0), Ai+1(y1, . . . , yi, 1)) for 1 ≤ i < n

An(y1, . . . , yn) → fn(y1, . . . , yn)

Then val(Gn) results from a complete binary g-tree of height n by replacing the k-th
leaf (0 ≤ k ≤ 2n − 1) by the tree fn(b1, . . . , bn), where b1b2 · · · bn is the binary
representation of k. The size of Gn is O(n2).

Lemma 19. Let n ≥ 1, k < n, and let G be a k-bounded SLCF tree grammar such
that val(G) = val(Gn), where Gn is the SLCF tree grammar of Example 18. Then
|G| ≥ 2n−k.

Proof. Let Tn be the set of all occurrences of subterms of the form fn(t1, . . . , tn)
that occur in right-hand sides of G. We claim that |Tn| ≥ 2n−k. Consider a term
fn(t1, . . . , tn) ∈ Tn. Since G is k-bounded, at most k parameters can occur among
the terms t1, . . . , tn. During the derivation, each of these parameters may be either
substituted by the constant 0 or 1. Hence, from each fn(t1, . . . , tn) ∈ Tn, we can
obtain during the derivation at most 2k different trees of the form f(b1, . . . , bn) with
b1, . . . , bn ∈ {0, 1}. Since val(Gn) contains 2n such subtrees, we get |Tn| ≥ 2n−k. ��

226 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Clearly, Lemma 19 implies that without an exponential blow-up, we cannot reduce
the number of parameters in any non-linear SLCF tree grammar to a constant. But
we cannot even reduce the number of parameters from n to ε · n (where ε < 1 is a
constant) without an exponential blowup. For arbitrary context-free tree grammars with
OI derivation order it is proved in Theorem 6.5 of [6] that the number of parameters
gives rise to a hierarchy that is proper at each step (even for the string yield languages).

Acknowledgments. The first author is supported by the DFG research project Algo-
rithms on compressed data (ALKODA). We would like thank Christian Mathissen for
pointing out a mistake in a previous version of the contract-2 operation.

References

1. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree au-
tomata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 161–171.
Springer, Heidelberg (1992)

2. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB 2003, pp.
141–152. Morgan Kaufmann, San Francisco (2003)

3. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document
trees. Information Systems 33(4–5), 456–474 (2008)

4. Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D., Tison,
S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata

5. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Tree automata with memory, visibility and
structural constraints. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 168–182.
Springer, Heidelberg (2007)

6. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way ma-
chines. J. Comp. Syst. Sci. 20, 150–202 (1980)

7. Fischer, M.: Grammars with macro-like productions. PhD thesis, Harvard University, Mas-
sachusetts (May 1968)

8. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory Comput.
Syst. 33(1), 59–83 (2000)

9. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Context matching for compressed terms. In:
LICS 2008, pp. 93–102. IEEE Computer Society Press, Los Alamitos (2008)

10. Levy, J., Schmidt-Schauß, M., Villaret, M.: Bounded second-order unification is NP-
complete. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 400–414. Springer, Hei-
delberg (2006)

11. Lohrey, M., Maneth, S.: The complexity of tree automata and XPath on grammar-compressed
trees. Theor. Comput. Sci. 363(2), 196–210 (2006)

12. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)

13. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit input.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 15–27. Springer, Heidelberg (2004)

14. Schmidt-Schauß, M.: Polynomial equality testing for terms with shared substructures. Tech-
nical Report 21, Institut für Informatik, J. W. Goethe-Universität Frankfurt am Main (2005)

http://www.grappa.univ-lille3.fr/tata

	Parameter Reduction in Grammar-Compressed Trees
	Introduction
	Trees and SLCF Tree Grammars
	Tree Automata
	Normal Forms for Linear SLCF Tree Grammars
	Parameter Reduction in Linear SLCF Tree Grammars
	Applications to Tree Automata Evaluation
	Adding Nondeterminism or Non-linearity

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

