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Abstract. We present a new method for automatic generation of loop invari-
ants for programs containing arrays. Unlike all previously known methods, our
method allows one to generate first-order invariants containing alternations of
quantifiers. The method is based on the automatic analysis of the so-called up-
date predicates of loops. An update predicate for an array A expresses updates
made to A. We observe that many properties of update predicates can be ex-
tracted automatically from the loop description and loop properties obtained by
other methods such as a simple analysis of counters occurring in the loop, recur-
rence solving and quantifier elimination over loop variables. We run the theorem
prover Vampire on some examples and show that non-trivial loop invariants can
be generated.

1 Introduction

Invariants with quantifiers are important for verification and static analysis of programs
over arrays due to the unbounded nature of array structures. Such invariants can express
relationships among array elements and properties involving arrays and scalar variables
of the loop, and thus significantly ease the verification task. Automated discovery of
array invariants therefore became a challenging topic, see e.g. [9,20,10,12,3,11,22,13].
Approaches presented in these papers combine inductive reasoning with predicate ab-
straction, constraint solving and interpolation-based techniques and normally require
user guidance in providing necessary templates, assertions or predicates.

In this paper we present a framework for automatically inferring array invariants
without any user guidance and without using a priori defined boolean templates or
predicates. Moreover, unlike all previously known methods, our method allows one
to generate loop invariants containing quantifier alternations.

The method is based on the following idea.

1. Given a loop over array and scalar variables, we first try to extract from it various
information that can be expressed by first-order formulas. This can be informa-
tion about scalar variables occurring in the loops, such as precise values of these
variables in terms of the loop counter, monotonicity properties of these variables
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considered as functions of the loop counter and polynomial relations among these
variables. For extracting this information we deploy techniques from symbolic
computation, such as recurrence solving and quantifier elimination, as presented
in [18,14], to perform inductive reasoning over scalar variables.

2. Using the derived loop properties, we then automatically discover first-order prop-
erties of the so-called update predicates for array variables used in the loop and
monotonicity properties for scalar variables. The update predicates describe the
positions at which arrays are updated, iterations at which the updates occur and the
update values. The first-order information extracted from the loop description can
use auxiliary symbols, such as symbols denoting update predicates or loop coun-
ters.

3. After having collected the first-order information, we run a saturation theorem
prover to eliminate the auxiliary symbols and obtain loop invariants expressed as
first-order formulas. When the invariants obtained in this way contain skolem func-
tions, we de-skolemise them into formulas with quantifier alternations.

The main features of the technique presented here are the following.

1. We require no user guidance such as a postcondition or a collection of predicates
from which an invariant can be built: all we have is a loop description.

2. We are able to generate automatically complex invariants involving quantifier alter-
nations.

All experiments described in this paper
a := 0; b := 0; c := 0;
while (a ≤ k) do

if A[a] ≥ 0
then B[b] := A[a];b := b + 1;
else C[c] := A[a];c := c + 1;

a := a + 1;
end do

Fig. 1. Array partitioning [3]

were carried out using two systems: Aligator
— the package for invariant generation
described in [18,14], and the first-order theorem
prover Vampire [25].

This paper is organised as follows. Section 2
motivates our work with an example. Section 3
presents our program model together with some
basic principles of saturation theorem proving.
The notion of update predicates is introduced in
Section 4 together with properties involving such predicates. Section 5 describes how
properties of update predicates and scalar variables are extracted from the loop descrip-
tion. Section 6 presents our method of invariant generation and Section 7 discusses
some experiments with the theorem prover Vampire. Section 8 focuses on related
work. Section 9 concludes the paper with some ideas for future work.

2 Example

In this section we give an example illustrating what kind of loop invariant we would
like to generate.

We will use the program of Figure 1 as our running example throughout the paper.
The program fills an array B with the non-negative values of a source array A, and an
array C with the negative values of A. It is not hard to derive that after n iterations of
this loop (assuming n ≤ k) the value of a is equal to the value of the loop counter n.
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For example, this property can be derived by the methods of [6,23] or by the recurrence
solving part of Aligator [14,18]. Moreover, Aligator is able to find the linear
invariant relation a = b + c.

Using light-weight analysis, it is also not hard to see that the values of the variables
b and c may not decrease during the loop execution, therefore c ≥ 0 and b ≥ 0 are loop
invariants. This property can also be extracted by Aligator using more complex rea-
soning involving quantifier elimination techniques [14]. However, such a light-weight
analysis would not give us much information about arrays A, B, C and their relation-
ships, apart from the fact that the value of A does not change since A is not updated.
For example, one may want to derive the following properties of the loop (n denotes
the loop counter).

1. Each of B[0], . . . , B[b− 1] is non-negative and equal to one of A[0], . . . , A[n− 1].
2. Each of C[0], . . . , C[c − 1] is negative and equal to one of A[0], . . . , A[n − 1].
3. Each non-negative value in A[0], . . . , A[n−1] is equal to one of B[0], . . . , B[b−1].
4. Each negative value in A[0], . . . , A[n − 1] is equal to one of C[0], . . . , C[c − 1].
5. For every p ≥ b, the value of B[p] is equal to its initial value.
6. For every p ≥ c, the value of C[p] is equal to its initial value.

These properties in fact describe much of the intended function of the loop and can be
used to verify properties of programs manipulating arrays in which this loop is embed-
ded. However, the first four of these invariants cannot be obtained by other methods of
invariant generation since, when formulated in first-order logic, they require quantifier
alternations.

In this paper we introduce a new method that can be used to derive such loop proper-
ties automatically using a first-order theorem prover. For example, all of the invariants
given above were automatically generated by the theorem prover Vampire.

3 Preliminaries

In this section, we describe our program model and give a brief introduction into satu-
ration theorem proving.

Array and scalar variables. We assume that programs contain array variables, de-
noted by capital-case letters A, B, C, . . ., and scalar variables, denoted by lower-case
letters a, b, c, . . .. All notations may have indices. The lower-case letter n will be re-
served for the loop counter.

Program P . Consider a program P consisting of a single loop whose body contains
assignments, sequencing and conditionals. In the sequel we assume that P is fixed and
give all definitions relative to it. Denote by Var the set of all variables occurring in P ,
and by Arr the set of all array variables occurring in it.

Expressions. We will use a language Expr of expressions. We assume that Expr con-
tains constants (including all integer constants), variables in Var ∪ Arr , logical vari-
ables, some interpreted function symbols, including the standard arithmetical function
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symbols +,−, ·, and interpreted predicates symbols, including the standard arithmeti-
cal predicate symbols ≥,≤. We assume that expressions are well-typed with respect to
a set of sorts and ι is a sort of integers. Types are defined as follows: every sort is a type
and types can be built from other types using type constructors × and →. We assume
that each scalar variable has a sort and each array variable has a type ι → τ , where τ is
a sort. If A is an array variable and e an expression, we will write A[e] instead of A(e)
to mean the element of A at the position e.

Semantics of Expressions. We assume that every sort has an associated non-empty
domain and that the domain associated with ι is the set of integers. Furthermore we
assume that interpreted function and predicate symbols of the language are interpreted
by functions and relations of appropriate sorts. For example, we assume that ≥ is inter-
preted as the standard inequality on integers.

The semantics of the language Expr is defined using the notion of state. A state
maps each scalar variable of a sort τ into a value in the domain associated with τ , and
each array variable A of a type ι → τ into a function from integers to the domain
associated with τ . Note that (for the sake of simplicity) we do not consider arrays as
partial functions and do not analyse array bounds. Given a state σ, we can define the
value of any expression in this state in the standard way, see e.g. [21].

Semantics of programs. We can define the semantics of programs with assignment,
sequencing and conditionals in the standard way, see e.g. [21]. A program of this kind
can be considered as a mapping from states to states. A computation of a program is a
sequence of states.

Extended expressions v(i). Remember that we are dealing with a program P consist-
ing of a single loop. Suppose that a computation of P starts at some initial state σ0.
If we ignore the loop condition, then after i iterations of the loop the computation will
reach a state σi. Let us now extend the notion of expression to capture the state σi of
program execution obtained after i iterations of the main loop. To this end, we first fix a
program P and some initial state σ0 so that the definition is parametrised by this initial
state and the program. Let σi be the state obtained after i iterations of the computation
of P starting at σ0.

For every integer expression i and loop variable v of a type τ , we define a new ex-
pression v(i) of the type τ . The value of this expression is defined to be the value of v at
the state σi. We say that a formula ϕ, possibly using extended expressions v(i), is valid
for P , if this formula is true for every computation of P , that is, for all computations
starting at an arbitrary initial state.

Example 1. Consider the loop P whose body consists of a single assignment c := c+
2, where c is a scalar variable. Then the formula (∀i)(i ≥ 0 =⇒ c(i) = c(0) + 2 · i) is
valid for P .

Note that v(0) is the value of v in the initial state. We will use expressions v(i) only when
we reason about programs or assert their properties. We will not use these expressions
in programs.
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Relativised expressions i :: e and formulas i :: F . Given an expression e or a for-
mula F , we would like to “relativise” it to an iteration i. The relativised expression and
formula will be denoted by i :: e and i :: F , respectively. These expressions are only
defined when e and F are non-extended expressions, that is, expressions containing no
occurrences of subexpressions of the form v(j) for some v and j.

Definition 1. For every expression e, formula F having no occurrences of extended ex-
pressions v(j) for any v and j, and every integer expression i, let us define an expression
i :: e and a formula i :: F by induction as follows. In the definition below e with indices
stands for expressions and F with indices stands for formulas.

1. If v is a loop (scalar or array) variable, then i :: v
def= v(i).

2. i :: (e1[e2])
def= (i :: e1)[i :: e2].

3. If e is a constant or a variable (but not an array or a scalar variable) then i :: e
def=

e.
4. If f is an interpreted function, then i :: (f(e1, . . . , en)) def= f(i :: e1, . . . , i :: en).
5. If P is a predicate symbol, then i :: (P (e1, . . . , en)) def= P (i :: e1, . . . , i :: en).
6. i :: (F1 ∧ . . . ∧ Fn) def= i :: F1 ∧ . . . ∧ i :: Fn and similar for other connectives

instead of ∧.

7. Let y be a variable not occurring in i. Then i :: ((∀y)F ) def= (∀y)(i :: F ) and
similar for ∃ instead of ∀.

8. i :: ((∀i)F ) def= (∀i)(F ) and similar for ∃ instead of ∀.

For example, if F is the formula (∀j)(a = 0 =⇒ A[b] = c + j), where A is an array
variable and a, b, c are scalar variables, then i :: F is the formula (∀j)(a(i) = 0 =⇒
A(i)[b(i)] = c(i) + j).

Loop body and guarded assignments. For simplicity of presentation we assume that
the loop body of P is represented by an equivalent collection of guarded assignments.
Let us now define guarded assignments and their semantics. We call a guarded assign-
ment an expression

G → α1; . . . ; αm, (1)

where each of the αj’s is an assignment either of the form v := e or of the form
A[e1] := e2, and G is a formula, called the guard of this guarded assignment. We
assume that each guarded assignment of the form (1) satisfies the following conditions.

1. The left-hand sides of all assignments are syntactically different;
2. If some of the assignments αj has a form A[e1] := e2, and some αk for k 
= j

has the form A[e3] := e4, then in every state satisfying G the expressions e1 and
e3 have different values.

Furthermore, for every collection of guarded assignments whose guards are G1, . . . , Gp

we assume that

1. for all j, k ∈ {1, . . . , p}, if j 
= k then the formula Gj ∧ Gk is unsatisfiable (that
is, the guards are mutually exclusive);
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2. the formula G1 ∨ . . .∨Gp is true in all states (that is, for every state at least one of
the guards is true in this state).

Let us now define the semantics of collections of guarded assignments satisfying these
properties and also briefly discuss how any program can be translated into an equivalent
collection of guarded assignments.

Consider a guarded assignment G → e1 := e′1; . . . ; em := e′m. The sequence of
assignments in a guarded assignment has the semantics of a simultaneous assignment

(e1, . . . , em) := (e′1, . . . , e
′
m).

For example, the guarded assignment true→ x := 0; y := x changes any state in
which x = 1 to a state in which y = 1 but not y = 0.

One can automatically transform any loop body into an equivalent finite set of
guarded assignments [7,21]. In general, such a transformation may result in a set of
guarded assignments of size exponential in the size of the loop body, but one can also
avoid exponential size by using a slightly different notion of guarded assignment. To
satisfy the condition on the left-hand side of guarded assignments one can add extra
equalities and inequalities in the guards. For example, the loop body consisting of the
sequence of assignments A[a] := 0; A[b] := 1 can be transformed into the system
consisting of two guarded assignments:

a 
= b → A[a] := 0; A[b] := 1
a = b → A[b] := 1.

Let us consider an example.

Example 2 (Partition). Consider the partition program of Figure 1. Then the loop body
of this program has the following representation in the guarded assignment form:

A[a] ≥ 0 → B[b] := A[a]; b := b + 1; a := a + 1 (2)

¬A[a] ≥ 0 → C[c] := A[a]; c := c + 1; a := a + 1. (3)

General setting. Given a loop P we would like to generate invariants of this loop,
that is, find formulas that are true after n iterations of the loop, where n is an arbitrary
non-negative integer. These formulas will express the values of loop variables after n
iterations in terms of their initial values, i.e. values of loop variables after 0 iterations.
To find these formulas, we will write some general properties of loop variables at an
arbitrary iteration between 0 and n, using formulas with extended expressions v(i). In
the sequel we assume that n is an arbitrary but fixed non-negative integer. We will also
use a constant with the same name n in formulas to denote the number n. When we
discuss iteration steps, we are only interested in iterations between 0 and n− 1. To this
end, we introduce a predicate iter denoting such iterations. To improve readability, we
will normally write e ∈ iter instead of iter(e), where e is an expression. The predicate
iter has the following definition:

(∀i)(i ∈ iter ⇐⇒ 0 ≤ i ∧ i < n). (4)
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Saturation theorem proving. In our approach to invariant generation, we rely on a
saturation prover to infer automatically first-order formulas with equality as quantified
invariants from a set of first-order loop properties extracted from loops. We shortly
describe the basic ideas of saturation theorem proving, and refer to [24] for more details.

First-order theorem provers using saturation algorithms employ a superposition cal-
culus, see e.g. [24]. This calculus works with clauses (disjunctions of atomic formulas
and their negations) and consists of inference rules that allow one to derive new clauses
from existing clauses. To prove a formula F , saturation-based provers convert ¬F to
a set of clauses and try to derive the empty clause from this set. If the empty clause
is derived, then ¬F is unsatisfiable and so F is a theorem. In saturation-based provers
the newly derived clauses are normally consequences of the initial clauses. We use this
property to derive invariants instead of establishing unsatisfiability: starting with the
set of initial clauses, we derive new clauses from it using a superposition calculus and
special kinds of reduction orderings and check if some of the newly derived clauses can
be used as invariants.

4 Update Predicates

To make a saturation-based theorem prover find loop invariants we have to extract some
properties of the loop and give them to the prover as initial formulas. Our technique for
doing this is based on the analysis of updates to arrays. To analyse updates we introduce
so-called update predicates and some axioms about these predicates. There are also
other formulas we extract automatically from the loop description, they are described
in the next section.

For each array variable V that is updated in the program we introduce two predicates:

1. updV (i, p): at the loop iteration i the array V is updated at the position p;
2. updV (i, p, v): at the loop iteration i the array V is updated at the position p by the

value v.

The definition of these update predicates can be extracted automatically from the col-
lection of guarded assignments associated with the loop. For example, guarded assign-
ments (2) and (3) result in the following update predicates for B:

updB(i, p) ⇐⇒ i ∈ iter ∧ p = b(i) ∧ A(i)[a(i)] ≥ 0; (5)

updB(i, p, v) ⇐⇒ i ∈ iter ∧ p = b(i) ∧ A(i)[a(i)] ≥ 0 ∧ v = A[a(i)]. (6)

We introduce these update predicates to express the following key properties of array
updates:

1. if an array V is never updated at an index p then the final value of V [p] is constant;
2. if an array V is updated at an index p at an iteration i and not updated at any further

iteration, then V [p] receives its final value at the iteration i.

These two properties do not depend on the loop. For the array B they are formally
expressed as follows.

(∀i)¬updB(i, p) =⇒ B(n)[p] = B(0)[p]; (7)

updB(i, p, v) ∧ (∀j > i)¬updB(j, p) =⇒ B(n)[p] = v. (8)
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We will refer to these two properties as the stability property and the last update prop-
erty for B, respectively.

5 Extracting Loop Properties

In this section we will describe some properties that can be automatically extracted
from the loop. Given the loop body, we add all these properties as additional axioms to
the theorem prover Vampire to help it generate loop invariants.

Constant array. If we have an array A that is never updated in the loop, we can add
an axiom (∀i)(A(i) = A(0)). A simpler approach (and the one we adopt here) is to treat
such an array A as a constant and simply use A instead of A(i). In our example, A is
such an array so we will simply write A[p] instead of A(i)[p].

Monotonicity properties. Let us call a scalar variable v increasing if it has the prop-
erty (∀i ∈ iter)(v(i+1) ≥ v(i)) for all possible computations of the loop. Likewise,
a variable is called decreasing if it has the property (∀i ∈ iter)(v(i+1) ≤ v(i)) for
all possible computations of the loop. A monotonic variable is a variable that is either
increasing or decreasing.

The monotonicity properties can be discovered either by program analysis tools or
by some light-weight analysis. For example, if all assignments to a variable v in the loop
have the form v = v + c where c is a non-negative integer constant, then v is obviously
increasing. In our example, the variables a, b and c can be identified as increasing using
such light-weight analysis.

We can introduce a more fine-grained classification of monotonic variables. A vari-
able v is called strictly increasing if it has the property (∀i ∈ iter)(v(i+1) > v(i)).
Strictly decreasing variables are defined similarly. In our example the variable a is
strictly increasing.

Let us call an increasing integer variable v dense if it has the property

(∀i ∈ iter)(v(i+1) = v(i) ∨ v(i+1) = v(i) + 1)

for all possible computations of the loop, and similarly for decreasing variables. In our
example, the variables a, b, c are all dense.

Let us now formulate properties that we extract from loops automatically for various
kinds of monotonic variable. We will only formulate them for increasing variables,
leaving the case of decreasing variables to the reader.

1. If a variable v is strictly increasing and dense, then we add the following property:

(∀i)(v(i) = v(0) + i).

Note that we do not restrict i in this formula to range over iterations only, as well
as we did so in formulas (7) and (8): one can prove that our approach is still sound
if we use these more general formulas.

2. If a variable v is strictly increasing but not dense, then we add the following prop-
erty:

(∀j)(∀k)(k > j =⇒ v(k) > v(j)).
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3. If a variable v is increasing but not strictly increasing, then we add the following
property:

(∀j)(∀k)(k ≥ j =⇒ v(k) ≥ v(j)).

4. If a variable v is increasing and dense but not strictly increasing, then we add the
following property:

(∀j)(∀k)(k ≥ j =⇒ v(j) + k ≥ v(k) + j).

Note that, under the monotonicity and density assumptions stated above, the above
formula follows from the property (∀j)(∀k)(v(k) ≤ v(j) + k − j).

In our example the following properties of the monotonic variables a, b, c will be added:

(∀i)(a(i) = a(0) + i).
(∀j)(∀k)(k ≥ j =⇒ b(k) ≥ b(j)). (9)

(∀j)(∀k)(k ≥ j =⇒ c(k) ≥ c(j)).
(∀j)(∀k)(k ≥ j =⇒ b(j) + k ≥ b(k) + j).
(∀j)(∀k)(k ≥ j =⇒ c(j) + k ≥ c(k) + j).

To describe the other properties extracted from loops we will assume that the loop has
the following presentation by guarded assignments:

G1 → α1,
· · ·

Gm → αm.
(10)

Update properties of monotonic variables. Suppose that x is a monotonic variable.
Intuitively, an update property for this variable expresses that, if the variable changes its
value, then there exists a program point at which conditions for this change have been
enabled. As before, we will only formulate these properties for increasing variables.

Suppose that x is increasing. Further, assume that U ⊆ {1, . . . , m} is the set of
guarded assignments that may update the value of x, that is, u ∈ U if and only if αu

contains an assignment to x. Then, if x is dense, we add the following property:

(∀v)(v ≥ x(0) ∧ x(n) > v =⇒ (∃i ∈ iter)(
∨

u∈U

(i :: Gu) ∧ x(i) = v).

If x is not dense, then the property is slightly more complex:

(∀v)(v ≥ x(0) ∧ x(n) > v =⇒ (∃i ∈ iter)(
∨

u∈U

(i :: Gu) ∧ v ≥ x(i) ∧ x(i+1) > v).

For our example the following two axioms will be added:

(∀v)(v ≥ b(0) ∧ b(n) > v =⇒ (∃i ∈ iter)(b(i) = v ∧ A[a(i)] ≥ 0)); (11)

(∀v)(v ≥ c(0) ∧ c(n) > v =⇒ (∃i ∈ iter)(c(i) = v ∧ ¬A[a(i)] ≥ 0)).
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Translation of guarded assignments. Suppose that G → e1 := e′1; . . . ; ek := e′k
is a guarded assignment in the loop representation and v1, . . . , vl are all scalar variables
of the loop not belonging to {e1, . . . , ek}. Define the translation t(ej) at iteration i of

a left-hand side of an assignment as follows: for a scalar variable x, we have t(x) def=
x(i+1), and for an array variable X and expression e we have t(X [e]) def= X(i+1)[e(i)].
Then we add the following axiom:

(∀i ∈ iter)(i :: G =⇒
∧

j=1,...,k

t(ej) = (i :: e′j) ∧
∧

j=1,...,l

v
(i+1)
j = v

(i)
j ).

For our running example, we add the following two formulas:

(∀i ∈ iter )( A[a(i)] ≥ 0 =⇒ B(i+1)[b(i)] = A[a(i)] ∧
b(i+1) = b(i) + 1 ∧
c(i+1) = c(i) );

(12)

(∀i ∈ iter)( ¬A[a(i)] ≥ 0 =⇒ C(i+1)[c(i)] = A[a(i)] ∧
c(i+1) = c(i) + 1 ∧
b(i+1) = b(i) ).

6 Invariant Generation

Our method of invariant generation works as follows.

1. Given a loop, create its representation by a collection of guarded assignments.
2. Generate loop invariants over scalars using Aligator. Note, that any other static

analysis tool, e.g. [6,23], can be also used.
3. Extract, using the techniques of Sections 4 and 5, first-order properties of the loop in

the logic using expressions v(i). Note that these first-order properties use auxiliary
function and predicate symbols that cannot occur in the invariants.

4. Eliminate auxiliary function and predicate symbols by running the saturation theo-
rem proverVampire on the collection of first-order properties of the loop obtained
in steps 2 and 3, and finding consequences not using these symbols.

The rest of this section discusses how one can eliminate auxiliary symbols and generate
invariants using Vampire.

Modern resolution theorem provers [25,26,27] lack several features essential for im-
plementing our procedure for invariant generation. These are

1. reasoning with linear integer arithmetic;
2. procedures for eliminating symbols.

The first problem is very hard (see, e.g. [17] for some results on combining first-order
superposition provers and arithmetic). However, one can provide a sound but incom-
plete axiomatisation of linear integer arithmetic that is sufficient for proving many es-
sential properties of integers. In our experiments we used the following very simple
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axiomatisation of the arithmetical relations > and ≥, and the successor function s (in
our examples we substituted s(e) instead of expressions e + 1):

x ≥ y ⇐⇒ x > y ∨ x = y;
x > y =⇒ x 
= y;
x ≥ y ∧ y ≥ z =⇒ x ≥ z;
s(x) > x;
x ≥ s(y) ⇐⇒ x > y.

To solve the second problem (changing a theorem prover to handle symbol elimination)
we used the following idea. For every array and scalar variable v that occurs on the left-
hand side of an assignment we introduce two new symbols v0 and v′ together with the
following axioms: v(0) = v0 and v(n) = v′. We call these new symbols target symbols.
Let us call a clause useful if it satisfies the following conditions (by a symbol below we
mean a signature symbol, that is, a non-variable).

1. Every symbol in this clause is either a target symbol, or an interpreted symbol or
a skolem function introduced by Vampire. We call such symbols usable and all
other symbols useless.

2. The clause contains at least one target symbol or a skolem function.

We are interested in deriving only useful clauses. Indeed, all other clauses either contain
symbols, such as update predicates, that cannot occur in invariants and so should be
eliminated, or represent valid arithmetical properties and so are irrelevant to the loop.

To this end, we make Vampire use a reduction ordering that makes all useless
symbols large in precedence and having a large weight in the Knuth-Bendix ordering
used by Vampire1. We also make Vampire output all generated useful clauses.

If we derive a useful clause containing no skolem functions, then this clause denotes
an invariant of the loop for all initial states satisfying the condition v = v0 for all
loop variables, after replacing all variables v′ by v. For example, from the properties
presented in Sections 4 and 5, Vampire derived the following useful clause:

¬x ≥ b′ ∨ B′[x] = B0[x],

which denotes the invariant ¬x ≥ b ∨ B[x] = B0[x] and can also be written as

(∀x)(x ≥ b =⇒ B[x] = B0[x]).

If a clause with skolem functions is derived, we can de-skolemise this clause by intro-
ducing existential quantifiers. For example, Vampire derived the clause

¬b′ > x ∨ ¬x ≥ 0 ∨ A[$i(x)] = B′[x], (13)

where $i is a skolem function. This clause can be de-skolemised into a quantified in-
variant

(∀x)(b > x ∧ x ≥ 0 =⇒ (∃y)A[y] = B[x]). (14)

1 Essentially, resolution theorem provers prefer to apply inferences with atoms containing large
and heavy symbols and thus eventually remove these atoms from clauses.
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However, there are reasons to use clauses with skolem functions directly rather then de-
skolemise them. Consider, for example, the following formula derived by Vampire
for our running example.

¬b′ > x ∨ ¬x ≥ 0 ∨ A[$i(x)] ≥ 0. (15)

It can be de-skolemised into the invariant

(∀x)(b > x ∧ x ≥ 0 =⇒ (∃y)A[y] ≥ 0). (16)

The problem is that (13) and (15) imply the following invariant:

(∀x)(b > x ∧ x ≥ 0 =⇒ (∃y)(A[y] = B[x] ∧ A[y] ≥ 0)),

which is not implied by their de-skolemised forms (14) and (16).

7 Experiments with Vampire

We made experiments with invariant generation for our running example and also for
an example of [22] where an array is filled with 0’s at positions from 0 to n− 1. In [22]
it took 0.01 seconds to generate an invariant for proving the assertion that all elements
of the array are zeros. Vampire derived this property as a loop invariant in less than
0.01 seconds: more precisely, it derived that all array elements up to the loop counter n
are zeros.

For our running example, among all generated invariants we were interested in find-
ing out how fast Vampire can derive the following two properties:

1. Array B does not change at positions greater than or equal to the final value of b,
that is

∀p(p ≥ b′ =⇒ B′[p] = B0[p]).

The corresponding clause was generated in 0.73 seconds.
2. Every value in {B[0], . . . , B[b−1]} is a non-negative value in {A[0], . . . , A[a−1]}:

∀p(b′ > p ∧ p ≥ 0 =⇒ B′[p] ≥ 0 ∧ ∃k(a′ > k ∧ k ≥ 0 ∧ A[k] = B′[p]).

There are four clauses the conjunction of which imply this formula and which were
derived by Vampire, one of them is (13). The derivation was found in about 53
seconds.

8 Related Work

Recently, the problem of automatically generating quantified invariant properties for
loops with arrays received a considerable attention [9,4,20,16,2,12,11]. Based on the
abstract interpretation framework [5], the approaches described in [4,9,11,12,2] use a
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set of a priori defined atomic predicates over program variables, from which univer-
sally quantified array properties are then inferred. Paper [9] iteratively approximates
the strongest boolean combination of a given set of suitable predicates for the loop, un-
til a fixpoint, i.e. an invariant, is reached. The approach is based on predicate abstraction
with skolem constants for the quantified variables, and implements heuristics for guess-
ing some of the appropriate predicates used further for invariant generation. Iterative
computation of invariant predicates is also used in [20]. In [11] a priori fixed templates
describing candidate invariant properties are used to generate quantified invariants by
under-approximation algorithms of logical boolean operators for building abstract in-
terpreters over quantified abstract domains. However, these approaches require a given
set of predicates from which invariants can be built; some of them also require user
guidance.

Using the combined theory of linear arithmetic and uninterpreted function, [2] pre-
sents a constraint-based invariant synthesis. The method relies on user-given invariant
templates over program variables. Constraints on the unknown parameters of the tem-
plate invariants are generated based on the inductiveness property of an invariant as-
sertion. Solutions to these constraints are substituted for parameters in the template to
derive (universally quantified) invariants. Using counterexample guided abstraction, the
method is further extended in [3] to the generation of path invariants. A counterexample
guided abstraction refinement method is presented also in [16], where range predicates
are used to characterize properties of array segments between specified bounds. Array
invariants are then inferred from the predefined range predicates by interpolation-based
techniques. The appropriate range predicates are however supplied manually.

A fundamental difference of our approach compared to these works is that we do
not require user-defined templates or a fixed collection of predicates. Our invariants can
be arbitrary assertions inferred by a theorem prover from assertions over variables ob-
tained by recurrence solving and quantifier elimination methods and by a light-weight
analysis of monotonic variables of loops. The advantage of using general recurrence
solving methods together with quantifier elimination is also confirmed by comparing
our framework to [19] where loop invariants are inferred by providing predefined solu-
tions for a special subclass of recurrences over scalar variables. Moreover, unlike our
approach, the above mentioned methods do not infer automatically polynomial/linear
relations among scalar variables as invariants.

Based on the abstract interpretation framework, [10,13] infer universally quantified
array invariants. Their approach requires no user guidance. The key idea is to parti-
tion values used as array indexes into symbolic intervals and use abstract interpretation.
Paper [10] infer invariants of a special form essentially involving a single array index,
such as (∀i ≤ n)(A[i] > 0). Paper [13] goes further and, using more sophisticated anal-
ysis, derives invariants that may involve several arrays in which indexes are obtained
from each other by using a “shift” by an expression. An example of such an invariant is
(∀i ≤ n)(A[i] = B[i + e]), where e is an expression in which i does not occur. These
papers do not derive properties with quantifier alternations but [13] treats nested loops.
It seems that we can benefit from integrating the approach of [10,13] into ours, both by
deriving properties of a single loop iteration and by using their invariants as additional
formulas in a theorem prover.
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In [22], based on an earlier work [15], a saturation theorem prover together with
elimination of symbols is used for generating interpolants and proving loop properties
over arrays. Although our approach has much in common with that of [22], there are
essential differences. First, we do not require to have a loop property for generating
invariants so our approach can be useful for generating properties of loops embedded
into large programs. Second, we support richer arithmetic reasoning by using symbolic
computation methods. Third, we are able to generate invariants also containing quanti-
fier alternations. Finally, [15,22] require some form of guidance by providing a growing
sequence of sets of atoms from which invariants can be built and the efficiency of their
analysis may crucially depend on the choice of such a sequence.

9 Conclusion

We showed how quantified loop invariants of programs over arrays can be automatically
inferred using a first order theorem prover, reducing the burden of annotating loops
with complete invariants. For doing so, we deploy symbolic computation methods to
generate numeric invariants of the scalar loop variables and then use update predicates
of the loop. Using this information quantified array invariants, including those with
alternating quantifiers, are derived with the help of a saturation prover. In particular,
our method does not require the user to give a post-condition, a predefined collection
of predicates or any other form of human guidance and avoids inductive reasoning.
Our initial experimental results on some benchmark examples demonstrate the potential
of our method. Modifications of theorem provers are required to carry out large-scale
experiments with our method.

Our work was partially inspired by an analysis of loops with arrays occurring in very
large programs performed by Thibaud Hottelier, Andrey Rybalchenko and the first au-
thor (personal communication): it turned out that many uses of arrays involve either
array initialisation, or array copying, either to another array or to itself, or simple itera-
tions over array elements. In other words, typical loops for programs with arrays are not
much more complex than the loop of our running example. This made us believe that
analysis of counters and other monotonic variables in such loops may provide enough
information to generate complex invariants.

Future work. To make our technique widely applicable one needs to extend first-order
theorem provers by symbol elimination and generating various classes of clause sets
with eliminated symbols: for example, minimal sets so that clauses in this set do not
imply each other. Minimality is, obviously, undecidable, so we can instead use some
light-weight removal of clauses implied by other clauses.

[22] formulates some results related to symbol elimination in resolution theorem
proving. In general, it is interesting to develop a theory for symbol elimination and
consequence finding, which is not well-understood in presence of equality.

It is possible that similar techniques can be successfully applied to programs with
pointers. To this end one should find out which properties of loops should be extracted
automatically to derive interesting invariants for such programs. Another interesting ex-
tension would be programs with nested loops: we believe many of them can be handled
using the same techniques.
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It is also interesting to see how our method can be used for proving loop properties
rather than generating them. To this end one can try to embed it into systems for proving
program properties, such as [8,1,14].

We also believe that more complex kinds of loop analysis followed by theorem prov-
ing would be able to discover non-trivial invariants of logically much more complex
loops, such as implementations of quick-sort and union-find algorithms.

We did not treat nested loops or multi-dimensional arrays due to a lack of space,
though they can be treated in a similar way, by using two loop counters and present-
ing arrays as functions of more than one argument and modifying update predicates
and their automatically generated properties. One needs extensive experiments to un-
derstand the efficiency of the method for these extensions too. We are going to make
such experiments after modifying Vampire.
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