
Tisa: A Language Design and Modular Verification
Technique for Temporal Policies in Web Services�

Hridesh Rajan1, Jia Tao1, Steve Shaner1, and Gary T. Leavens2

1 Iowa State University, Ames, Iowa, USA
{hridesh,jtao,smshaner}@iastate.edu

2 University of Central Florida, Orlando, Florida, USA
leavens@eecs.ucf.edu

Abstract. Web services are distributed software components, that are decoupled
from each other using interfaces with specified functional behaviors. However,
such behavioral specifications are insufficient to demonstrate compliance with
certain temporal non-functional policies. An example is demonstrating that a pa-
tient’s health-related query sent to a health care service is answered only by a
doctor (and not by a secretary). Demonstrating compliance with such policies is
important for satisfying governmental privacy regulations. It is often necessary to
expose the internals of the web service implementation for demonstrating such
compliance, which may compromise modularity. In this work, we provide a lan-
guage design that enables such demonstrations, while hiding majority of the ser-
vice’s source code. The key idea is to use greybox specifications to allow service
providers to selectively hide and expose parts of their implementation. The over-
all problem of showing compliance is then reduced to two subproblems: whether
the desired properties are satisfied by the service’s greybox specification, and
whether this greybox specification is satisfied by the service’s implementation.
We specify policies using LTL and solve the first problem by model checking.
We solve the second problem by refinement techniques.

1 Introduction

Web services promote abstraction, loose coupling and interoperability of clients and
services [1]. The key idea of web services is to introduce a published interface (often a
description written in an XML-based language such as WSDL [2]), for communication
between services and clients [1]. By allowing components to be decoupled using a
specified interface, web services enable platform-independent integration.

Behavioral Contracts for Web Services. A behavioral contract for a web service spec-
ifies, for each of the web service’s methods the relationships between its inputs and
outputs. Such a contract treats the implementation of the service as a black box, hid-
ing all the service’s internal states from its clients. The benefit of this encapsulation
is that clients do not depend upon the service’s changeable design decisions. To illus-
trate, consider a healthcare service that allows patients to make appointments and ask
prescription and health-related questions from healthcare practioners [3].
� Rajan and Tao were supported in part by the NSF grant CNS 06-27354. Rajan, Shaner and

Leavens were supported in part by the NSF grant CNS 08-08913.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 333–347, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

334 H. Rajan et al.

An example JML-like contract [4] for such a service follows.

service Patient {
/*@ requires pId >= 0; ensures result >=0; @*/
int query(int pId, int msg);
/*@ requires qId >= 0; ensures result >=0; @*/
int retrieve(int qId);

}

The service description in this contract is written in a form similar to our language,
Tisa, to make comparisons easier. It specifies that a service named Patientmakes two
web-methods available: query and retrieve. The query method takes a patient
identifier and a message as arguments. The message is represented as an integer for
simplicity (think of it as an index into a table of pre-defined questions, such as “does
the test show I have AIDS?”). The precondition of calling this web-method is that the
patient identifier is positive; the postcondition is that it returns a positive result. The
retrieve method takes a query identifier as argument; its precondition is that this
identifier must be positive. Its postcondition is that the result is also positive. These
contracts could be checked by observing the interface of the web-methods [5,6,7,8,9].

Demonstrating Compliance to Temporal Policies. Let us now consider the following
policy inspired from Barth et al.’s work [3]: “a health question about a patient should
only be answered by the doctor”, “furthermore such answers should only be disclosed to
the concerned patients”. We will refer to these as “HIPAA policies” as they are similar
to regulations in the US health insurance portability and accountability act (HIPAA).
The behavioral contract above is insufficient for demonstrating compliance with the
HIPAA policies, as it does not provide sufficient details about the internal state of the
service. For example, the entity that is finally receiving the query is hidden by query’s
contract. Demonstrating compliance to such policies is important. In our example, a
patient may feel much better about their queries regarding an AIDS test result, if such
compliances were demonstrated by the service.

Compliance and Modularity at Conflict. Alternatively suppose the implementation
of the two web-methods query and retrieve were available, including the compo-
nent services that they use. Then demonstrating compliance to the two HIPAA policies
would be equivalent to ensuring that the implementation avoids non-compliant states.
However, by making code for these methods available, clients might write code that de-
pends on implementation design decisions. As a result, changing these design decisions
will become harder, as these changes could break client’s code [10].

We thus believe that, for web services, modularity [10] and verification of temporal
policies are fundamentally in conflict. To make the service implementation evolvable,
modularity requires hiding the design decisions that are likely to change. But to demon-
strate compliance to key temporal policies, internal states need to be exposed.

A Language Design and Verification Logic. To reconcile these requirements, we pro-
pose a technique based on greybox specifications [11] that exposes only some internal
states. This technique enables web service providers to demonstrate compliance to tem-
poral policies, such that above, by exposing only parts of their implementation. A client
can verify that the service complies with the desired policies by inspecting a greybox

Tisa: A Language Design and Modular Verification Technique for Web Services 335

1 service Secretary {
2 int query(int pId, int msg) {
3 preserve pId > 0 && msg > 0;
4 if (msg >= 2) {
5 query(pId,msg)@Doctor
6 }
7 else {
8 /* Appointment? */
9 establish result > 0

10 }
11 }
12 int retrieve(int qId) {
13 requires qId > 0 ensures result > 0
14 }
15 }

16 service Doctor {
17 int query(int pId, int msg) { /* Re: Test */
18 requires pId > 0 && msg >= 2 ensures result > 0
19 }
20 int retrieve(int qId) {
21 requires qId > 0 ensures result > 0
22 }
23 }
24 service Patient {
25 int query(int pId, int msg) {
26 query(pId, msg)@Secretary;
27 }
28 int retrieve(int qId) {
29 preserve qId > 0;
30 if ((qId/1000)==1) { retrieve(qId)@Secretary}
31 else if ((qId/1000)==2) { retrieve(qId)@Doctor}
32 } }

Fig. 1. An Example Greybox Specification

specification. Providers can also choose to hide many implementation details, so the
service’s implementation can evolve as long as it refines the specification [12,13].

To illustrate, consider the greybox specification shown in Figure 1. This example
has three services. In each service the methods are web-methods that may be called
by clients and other services. Specification expressions of the form preserve e,
establish e, and requires e1 ensures e2 are used within these methods to
hide internal details. The code that is not hidden by specification expressions is ex-
posed. Calls to web-methods are written using an at-sign (@), such as query(pId,
msg)@Secretary. For simplicity, Tisa only allows integers to be passed as argu-
ments in such remote calls, thus we encode questions using integers: 1 for appoint-
ments, 2 for prescriptions, and higher numbers for health-related questions. Contrary
to standard black box specifications, internal states of the service, including calls to
other services are exposed. By analyzing lines 26 and 4–6 (in that order) one could
conclude that “health questions by patients are answered by the doctor.” Demonstrat-
ing compliance to temporal policies thus becomes possible. Note that this specification
only exposes selected details about the implementation. For example, the specification
of retrieve on line 13 hides all details of how this service responds to appointment
questions. Therefore, it hides the design decisions made in the implementation of cre-
ating, storing, and forwarding responses.

Contributions. An important contribution is the identification of the conflict between
verification of temporal policies and modularity in web services. We show how to re-
solve this conflict using greybox specifications. Our language, Tisa, supports specifica-
tion of policies specified in a variant of linear temporal logic [14], greybox specification
[11] and a simple notion of refinement [12,13,15] for modular reasoning about correct-
ness of implementations with respect to such policies. As usual, implementations are
hidden, but policies and greybox specifications are public. To demonstrate these claims,
we present two preliminary verification techniques: one checks if a greybox specifica-
tion satisfies a temporal policy, the second checks whether a service implementation re-
fines its greybox specification. (The first technique could be used by the clients to select
a service whose specification satisfies their desired policies.) We also show soundness:

336 H. Rajan et al.

program ::= decl* client
decl ::= classdecl | servicedecl
classdecl ::= class c extends d { field* meth* }
servicedecl ::= service w { field* meth* }
client ::= client w { e }
field ::= t f;
meth ::= t m (form*) { e }
form ::= t var, where var �=this and var �=thisSite
t ::= c | int
e ::= n | e == e | e != e | e > e | e < e | e >= e | e <= e

| e + e | e - e | e * e | ! e | e && e | e ‘||’ e | isNull(e)
| if (e) { e } else { e } | new c() | var
| null | e.m(e*) | e.f | e.f = e | cast c e | form = e; e
| e; e | w | m(e*)@e | refining spec { e }

n ∈ N , the set of numeric, integer literals
c, d ∈ {Object, Site} ∪ C,

C is the set of class names
f ∈ F , the set of field names

m ∈ M, the set of method names
var ∈ {this, thisSite} ∪ V,

V is the set of variable names
w ∈ W ⊆ C,

W is the set of web service names

Fig. 2. Abstract syntax, based on [25, Figure 3.1, 3.7]

that the composition of these two verification techniques, applied modularly by clients
and all service providers, implies that the web service implementation satisfies the spec-
ified temporal policies. In practice, some additional technique, such as proof-carrying
code [16], or a hardware-based root of trust [17,18] would be needed to satisfy clients
that web services in fact satisfy their specifications.

2 Tisa Language Design

In this section, we describe Tisa, an object-oriented (OO) language that incorporates
ideas from existing work on specification languages, web services authentication lan-
guages and modeling languages. In particular, Tisa’s design is inspired by Argus [19]
and the work of Gordon and Pucella [20]. (Furthermore, some of our descriptions of
the language syntax are adapted from Ptolemy [21].) Tisa is a distributed programming
language with statically created web services and a single client, each of which has
its own address space. Web services are named and declare web-methods, which can
be called by the client and by other services. As a small, core language, the technical
presentation of Tisa shares much in common with MiniMAO1 [22], a variant of Feath-
erweight Java [23] and Classic Java [24]. Tisa has classes, objects, inheritance, and sub-
typing, but it does not have super, interfaces, exception handling, built-in value types,
privacy modifiers, or abstract methods. Furthermore, other features of web-service de-
scription languages (WSDLs) such as composite data types for exchanging messages
between services, messages, ports, one-way vs. request-response operations, etc, are
omitted to avoid complications in Tisa’s theory. However, most of these are syntactic
sugars that can be desugared to existing constructs in Tisa. Tisa features new mecha-
nisms for declaring policies and greybox specifications. Our description starts with its
programming features, and then describes its specification features.

2.1 Program Syntax

The syntax of Tisa executable programs is shown in Figure 2 and explained below. A
Tisa program consists of zero or more declarations, and a client (see Figure 3). Decla-
rations are either class declarations or web service declarations.

Tisa: A Language Design and Modular Verification Technique for Web Services 337

1 class Query extends Object {
2 int pId; int msg; int qId;
3 }
4 class Queue extends Object { //...
5 int add(int pId, int msg, int qId){
6 /* add to inner list */; qId
7 } }
8 service Secretary {
9 Queue queryQ; Hashtable responses;

10 int ticket; Log log;
11 int query(int pId, int msg) {
12 refining preserve pId > 0 && msg > 0 {
13 log.recordCurrentTime()
14 };
15 if (msg >= 2) {
16 query(pId, msg)@Doctor
17 } else { /* Re: Appointment */
18 refining establish result > 0 {
19 ticket = ticket + 1;
20 queryQ.add(pId, msg, ticket + 1000)
21 } } }
22 int respond(int qId,int pId,int msg){
23 /* Encode patient’s information */
24 responses.add(qId, pId*1000 + msg);
25 queryQ.remove(qId)
26 }
27 int retrieve(int qId) {
28 refining requires qId > 0
29 ensures result > 0 {
30 responses.get(qId)
31 } } }

32 service Doctor {
33 Queue topQ; Queue medQ; Queue lowQ;
34 int query(int pId, int msg) {
35 refining requires pId > 0 && msg >= 2
36 ensures result > 0 {
37 ticket = ticket + 1;
38 if (msg > 500) {
39 topQ.add(pId, msg, ticket + 2000)
40 } else if (msg > 250) {
41 medQ.add(pId, msg, ticket + 2000)
42 } else {
43 lowQ.add(pId, msg, ticket + 2000)
44 };
45 q.qId
46 } }
47 /* retrieve similar to Secretary’s */
48 }
49 service Patient {
50 int query(int pId, int msg) {
51 query(pId, msg)@Secretary
52 }
53 int retrieve(int qId) {
54 if ((qId/1000) == 1) {
55 retrieve(qId)@Secretary
56 } else if((qId/1000) == 2) {
57 retrieve(qId)@Doctor
58 } } }
59 client User{
60 int qid = query(101,3)@Patient;
61 retrieve(qid)@Patient
62 }

Fig. 3. An Example Tisa Implementation

Each web service has a name (w) representing that web service; thus web service
names can be thought of as web sites. (The mapping of web services to actual computers
is not specified in the language itself.) A web service can be thought of as a singleton
object; however, each web service has a separate address space and its methods can
only be called using a remote procedure call.

An example web service declaration for the service Patient appears on lines 49–
62 in Figure 3. This service contains two web-methods declaration, named query and
retrieve. The web-method query takes a patient Id and message as arguments and
returns a unique query Id generated according to the input arguments. The web-method
retrieve takes query Id as an argument and returns an answer message which en-
codes a patient Id. A client declares a name and runs an expression that is the main
expression of the program. We next explain class declarations and expressions.

Class Declarations. Class declarations may not be nested. Each class has a name
(c) and names its superclass (d), and may declare finite number of fields (field*) and
methods (meth*). Field declarations are written with a class name, giving the field’s
type, followed by a field name. Methods also have a C++ or Java-like syntax, although
their body is an expression.

Expressions. Tisa is an expression language. Thus the syntax for expressions includes
integer literals, various standard integer and logical operations, several standard OO
expressions and also some expressions that are specific to web services. The logical

338 H. Rajan et al.

specification ::= servicespec*
servicespec ::= service w { wmspec* }
wmspec ::= t m (form*) { se }
form ::= t var, where var �=thisSite
spec ::= requires sp ensures sp

se ::= sp | spec | se; se| form = se; se | m(sp*)@sp
| if (sp) { se } else { se }

sp ::= n | sp == sp | sp != sp | sp > sp | sp < sp | sp >= sp | sp <= sp
| sp + sp | sp - sp | sp * sp | ! sp | sp && sp | sp ‘||’ sp
| var | w

Fig. 4. Syntax for Writing Specifications in Tisa

operations operate on integers, with 0 representing false, and all other integer values
representing true. An if (e1) { e2 } else { e3 } expression tests if e1 is non-
zero; if so it returns the value of e2, otherwise it returns the value of e3.

The standard OO expressions include object construction (new c()), variable deref-
erence (var, including this), field dereference (e.f), null, cast (cast t e), assign-
ment to a field (e1.f = e2), sequencing (e1; e2), casts and a definition block (t var =
e1; e2). The other OO expressions are standard [25,22].

There are three new expressions: web service names, web-method calls, and refining
statements. Web service names of form w are constants. A web-method call has the
form (m(e*)@ew), where the expression following the at-sign (ew) denotes the name
of the web service name that will execute the web-method call named m with formals
e*. A refining statement, of the form refining spec { e }, is used in imple-
menting Tisa’s greybox specifications (see below). It executes the expression e, which
is supposed to satisfy the specification spec.

2.2 Specification Constructs

The syntax for writing specifications in Tisa is shown in Figure 4. In this figure, all
nonterminals that are used but not defined are the same as in Figure 2. Specifications
consist of several service specifications (servicespec). (Since we only permit integers
to be sent to and returned from web-method calls, we omit class declarations from
specifications.) A service specification may contain finite number of web-method spec-
ifications (wmspec). All fields are hidden, so field declarations are not allowed in a ser-
vice specification. The body of a web-method specification contains a side-effect free
expression (se). Many expressions from Figure 2 also appear as such side-effect free
expressions, but not field-related operations, method calls, and isNull. Web-method
call expressions are allowed and so are local variable definition expressions.

The main new feature of specifications, borrowed from the refinement calculus and
the greybox approach, is the specification expression (spec). Such an expression hides
(abstracts from) a piece of code in a correct implementation. The most general form of
specification expression is requires sp1 ensures sp2, where sp1 is a precondition
expression and sp2 is a postcondition. Such a specification expression hides program
details by specifying that a correct implementation contains a refining expression
whose body expression, when started in a state that satisfies sp1, will terminate in a
state that satisfies sp2 [15].

In examples we use two sugared forms of specification expression. The expression
preserve sp is sugar for requires sp ensures sp and establish sp is sugar
for requires 1 ensures sp.

An example greybox specification of the web service Patient appears in Figure 1.
The specification of the web-method query appears on line 26, and specifies (and

Tisa: A Language Design and Modular Verification Technique for Web Services 339

thus exposes) all the code for that method. The specification of retrieve hides a
bit more in its preserve expression (line 29). But it also exposes code that makes
a web-method call retrieve to the Secretary or Doctor. With these greybox
specifications, enough details are exposed about what the service does when invoking
other services, which makes it feasible to show compliance to the HIPAA policies.

2.3 Constructs for Specifying Policies

Our simple policy specification language is similar to Linear Temporal Logic [14].

Φ(specification) ::= P(specification) | ¬φ | φ1 ∧ φ2 | φ1 U φ2 | X φ

The language specifies histories that are sequences of web method calls. For a given
specification, a policy can be an atomic proposition in P(specification); a negation of a
policy or boolean combination of policies. For simplicity here we take the set of legal
propositionsP(specification) to be all legal web-method calls in the given specification.
This set can be statically computed from the specification against which the policy is to
be verified by traversing the abstract syntax tree of the specification up to the depth of
web-method specifications. The operator U is read as “until” and X as “next.” φ1Uφ2

states that policy φ2 must be satisfied after policy φ1 is satisfied along all executions of
the service. Xφ states that policy φ must be satisfied in the next state (i.e., at the next
web method call). We also use the following common abbreviations:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) φ1 → φ2 ≡ ¬φ1 ∨ φ2 true ≡ φ ∨ ¬φ
false ≡ ¬true F φ ≡ true U φ G φ ≡ ¬F ¬φ

The constant true means that the service does not have any obligation. The operator F
is read as “eventually" and G as “always". Below we present two sample policies for
our healthcare service example.

φ1 = G(query@Patient ∧ (XF(query@Secretary ∨ XFquery@Doctor)))
φ2 = G(retrieve@Patient ∧ XFretrieve@Doctor → ¬ XFretrieve@Secretary)

The policy φ1 states that whenever there is a web-method call query@Patient, there
is eventually a web-method call query at one of the sites Secretary or Doctor.
This policy says that a query is eventually delivered to one of the healthcare providers.
The policy φ2 encodes the constraint that a health answer that comes from doctors goes
directly to the patient, and is never forwarded to secretaries. In terms of the service
specification, if there is a web-method call retrieve@Patient and it is followed
by a web-method call retrieve@Doctor, then there is never a web-method call
retrieve at the site Secretary in the same trace.

2.4 Dynamic Semantics of Tisa’s Constructs

This section defines a small step operational semantics for Tisa programs (adapted from
Clifton’s work [25]). In the semantics, all declarations are formed into a single class
table that maps class names and web service names to class and service declarations,
respectively. However, despite this global view of declarations, the model of storage is
distributed, with each web service having an independent store.

340 H. Rajan et al.

Evaluation relation: ↪→: Γ → Γ

(WEB METHOD CALL)
Π = {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}∪−{thisSite : var Site} ν = frame ρ Π

ρ = {vari �→ vi | 1 ≤ i ≤ n} ⊕ (this �→ loc) ⊕ (thisSite �→ w)
(loc, c2, t m(t1var1, . . . tnvarn){e}) = find(w, m)

〈E[m(v1, . . . , vn)@w], J, S〉 ↪→ 〈E[under e], ν + J, S〉

(REFINING)
n �= 0

〈
E[refining requires n ensures e′ {e′′}], J, S

〉
↪→

〈
E[evalbody e′′e′], J, S

〉

(EVALBODY)
ρ = envOf (ν) Π = tenvOf (ν) w = thisSite(ν) t = typeOf (v, S, w)
ρ′ = Π∪−{result : v} Π′ = Π∪−{result : var t} ν′ = frame ρ′ Π′
〈
E[evalbody v e′], ν + J, S

〉
↪→

〈
E[under evalpost v e′], ν′ + ν + J, S

〉

(EVALPOST)
n �= 0

〈E[evalpost v n], J, S〉 ↪→ 〈E[v], J, S〉

(UNDER)
〈E[under v], ν + J, S〉

↪→ 〈E[v], J, S〉

Fig. 5. Operational semantics of Tisa. Standard OO rules are omitted.

The operational semantics relies on four expressions, not part of Tisa’s surface syn-
tax, to record final or intermediate states of the computation. The loc expression repre-
sents locations in the store. The under expression is used as a way to mark when the
evaluation stack needs popping. The evalbody and evalpost are used in evalua-
tion of specification expressions. The three exceptions NullPointerException,
ClassCastException, and SpecException record various problems orthogo-
nal to the type system.

A configuration in the semantics contains an expression (e), an evaluation stack (J),
and a store (S). The current web service name is maintained in the evaluation stack
under the name thisSite. The auxiliary function thisSite extracts the current web
service name from a stack frame. Stacks are an ordered list of frames, each frame
recording the static environment, ρ, and a type environment. (The type environment,
Π , is only used in the type soundness proof.) The static environment ρ maps identifiers
to values. A value is a number, a web service name (site), a location, or null. Stores
are maps from locations to storable values, which are object records. Object records
have a class and also a map from field names to values.

The semantics is presented as a set of evaluation contexts E and an one-step reduc-
tion relation [26] that acts on the position in the overall expression identified by the
evaluation context as shown in Figure 5. Standard OO rules are presented in our techni-
cal report [27]. The key rule is (WEB METHOD CALL), which uses the auxiliary function
find to retrieve the body of the web method from a class table CT implicitly used by the
semantics. It creates the frame for execution of the web method with necessary static
environment and type environment and starts execution of the web method body. The
under e expression is used in the resulting configuration to mark that the stack should
be popped when the evaluation of e is finished.

Evaluation of a refining expression involves 3 steps. First the precondition is
evaluated (due to the context rules). If the precondition is non-zero (i.e., true), then the
next configuration is evalbody e′′ e′, where e′′ is the body and e′ is the postcondition

Tisa: A Language Design and Modular Verification Technique for Web Services 341

(regarded as an expression). The body is then evaluated; if it yields a value v, then
the next configuration is under evalpost v e′, with a new stack frame that binds
result to v pushed on the stack. The type of result in the type environment Π ′ is
determined by the auxiliary function typeOf . Finally, the (EVALPOST) rule checks that
the postcondition is true and uses the body’s value as the value of the expression.

3 Verification of Policies in Tisa

A key contribution of our work is to decouple, with Tisa’s language design, the verifi-
cation of whether a policy is satisfied by a web service implementation into two veri-
fication tasks that can proceed modularly and independently. The first task is to verify
whether a policy is satisfied by the service specification. The second task is to ver-
ify whether the service specification is satisfied by the service implementation. Three
benefits follow from this modular approach. First, the service implementation need not
be visible to clients, as a client uses the specification to determine whether their de-
sired policies hold. Thus, our approach achieves modularity for service implementa-
tions. Second, regardless of the number of clients, the second verification task must
only be done once; thus our approach is likely to be scalable for web service providers.
Last but not the least, policy verification is performed on the (generally smaller) speci-
fication. Thus, our approach has efficiency benefits for policy verification.

Determining whether a policy is satisfied by the specification can be reduced to a
standard model checking problem [14]. We claim no contribution here; rather, the nov-
elty of our approach is in a combination of these two techniques, enabled by a careful
language design. To show the feasibility of applying ideas from model checking [14]
and refinement calculus [12,13] to our problem, in the rest of this section we describe
our techniques for verifying policies and refinement.

3.1 Verifying Policies

We adopt the standard automata-theoretic approach for verifying linear temporal logic
formulas proposed by Vardi and Wolper [28] to verify policies in Tisa. Following Vardi
and Wolper [28], a policy φ ∈ Φ(S) is viewed as a finite-state acceptor and a specifica-
tion S as a finite-state generator of expression execution histories. Thus the specification
S satisfies policy φ if every (potentially infinite) history generated by S is accepted by
φ, in other words, if S ∩ ¬φ is empty.

Figure 6 shows main parts of an algorithm for constructing a finite-state machine
F(S) = (Z, z0, R, Δ) from a Tisa specification S. Here, Z is a finite set of states, z0

is the initial state, R is a total accessibility relation, Δ : Z → 2P(S), which determines
how truth values are assigned to propositions in each state [28, pp. 5]. All rules make
use of unions for joining set of states (Z) and disjoint union (�) for joining propositions.
Rules for standard OO expressions are omitted.

The (IF EXP FSM) rule demonstrates creation of non-deterministic transitions in the
state machine. It computes the FSMs corresponding to the true branch and the false
branch of the if expression with initial states z′ and z′′ and joins these two FSMs to
make a new FSM with initial state z. Corresponding to the state z′, which corresponds

342 H. Rajan et al.

Production relation: NT � se � (Z, z0, R, Δ), NT where NT ∈ NT = W × M → Z

(IF EXP FSM)
NT � se′ � (Z′, z′, R′, Δ′), NT′ NT′ � se′′ � (Z′′, z′′, R′′, Δ′′), NT′′ Z = Z′ ∪ Z′′ ∪ {z}

Δ = Δ
′ � Δ

′′ � {(z′
, {sp}), (z′′

, {!sp})} R = R
′ ∪ R

′′ ∪ {(z, z
′
), (z, z

′′
)}

NT � if (sp) {se
′} else {se

′′} � (Z, z, R, Δ), NT′′

(WEB METHOD CALL FSM 1)
¬(∃z :: NT(w, m) = z)

NT′ = NT ∪ ((w, m), z) m(t1, . . . tn){se} = find(w, m) NT′ � se � (Z′, z′, R′, Δ′), NT′′

Z = Z′ ∪ {z} Δ = Δ′ � {(z′, {m@w})} R = R′ ∪ {(z, z′)}
NT � m(v1, . . . , vn)@w � (Z, z, R, Δ), NT′′

(WEB METHOD CALL FSM 2)
z = NT(w, m)

NT � m(v1, . . . , vn)@w � ({z}, z, {}, {}), NT

(SPEC EXP FSM)
Z = {z1, z2, z3, z4} R = {(z, z1), (z, z2), (z1, z3), (z1, z4), (z3, z

′
)}

Δpre = {(z1, {sp1}), (z2, {!sp1})} Δ = Δpre � {(z3, {sp1, sp2}), (z4, {sp1, !sp2})}
NT � requires sp1 ensures sp2 � (Z, z, R, Δ), NT

Fig. 6. Finite-state machine construction, built from expressions in a specification

to the true branch, the proposition sp is added to Δ, which corresponds to the condi-
tional expression evaluating to the truth value true. Similarly for the state z′′, which
corresponds to the false branch, the proposition !sp is added to Δ, which corresponds
to the conditional expression evaluating to the truth value false.

The (SPEC EXP FSM) rule models the cases for satisfaction of precondition and post-
condition. The (WEB METHOD CALL FSM) rules make use of a table NT that maps pairs
of web service names and method names (w, m) to states. This table is used to account
for recursion in web-method calls. Finally, the finite-state machine for a service spec-
ification is created by first creating finite-state machines for each of its web-method
specifications as if it is being called and by joining them using an extra state that be-
comes the new initial state.

Given the FSM F(S) we construct a Büchi automaton [29], B(¬φ) for the policy
φ ∈ Φ(S) as shown by Vardi and Wolper [28]. Specification S satisfies the policy φ if
F(S) ∩ B(¬φ) is empty.

3.2 Verifying Refinement

Our technique for checking whether a program refines a specification in Tisa is similar
to the work of Shaner, Leavens and Naumann [15]. An implementation refines a specifi-
cation if it meets two criteria: first, that the code and specification are structurally similar
and second, that the body of every refining expression obeys the specification it is
refining. By structural similarity we mean that for every non-specification expression
in the specification, the implementation has the identical expression at that position in
the code. This is checked in a top-down manner as shown in Figure 7. The operational
semantics rules (REFINING), (EVALBODY) and (EVALPOST) ensure that the body of every
refining expression obeys the specification it is refining.

Tisa: A Language Design and Modular Verification Technique for Web Services 343

(PROGRAM REF)
∀i ∈ {1..m} ∃j ∈ {1...n} declj ∈ servicedecl ∧ servicespeci � declj

servicespec1 . . . servicespecm � decl1 . . . decln

(SP REF)
sp = e

sp � e

(SERVICE REF)
∀i ∈ {1..m} ∃j ∈ {1...n} wmspeci � methj

servicew {wmspec1 . . . wmspecn}
� servicew {field1 . . . fieldf meth1 . . . methn}

(WEB METHOD REF)
se � e

t m(form1 . . . formn) {se}
� t m(form1 . . . formn) {e}

(SEQ EXP REF)
se1 � e1 se2 � e2

se1; se2
� e1; e2

(IF EXP REF)
sp � eb seT � eT seF � eF

if (sp) {seT } else {seF }
� if (eb) {eT } else {eF }

(DEF EXP REF)
sp � einit se � ebody

form = sp;se
� form = einit;ebody

(WEBCALL EXP REF)
(∀i ∈ {1..n} :: spi � ei) spw � ew

m(sp1, . . . , spn)@spw � m(e1, . . . , en)@ew

(SPEC EXP REF)
(requires sp1 ensures sp2) = spec

requires sp1 ensures sp2 � refining spec {e}

Fig. 7. Inference rules for proving Tisa refinement

3.3 Soundness of Verification Technique

The proof of soundness of our verification technique uses the following three defini-
tions.

Definition 1 (A Path for S). Let S be a specification and F(S) = (Z, z0, R, Δ)
be the FSM for S constructed using algorithm shown in Figure 6. A path t for S is a
(possibly infinite) sequence of pairs (zi, Δ(zi)) starting with pair (z0, Δ(z0)), where
for each i ≥ 0, zi ∈ Z and (zi, zi+1) ∈ R.

Definition 2 (A Path for P). Let P be a program and CFG(P) = (Z ′, z′0, R′, Δ′)
be an annotated control flow graph for P , where Z ′ is the set of nodes representing
expressions in program, R′ is the control flow relation between nodes, and Δ′ : Z ′ →
2P(P) is such that for each z′i ∈ Z ′, if it represents a web-method call expression
m(..)@w then (z′i, {m@w}) ∈ Δ′. A path t′ for P is a (possibly infinite) sequence of
pairs (z′i, Δ(z′i)) starting with pair (z′0, Δ(z′0)), where for each i ≥ 0, z′i ∈ Z and
(z′i, z

′
i+1) ∈ R′.

Definition 3 (Path Refinement). Let t be a path for S and t′ be a path for P . Then t
is refined by t′, written t � t′, just when one of the following holds:

– t ≡ t′ i.e., for each i ≥ 0, (zi, δi) ∈ t and (z′i, δ
′
i) ∈ t′ implies zi = z′i and δi = δ′i,

– t = (z, δ) + t1 and t′ = (z′, δ′) + t′1 and δ ⇒ δ′ and t1 � t′1,
– t = (z, δ)+ t1 and t′ = (z′1, δ

′
1) + . . . + (z′n, δ′n) + t′1 and δ ⇒ (δ′1 � . . .� δ′n) and

t1 � t′1, or
– t = t1 + t2 and t′ = t′1 + t′2 and t1 � t′1 and t2 � t′2.

Lemma 1. Let P ∈ program and S ∈ specification be given. If P refines S, then for
each path t′ for P there exists a path t for S such that t � t′.

Proof Sketch: The proof for this lemma follows from structural induction on the refine-
ment rules shown in Figure 7. Details are contained in our technical report [27].

344 H. Rajan et al.

Lemma 2. Given a specification S and a policy φ ∈ Φ(S), the automaton F(S) ∩
B(¬φ) accepts a language, which is empty when the specification satisfies the policy.

The proof of this lemma follows from standard proofs in model checking, in particular,
from Lemma 3.1, Theorem 2.1 and Theorem 3.3. given by Vardi and Wolper [28, pp.
4,6]. Details are contained in our technical report [27].

Theorem 1. Let S be a specification, φ be a policy in Φ(S), and P be a program. Let
φ be satisfied by the specification S and P be a refinement of S (as defined in Figure 7).
Then the policy φ is satisfied by the program P .

Proof Sketch: The proof follows from lemma 1 and 2. From lemma 1, we have that
each path in the program refines a path in the specification. From lemma 2 and the
assumptions of this theorem, we have that φ is satisfied on all paths in S. Thus, φ,
which is written over P(S), is also satisfied for P .

4 Related Work

In this section, we discuss techniques that are closely related to our approach.

Greybox specifications. We are not the first to consider greybox specifications [11] as
a solution for verification problems. Barnett and Schulte [30,31] have considered using
greybox specifications written in AsmL [32] for verifying contracts for .NET frame-
work. Wasserman and Blum [33] also use a restricted form of greybox specifications
for verification. Tyler and Soundarajan [34] and most recently Shaner, Leavens, and
Naumann [15] have used greybox specifications for verification of methods that make
mandatory calls to other dynamically-dispatched methods. Compared to these related
ideas, to the best of our knowledge our work is the first to consider greybox specifica-
tions as a mechanism to decouple verification of web services without exposing all of
their implementation details. Secondly, most of these, e.g. Shaner, Leavens, and Nau-
mann [15] use the refinement of Hoare logic as their underlying foundation. This was
insufficient to tackle the problem that we address, which required showing refinement
of (a variant of) linear temporal logic. Thus adaptation of much of their work was not
possible, although we were able to adapt the notion of structural refinement.

Specification and Verification Techniques for Web Services. The technique proposed
by Bravetti and Zavattaro [35] for determining whether the behavioral contract of a
service correctly refines its desired requirements in a composition of web-services is
closely related and complementary to this work. The main difference between this work
and the current work is that we verify refinement of greybox specifications by service
implementations that allows us to reason about temporal policies, while hiding much
of the implementation. However, we foresee a combination of our work and Bravetti
and Zavattaro’s work for determining fitness of a service implementation in a desired
composition of web-services.

Some approaches have recently been proposed to verify contracts for web services,
as seen in the works of Acciai and Boreale [36], Kuo et al. [8], Baresi et al. [6],
Barbon et al. [5], etc. These ideas focus on verifying the behavioral contracts as defined
by the externally visible interface of the web services, whereas our work provides a

Tisa: A Language Design and Modular Verification Technique for Web Services 345

principled, modular technique for verifying such policies that require inspecting the
web service implementation to a limited extent.

Castagna, Gesbert and Padovani present a formalism for specifying web services
based on the notion of “filtering” the possible behaviors of an existing web service to
conform to the behavior of some contract [7]. These filters take the form of coercions
that limit when and how an available service may be consumed. These coercions per-
mits contract subtyping and support reasoning in a language-independent way about the
sequence of reads and writes performed between service clients and providers. Their
contracts are intended to constrain the usage scenarios of a web service, whereas the
present work describes a modular way to specify the observable behaviors that occur
inside service implementations.

Bartoletti et al. [37] provide a formalization of web service composition in order to
reason about the security properties provided by connected services. While they ignore
policy language details, our work shows how the amount of overhead used to relate
specifications to policies depends on the level of detail in the policy language. Further-
more, we believe greybox reasoning grants real benefits in readability and modularity
over their type system. We view later work developing executable specifications for
design of web services [38] as possible future work for Tisa.

Another approach [39] proposes an architecture to enforce these access policies at
component web services, but again the work is tightly coupled to the WS-SensFlow
and Axis implementations. Srivatsa et al. [40] propose an Access Control system for
composite services which does not take care of the Trust in the resulting service oriented
architecture. Skalka and Wang [41] introduced a trust but verify framework which is an
access control system for web services, but they do not provide temporal reasoning for
the verification of policies. By recording the sequence of program events in temporal
order, Skalka and Smith [42] are able to verify the policies such as whether the events
were happened in a reasonable order, but the mechanism does not support decoupling
the model and the implementation. Other approaches [43,44] either do not have a formal
model supporting them or are tightly coupled with implementations.

Future Work and Conclusions

We have designed Tisa to be a small core language to clearly communicate how it al-
lows users to balance compliance and modularity in web service specification. However,
our desire for simplicity and clarity led us to leave for future work many practical and
useful extensions. The most important future work in the area of Tisa’s semantics is to
investigate refinement of information flow properties. It would also be interesting to in-
vestigate the utility of Tisa’s specification forms for reasoning about the composition of
web services.

Verifying web services is an important problem [7,5,6,8,9], which is crucial for wider
adoption of this improved modularization technique that enables new integration possi-
bilities. There are several techniques for verifying web-services using behavioral inter-
faces, but none facilitates verification that requires access to internal states of the ser-
vice. To that end, the key contribution of this work is to identify the conflict between
verification of temporal properties and modularity requirements in web services. Our lan-
guage design, Tisa, addresses these challenges. It allows service providers to demonstrate

346 H. Rajan et al.

compliance to policies expressed in an LTL-like language [14]. We also showed that poli-
cies in Tisa can be verified by clients using just the specification. Furthermore, refinement
of specifications by program ensures that conclusion drawn from verifying policies are
valid for Tisa programs. Another key benefit of Tisa is that its greybox specifications [11]
allow service providers to encapsulate changeable implementation details by hiding them
using a combination of specandrefining expressions. Thus, Tisa provides significant
modularity benefits while balancing the verification needs.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing: Introduction. Commun.
ACM 46(10), 24–28 (2003)

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description lan-
guage (WSDL) 1.1. Technical report, World Wide Web Consortium (March 2001)

3. Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy and utility in business processes. In:
CSF 2007, pp. 279–294 (2007)

4. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral interface
specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38 (2006)

5. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and
classes of web service compositions. In: ICWS 2006, pp. 63–71 (2006)

6. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC 2004,
pp. 193–202 (2004)

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: POPL
2008, pp. 261–272 (2008)

8. Kuo, D., Fekete, A., Greenfield, P., Nepal, S., Zic, J., Parastatidis, S., Webber, J.: Expressing
and reasoning about service contracts in service-oriented computing. In: ICWS 2006, pp.
915–918 (2006)

9. Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in service oriented architec-
ture. In: IEEE International Conference on Services Computing (SCC 2006), pp. 222–229
(2006)

10. Parnas, D.L.: On the criteria to be used in decomposing systems into modules 15(12), 1053–
1058 (1972)

11. Büchi, M., Weck, W.: The greybox approach: When blackbox specifications hide too much.
Technical Report 297, Turku Center for Computer Science (August 1999)

12. Back, R.J.R., von Wright, J.: Refinement calculus, part i: sequential nondeterministic pro-
grams. In: REX workshop, pp. 42–66 (1990)

13. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Sci.
Comput. Program. 9(3), 287–306 (1987)

14. Edmund, M., Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

15. Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular verification of higher-order methods
with mandatory calls specified by model programs. In: OOPSLA 2007, pp. 351–368 (2007)

16. Necula, G.C.: Proof-carrying code. In: POPL 1997, pp. 106–119 (1997)
17. Rajan, H., Hosamani, M.: Tisa: Towards trustworthy services in a service-oriented architec-

ture. IEEE Transactions on Services Computing (SOC) 1(2) (2008)
18. Hosamani, M., Narayanappa, H., Rajan, H.: How to trust a web service monitor deployed in

an untrusted environment? In: NWESP 2007: Proceedings of the Third International Confer-
ence on Next Generation Web Services Practices, pp. 79–84 (2007)

19. Liskov, B., Scheifler, R.: Guardians and actions: Linguistic support for robust, distributed
programs. TOPLAS 5(3), 381–404 (1983)

Tisa: A Language Design and Modular Verification Technique for Web Services 347

20. Gordon, A.D., Pucella, R.: Validating a web service security abstraction by typing. Formal
Aspects of Computing 17(3), 277–318 (2005)

21. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified typed events. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 155–179. Springer, Heidelberg (2008)

22. Clifton, C., Leavens, G.T.: MiniMAO1: Investigating the semantics of proceed. Science of
Computer Programming 63(3), 321–374 (2006)

23. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and
GJ. In: OOPSLA 1999, pp. 132–146 (1999)

24. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes
and mixins. In: Formal Syntax and Semantics of Java, pp. 241–269 (1999)

25. Clifton, C.: A design discipline and language features for modular reasoning in aspect-
oriented programs. Technical Report 05-15, Iowa State University (Jul 2005)

26. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Com-
putation 115(1), 38–94 (1994)

27. Rajan, H., Tao, J., Shaner, S.M., Leavens, G.T.: Reconciling trust and modularity in web
services. Technical Report 08-07, Dept. of Computer Sc., Iowa State U. (July 2008)

28. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proceedings of the First Symposium on Logic in Computer Science, pp. 322–331 (1986)

29. Buchi, J.: On a decision method in restricted second order arithmetic. In: Proc. Internat.
Congr. Logic, Method. and Philos. Sci., pp. 1–12 (1960)

30. Barnett, M., Schulte, W.: Runtime verification of .net contracts. Journal of Systems and Soft-
ware 65(3), 199–208 (2003)

31. Barnett, M., Schulte, W.: Spying on components: A runtime verification technique. In: Work-
shop on Specification and Verification of Component-Based Systems (2001)

32. Barnett, M., Schulte, W.: The ABCs of specification: AsmL, Behavior, and Components.
Informatica 25(4), 517–526 (2001)

33. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. J. ACM 44(6),
826–849 (1997)

34. Tyler, B., Soundarajan, N.: Black-box testing of grey-box behavior. In: Petrenko, A., Ulrich,
A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 1–14. Springer, Heidelberg (2004)

35. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and
contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp.
34–50. Springer, Heidelberg (2007)

36. Acciai, L., Boreale, M.: XPi: A typed process calculus for XML messaging. Science of Com-
puter Programming 71(2), 110–143 (2008)

37. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service orchestration.
In: CSFW, pp. 57–69 (2006)

38. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for secure web
services. IEEE Trans. Software Eng. 34(1), 33–49 (2008)

39. Wei, J., Singaravelu, L., Pu, C.: Guarding sensitive information streams through the jungle
of composite web services. In: ICWS 2007, pp. 455–462 (2007)

40. Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou, I., Yin, J.: An access control system for
web service compositions. In: ICWS 2007, pp. 1–8 (2007)

41. Skalka, C., Wang, X.S.: Trust but verify: authorization for web services. In: SWS, pp. 47–55
(2004)

42. Skalka, C., Smith, S.F.: History effects and verification. In: Chin, W.-N. (ed.) APLAS 2004.
LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004)

43. Biskup, J., Carminati, B., Ferrari, E., Muller, F., Wortmann, S.: Towards secure execution
orders for composite web services. In: ICWS 2007, pp. 489–496 (2007)

44. Vorobiev, A., Han, J.: Specifying dynamic security properties of web service based systems.
In: SKG 2006, p. 34 (2006)

	Tisa: A Language Design and Modular Verification Technique for Temporal Policies in Web Services
	Introduction
	Tisa Language Design
	Program Syntax
	Specification Constructs
	Constructs for Specifying Policies
	Dynamic Semantics of Tisa's Constructs

	Verification of Policies in Tisa
	Verifying Policies
	Verifying Refinement
	Soundness of Verification Technique

	Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

