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Abstract. In this work, we consider the task of allowing a content
provider to enforce complex access control policies on oblivious protocols
conducted with anonymous users. As our primary application, we show
how to construct privacy-preserving databases by combining oblivious
transfer with an augmented anonymous credential system. This permits
a database operator to restrict which items each user may access, without
learning anything about users’ identities or item choices. This strong pri-
vacy guarantee holds even when users are assigned different access control
policies and are allowed to adaptively make many queries. To do so, we
show how to augment existing anonymous credential systems so that, in
addition to certifying a user’s attributes, they also store state about the
user’s database access history. Our construction supports a wide range
of access control policies, including efficient and private realizations of
the Brewer-Nash (Chinese Wall) and Bell-LaPadula (Multilevel Secu-
rity) policies, which are used for financial and defense applications. In
addition, our system is based on standard assumptions in the standard
model and, after an initial setup phase, each transaction requires only
constant time.

1 Introduction

There is an increasing need to provide privacy to users accessing sensitive in-
formation, such as medical or financial data. The mere fact that a rare dis-
ease specialist accesses a certain patient’s medical record exposes information
about the private contents of the record. At the same time, newly developed
regulations governing such sensitive data (e.g., Sarbanes-Oxley, HIPAA) require
content providers to enact strict accounting procedures. These may seem like
conflicting goals since the specialist may wish to hide which patient’s record she
is requesting while the database operator may wish to ensure that the doctor’s
collective accesses do not violate regulations. The situation becomes even more
precarious when a patient uses such a database to look up information about a
potentially sensitive medical condition. In such cases, the patient’s identity, as
well as her access patterns, must remain hidden from the database administrator.
The increasing trend toward outsourcing and distributing sensitive databases,
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such as the outsourced medical database provided by Google Health [27], makes
these concerns all the more compelling.

Previous works have proposed to construct privacy-friendly databases using
Private Information Retrieval [20] or Oblivious Transfer [30,15]. In a k-out-of-
N Oblivious Transfer protocol, a content provider with messages M1, . . . , MN

and a user with indices σ1, . . . , σk ∈ [1, N ] interact in such a way that at the
end the user obtains Mσ1 , . . . , Mσk

without learning anything about the other
messages and the provider does not learn anything about σ1, . . . , σk. This tool
leads to privacy-friendly databases when the user gets her choice of any files with
no restrictions. Unfortunately, that scenario rules out many practical database
applications. Worse, the previous work in this area provides no insight as to how
access control might ever be incorporated into such a database, since traditional
access control mechanisms assume knowledge of the items being requested.

Thus, to realize a practical “oblivious database” for our users, we must couple
it with enforceable access controls. We make three design choices that act as
guiding principles for our system. Our first is to maintain all anonymity and
privacy guarantees provided by the oblivious transfer protocol. We reject any
solutions that use pseudonyms or allow for some form of transaction linking, since
it is too difficult to infer what compromise to privacy might result. Secondly, we
wish to enforce a strong notion of access control where the database operator may
limit each access based on the user’s identity, item requested, and even a history
of the user’s previous requests. Finally, we require our solution to be efficient,
and thus each transaction should take constant time regardless of a user’s access
history, or the complexity of the access policy which she must follow.

Contributions. To achieve the goals above, we show how to efficiently cou-
ple an adaptive, oblivious transfer protocol with an anonymous credential
scheme [18,11], to provide non-trivial, real-world access controls for oblivious
databases. Specifically, we present an extension to existing anonymous creden-
tial systems to support history-dependent access controls by embedding the
user’s current state into the credential, and dynamically updating that state
according to well-defined policies governing the user’s actions. These stateful
anonymous credentials are built on top of well-known signatures with efficient
protocols [29,11,12,4]. Our constructions are secure in the standard model under
basic assumptions, such as Strong RSA. Additionally, we introduce a technique
for efficiently proving that a committed value lies in a hidden range that is
unknown to the verifier, which may be of independent interest.

Our constructions can be used to achieve non-trivial access control policies,
including the Brewer-Nash (Chinese Wall) [7] and Bell-LaPadula (Multilevel Se-
curity) [2] model, which are used in a number of settings, including financial
institutions and classified government systems. We discuss simulation-based se-
curity definitions for our stateful anonymous credentials, as well as an anonymous
and oblivious database system with access controls.

Related Work. Several previous works sought to limit user actions while main-
taining privacy, either directly within an existing protocol or through the use
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of anonymous credentials. Aiello, Ishai, and Reingold [1] proposed priced obliv-
ious transfer, in which each user is given a declining balance that can be spent
on each transfer. However, here user anonymity is not protected, and the pro-
tocol is also vulnerable to selective-failure attacks in which a malicious server
induces faults to deduce the user’s selections [30,15]. The more general concept
of conditional oblivious transfer was proposed by Di Crescenzo, Ostrovsky, and
Rajagopolan [23] and subsequently strengthened by Blake and Kolesnikov [3].
In conditional oblivious transfer, the sender and receiver maintain private in-
puts (x and y, respectively) to some publicly known predicate q(·, ·) (e.g., the
greater than equal to relation on integers). The items in the oblivious transfer
scheme are encrypted such that the receiver can complete the oblivious transfer
and recover her data if and only if q(x, y) = 1. In addition, techniques from
e-cash and anonymous credentials have been used to place simple limitations on
an anonymous user’s actions, such as preventing a user from logging in more
than once in a given time period [8], authenticating anonymously at most k
times [34], or preventing a user from exchanging too much money with a single
merchant [9]. Rather than providing a specific type of limitation or restricting
the limitation to a particular protocol, our proposed system instead provides a
general method by which arbitrary access control policies can be added to a wide
variety of anonymous and oblivious protocols.

2 Stateful Credentials: Model and Definitions

The goal of typical anonymous credential systems is to provide users with a way
of proving certain attributes about themselves (e.g., age, or height) without re-
vealing their identity. Users conduct this proof by obtaining a credential from an
organization, and subsequently “showing” the credential without revealing their
identity. In addition to the properties of typical credentials, a stateful anony-
mous credential system adds the additional notion of credential state, which is
embedded as an attribute within the credential. The user may update the state
in her credential according to some well-defined policy dictated by the credential
provider. In practice, this may limit the user to a finite number of states, or a
particular sequential ordering of states. To maintain the user’s anonymity, it is
important that the update protocol not leak information about the credential’s
current state beyond what the user chooses to reveal.

At a high level, the stateful anonymous credential system, which is defined by
the tuple of algorithms (Setup,ObtainCred,UpdateCred,ProveCred), operates as
follows. First, the user and credential provider negotiate the use of a specified
policy using the ObtainCred protocol. The negotiated policy determines the way
in which the user will be allowed to update her credential. After the protocol
completes, the user receives an anonymous credential that embeds her initial
state in the policy, in addition to other attributes. Next, the user can prove (in
zero-knowledge) that the credential she holds embeds a given state, or attribute,
just as she would in other anonymous credential systems by using the ProveCred
protocol. This allows the user anonymous access to services, while the entity
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checking the credential is assured of the user’s attributes, as well as her state in
the specified policy. These proof can be done in such a way that the verifying
entity learns nothing about the user’s state or attributes. Finally, when the user
wishes to update her credential to reflect a change in her state, she interacts with
the credential provider using the UpdateCred protocol, to prove (again, in zero-
knowledge) her current state and the existence of a transition in the policy from
her current state to her intended next state. As with the ProveCred protocol, the
provider learns nothing about the user other than the fact that her state change
is allowed by the policy previously negotiated within the ObtainCred protocol.

Policy Model. To represent the policies for our stateful credential system, we
use directed graphs, which can be thought of as a state machine that describes
the user’s behavior over time. We describe the policy graph Πpid as the set of
tags of the form (pid, S → T ), where pid is the identity of the policy and S → T
represents a directed edge from state S to state T . Thus, the user’s credential
embeds the identity of the policy pid and the user’s current state in the policy
graph. When the user updates her credential, she chooses a tag and then proves
that the policy id she is following is the same as what is provided in the tag and
that the tag encodes an edge from her current state to her desired next state.

These policy graphs can be created in such a way that the users may reach a
terminal state, and therefore would be unable to continue updating (and conse-
quently using) their credential. In this case, it may be possible for an adversary to
perform traffic analysis to infer the policy that the user is following. To prevent
this, we consider the use of null transitions in the graph. The null transitions
occur as self-loops on the terminal states of the policy graph, and allow the user
to update her credential as often as she wishes to prevent such traffic analysis
attacks. However, the updates performed on these credentials only allow the user
access to a predefined null resource. The specifics of this null resource are de-
pendent on the anonymous protocol that the credential system is coupled with,
and we describe an implementation for them in oblivious databases in Section 5.

While these policy graphs are rather simplistic, they can represent compli-
cated policies. For instance, a policy graph can encode the user’s history with
respect to accessing certain resources up to the largest cycle in the graph. More-
over, we can extend the policy graph tags to include auxiliary information about
the actions that the user is allowed to perform at each state. By doing so, we
allow the graph to dynamically control the user’s access to various resources
according to her behavior and history, as well as her other attributes. In Sec-
tion 5, we examine how to extend these policy graphs to provide non-trivial,
real-world access control policies for oblivious databases, as well as a variety of
other anonymous and oblivious application.

2.1 Protocol Descriptions and Definitions for Stateful Credentials

A stateful anonymous credential scheme consists of the four protocols: Setup,
ObtainCred, UpdateCred, and ProveCred. We will now describe their input/output
behavior and intended functionality. For the remainder of the paper, let 1κ be
the security parameter.
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Setup(U(1k),P(1k, Π1, . . . , Πn)): The provider P generates parameters params
and a keypair (pkP , skP) for the credential scheme. For each graph Π to be
enforced, P also generates a cryptographic representation ΠC and publishes
this value via an authenticated channel. Each user U generates a keypair and
requests that it be certified by a trusted CA.

ObtainCred(U(pkP , skU , ΠC),P(pkU , skP , ΠC , S)): U identifies herself to P and
then receives her credential Cred which binds her to a policy graph Π and
starting state S.

UpdateCred(U(pkP , skU ,Cred, T ),P(skP , D)): U and P interact such that Cred
is updated from its current state to state T , but only if this transition is
permitted by the policy Π . Simultaneously, P should not learn U ’s iden-
tity, attributes, or current state. To prevent replay attacks, P maintains a
database D, which it updates as a result of the protocol.

ProveCred(U(pkP , skU ,Cred),P(pkP , E)): U proves possession of a credential
Cred in a particular state. To prevent re-use of credentials, P maintains a
database E, which it updates as a result of the protocol.

Security Definitions. Security definitions for anonymous credentials have tra-
ditionally been game-based. Unfortunately, the existing definitions may be in-
sufficient for the applications considered in this work, as these definitions do
not necessarily capture correctness. This can lead to problems when we inte-
grate our credential system with oblivious transfer protocols (see e.g., [30,15]).
To capture the security requirements needed for our applications, we instead
use a simulation-based definition, in which security of our protocols is analyzed
with respect to an “ideal world” instantiation. We do not require security un-
der concurrent executions, but rather restrict our analysis to atomic, sequential
execution of each protocol. We do so because our constructions, which employ
standard zero-knowledge techniques, require rewinding in their proof of security
and thus are not concurrently secure. An advantage of the simulation paradigm
is that our definitions will inherently capture correctness (i.e., if parties hon-
estly follow the protocols then they will each receive their expected outputs).
Informally, the security of our system is captured by the following two definitions:

Provider Security: A malicious user (or set of colluding users) must not be able to
falsely prove possession of a credential without first obtaining that credential, or
arriving at it via an admissable sequence of credential updates. For our purposes,
we require that the malicious user(s) cannot provide a proof of being in a state
if that state is not present in her credential.

User Security: A malicious provider controlling some collection of corrupted
users cannot learn any information about a user’s identity or her state in the
policy graph beyond what is available through auxiliary information from the
environment.

Due to space considerations, we defer the formal security definitions for state-
ful anonymous credentials to full version of this paper [21]. In Section 5.1 and
Appendix A, we provide definitions for oblivious databases with access control.



506 S. Coull, M. Green, and S. Hohenberger

3 Technical Preliminaries

In this section, we recall some basic building blocks, and then introduce a new
primitive, hidden range proofs, which may be of independent interest.

Pedersen and Fujisaki-Okamoto Commitments. In the Pedersen commit-
ment scheme [32], the public parameters are a group G of prime order q, and
generators (g0, . . . , gm). In order to commit to the values (v1, . . . , vm) ∈ Zm

q , the
user picks a random r ∈ Zq and sets C = Commit(v1, . . . , vm; r) = gr

0
∏m

i=1 gvi

i .
Fujisaki and Okamoto [26] provided a composite order variant.

Signatures with Efficient Protocols. Camenisch and Lysyanskaya (CL) [11]
designed a signature scheme with two efficient protocols: (1) a protocol for a user
to obtain a signature on the value(s) in a Pedersen (or Fujisaki-Okamoto) com-
mitment [32,26] without the signer learning anything about the message(s), and
(2) a proof of knowledge of a signature. Our constructions may be implemented
with the Strong RSA signature scheme [11] (and with minor modifications, using
bilinear signatures based on the LRSW assumption [12]). Both schemes consist
of the algorithms (CLKeyGen,CLSign,CLVerify), which we describe below:

CLKeyGen(1κ). On input a security parameter, outputs a keypair (pk , sk).
CLSign(sk , M1, . . . , Mn). On input one or more messages and a secret signing

key, outputs the signature σ.
CLVerify(pk , σ, M1, . . . , Mn). On input a signature, message(s) and public veri-

fication key, outputs 1 if the signature verifies, 0 otherwise.

We could also use other bilinear signatures with efficient protocols (e.g., [4]),
though we do not make use of these in our construction.

Zero-Knowledge Protocols. We use several standard results for proving state-
ments about discrete logarithms, such as (1) a proof of knowledge of a discrete
logarithm modulo a prime [33] or a composite [26,24], (2) a proof of knowledge of
equality of representation modulo two (possibly different) prime [19] or compos-
ite [14] moduli, (3) a proof that a commitment opens to the product of two other
committed values [13,16,6], and (4) a proof of the disjunction or conjunction of
any two of the previous [22]. These composite-based protocols are secure under
Strong RSA and the prime-based ones under the discrete logarithm assumption.

Note that there are several building blocks that are not used in our basic scheme,
but which can be used to provide extended functionality or improved perfor-
mance. These building blocks include:

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the
parameters for a bilinear mapping as γ = (p, G, GT , e, g ∈ G), where g generates
G, the groups G, GT each have prime order p, and e : G × G → GT .

Hidden-Range Proofs. Standard techniques [17,13,13,5] allow us to efficiently
prove that a committed value lies in a public integer interval (i.e., where the



Controlling Access to an Oblivious Database 507

interval is known to both the prover and verifier). In our protocols, it is useful
to hide this interval from the verifier, and instead have the prover show that a
committed value lies between the openings of two other commitments.

Fortunately, this can be done efficiently as follows. Suppose we wish to show
that a ≤ j ≤ b, for positive numbers a, j, b without revealing them. This is
equivalent to showing that 0 ≤ (j − a) and 0 ≤ (b − j). We only need to get
these two sums reliably into commitments, and can then employ the standard
techniques since the range (≥ 0) is now public. Using a group G = 〈g〉, where
n is a special RSA modulus, g is a quadratic residue modulo n and h ∈ G. The
prover commits to these values as A = gahra , J = gjhrj , and B = gbhrb , for
random values ra, rj , rb ∈ {0, 1}� where � is a security parameter. The verifier
next computes a commitment to (j − a) as J/A and to (b − j) as B/J . The
prover and verifier then proceed with the standard public interval proofs with
respect to these commitments, which for technical reasons require groups where
Strong RSA holds.

4 Stateful Anonymous Credentials

In this section, we describe how to realize stateful credentials. The state records
information about the user’s attributes as well as her prior access history. We
will consider two separate modes for “showing” a credential. In the first mode,
the user exposes her portions of her state during the ProveCred protocol. This
is useful for, say, a DRM application where the user’s goal is to prove that
her software is in a “licensed” state without revealing her name. In mode two,
the user uses her credential to gain access to resources without revealing her
state through the use of zero knowledge proofs. Specifically, we show how to tie
this credential system to protocols, such as adaptive oblivious transfer, where
the user wants to hide both her identity and the item she is requesting while
simultaneously proving that she has the credentials to obtain the item.

4.1 Basic Construction

Our construction begins with the anonymous credentials of Camenisch and
Lysyanskaya [29,11,12], where the state is embedded as a field in the signature.
The core innovation here is a protocol for performing state updates, and a tech-
nique for “translating” a history-dependent update policy into a cryptographic
representation that can be used as an input to this protocol.

The setup, credential granting, and credential update protocols are presented in
Figure 1. We will now briefly describe the intuition behind them.

Setup. First, the credential provider P generates its keypair and identifies one
or more access policies it wishes to enforce. Each policy — encoded as a graph —
may be applied to one or more users. The provider next “translates” the graph
into a cryptographic representation which consists of the graph description,
and a separate CL signature for each tag in the graph. Recall from Section 2 that
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Setup(U(1k),P(1k, Π1, . . . , Πn)): The provider P generates parameters for the
CL signature, as well as for the Pedersen commitment scheme.

Party P runs CLKeyGen twice, to create the CL signature keypairs (spkP , sskP)
and (gpkP , gskP). It retains (pkP , skP) = ((spkP , gpkP), (sskP , gskP)) as its key-
pair. The provider’s public key pkP must be certified by a trusted CA.

Each party U selects u
$← Zq and computes the keypair (pkU , skU ) = (gu, u). The

user’s public key pkU must be certified by a trusted CA.

Next, for each policy graph Π , P generates a cryptographic representation ΠC.

1. P parses Π to obtain a unique policy identifier pid.
2. For each tag t = (pid, S, T ) in Π , P computes a signature σS→T ←

CLSign(gskP , (pid, S, T )).
3. P sets ΠC ← 〈Π,∀t : σS→T 〉 and publishes this value via an authenticated

channel.

ObtainCred(U(pkP , skU , ΠC),P(pkU , skP , ΠC, S)): On input a graph Π and initial
state S, U first obtains ΠC. U and P then conduct the following protocol:

1. U picks random usage and update nonces Ns, Nu ∈ Zq and computes
A ← Commit(skU , Ns, Nu).

2. U conducts an interactive proof to convince P that A correlates to pkU .
3. U and P run the CL signing protocol on committed values so that U obtains

the state signature σstate ← CLSign(sskP , (skU , Ns, Nu, pid, S)) with pid, S
contributed by P .

4. U stores the credential Cred = (ΠC, S, σstate, Ns, Nu).

UpdateCred(U(pkP , skU ,Cred, T ),P(skP , D)): Given a credential Cred currently
in state S, U and P interact to update the credential to state T :

1. U parses Cred = (ΠC, S, σstate, Ns, Nu) and identifies a signature σS→T in ΠC
that corresponds to a transition from state S to T (if none exists, U aborts).

2. U selects N ′
s, N

′
u

$← Zq and computes A ← Commit(skU , N ′
s, N

′
u, pid, T ).

3. U sends (Nu, A) to P . P looks in the database D for a pair (Nu, A′ �= A). If
no such pair is found, then P adds (Nu, A) to D. Otherwise P aborts.

4. U proves to P knowledge of values (skU , pid, S, T, N ′
s, N

′
u, Ns, σstate, σS→T )

such that:
(a) A = Commit(skU , N ′

s, N
′
u, pid, T ).

(b) CLVerify(spkP , σstate, (skU , Ns, Nu, pid, S)) = 1.
(c) CLVerify(gpkP , σS→T , (pid, S, T )) = 1

5. If these proofs do not verify, P aborts. Otherwise U and P run the CL signing
protocol on committed values to provide U with σ′

state ← CLSign(sskP , A).
6. U stores the updated credential Cred′ = (ΠC, T, σ′

state, N
′
s, N

′
u).

Fig. 1. Basic algorithms for obtaining and updating a stateful anonymous credential
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the tags embed the graph id, start, and end states. The cryptographic policy
representations are distributed to users via an authenticated broadcast channel
(e.g., by signing and publishing them on a website). The user U generates a
keypair that is certified by the CA.

Obtaining a Credential. When a user U wishes to obtain a credential, she first
negotiates with the provider to select an update policy to which the credential
will be bound, as well the credential’s initial state within the policy graph.
The user next engages in a protocol to blindly extract a CL signature under
the provider’s secret key, which binds the user’s public key, her initial state,
the policy id, and two random nonces chosen by the user. The update nonce
Nu is revealed when the user updates the credential and the usage nonce Ns is
revealed when the user show’s her credential. This signature, as well as the nonce
and state information, form the credential. While the protocol for obtaining a
credential, as currently described, reveals the user’s identity through the use of
her public key, we can readily apply the techniques found in [10,11] to provide
a randomized pseudonym rather than the public key.

Updating the Credential’s State. When the user wishes to update a cre-
dential, she first identifies a valid tag within the credential’s associated policy.
She then generates a new pair of nonces and a commitment embedding these
values, as well as the new state from her chosen tag. Next, the user sends the
update nonce from her current credential, along with the commitment, to the
provider. The provider records this nonce and the commitment into a database
— however, if the nonce is already in the database but associated with a differ-
ent commitment, the provider aborts the protocol, which prevents the user from
re-using an old version of a credential. By recording the nonce and commitment
together, we allow the user to restart the protocol if it has failed as long as
she uses the same commitment. If the nonce and commitment are not in the
database, the user and provider then interact to conduct a zero-knowledge proof
that: (1) the remainder of the information in the commitment is identical to the
current credential, (2) the user has knowledge of the secret key corresponding
to her current credential, and (3) the policy graph contains a signature on a tag
from the current state to the new state. If these conditions are met, the user
obtains a new credential embedding the new state.

Showing (or Privately Proving Possession of) a Credential. The ap-
proach to using a single-show credential, shown in Figure 2, follows [11,12].
When a user wishes to prove possession of a credential to P , she first reveals
the credential usage nonce and the current state of the credential. P must check
that the usage nonce has not been used before. The user then proves knowledge
of: (1) a CL signature embedding this state value and nonce formed under P ’s
public key, and (2) a secret key that is consistent with the CL signature. Alter-
natively, if the user does not want to reveal her state explicitly, the user may
generate a commitment to her state and prove (in zero knowledge) that it is the
same as that which is found in her credential.



510 S. Coull, M. Green, and S. Hohenberger

Single-show vs. multi-show. This is an example of a single-show credential. It can
be shown only once, or the verifier will recognize the repeated usage nonce. To
restore its anonymity, the user may return to P and execute the update protocol
to replace the usage nonce, assuming it is allowed by the user’s policy. This
update policy gives users a way to use a single credential multiple times. One
can also adapt this scheme to support k-times anonymous use of the credential by
using the Dodis-Yampolskiy [25] pseudorandom function to generate the nonces
from a common seed, as shown in [8].

A Note on Efficiency. The efficiency of our protocols is of utmost importance
in ensuring their practical use in oblivious databases. During the Setup protocol,
the provider must “translate” each of the graphs into a cryptographic repre-
sentation by signing each tag associated with the graphs. This means that the
complexity of the Setup protocol is linear in the size of the policy graphs used
in controlling access to the database. While this may seem onerous at first, it
is important to emphasize that this process may be conducted offline, and only
as a one time cost to the provider. Once the setup procedure is completed, the
complexity of the remaining protocols is constant and independent of the size
of the policy in use since they deal with only a single tag at a time. Thus, our
scheme is practical even for extremely complex policies containing thousands of
distinct states and transition rules.

ProveCred(U(pkP , skU ,Cred),P(pkP , E)): User U proves knowledge of the Cred
as follows:

1. U parses Cred as (ΠC, S, σstate, Ns, Nu), and sends its usage nonce Ns to P
(who aborts if Ns ∈ E).

2. Otherwise, U continues with either:
– (mode one) Sending her current credential state S to P in the clear.
– (mode two) Sending a commitment to S.

3. U then conducts an interactive proof to convince P that it possesses a CL
signature σstate embedding Ns, S, and that it has knowledge of the secret key
skU .

4. P adds Ns to E.

Fig. 2. Basic algorithm for proving knowledge of a single-show anonymous credential

Theorem 1. When instantiated with the RSA (resp., bilinear) variant of CL
signatures, the anonymous credential scheme above achieves user, and provider
security under the strong RSA (resp., LRSW) assumption.

The proof of Theorem 1 is in the full version of this work [21].

5 Oblivious Database Access Control

In this section, we show how stateful anonymous credentials can be used to
control access to oblivious databases. Recall that an oblivious database permits
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users to request data items without revealing their item choices or their identities
to the database operator (e.g., where the item choices are sensitive).

Although we possess efficient building blocks such as k-out-of-N Oblivious
Transfer (OT), little progress has been made towards the deployment of practi-
cal oblivious databases. In part, this is due to a fundamental tension with the
requirements of a database operator to provide some form of access control. In
this section, we show that it is possible to embed flexible, history-dependent ac-
cess controls into an oblivious database without compromising the user’s privacy.
Specifically, we show how to combine our stateful anonymous credential system
with an adaptive Oblivious Transfer protocol to construct a multi-user oblivious
database that supports complex access control policies. We show how to effi-
ciently couple stateful credentials with the recent standard-model adaptive OT
scheme due to Camenisch, Neven and shelat [15]. Our stateful credentials can
also be efficiently coupled with the adaptive OT of Green and Hohenberger [28].

I

II

III

IVV

1,3,4
5

1

2

2

1,3,4

3

Fig. 3. Sample access policy for a small oblivious database. The labels on each tran-
sition correspond to the database item indices that can be requested when a user
traverses the edge, with null transitions represented by unlabeled edges.

Linking Policies to Database Items. To support oblivious database access,
we extend our policy graphs to incorporate tags of the form (pid, S → T, i),
where pid is the policy, S → T is the edge, and i is the message index in the
database that is allowed by that tag. Each edge in the graph may be associated
with one or more tags, which correspond to the items that can be obtained from
the database when traversing that edge. As described in Section 2, we place null
transitions on each terminal state that allow the user to update her credential
and access a predefined null message. The set of all tags, both legitimate and
null, are signed by the database and published.

Figure 3 shows an example policy for a small database. The interested reader
can view a fuller discussion of the non-trivial access control policies, including
Bell-Lapadula and Brewer-Nash that are allowed by our credential system in the
full version of this work [21].

5.1 Protocol Descriptions and Security Definitions for Oblivious
Databases

Our oblivious database protocols combine the scheme of Section 4.1 with a
multi-receiver OT protocol. Each transaction is conducted between one of a
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collection of users and a single database server D. We describe the protocol
specifications.

Setup(U(1k),D(1k, Π1, . . . , Πn, M1, . . . , MN)): The database server D gener-
ates parameters params for the scheme. As in the basic credential scheme,
it generates a cryptographic representation ΠC for each policy graph, and
publishes those values via an authenticated channel. In addition, D initial-
izes its database of messages according to the OT protocol in use. Each user
U generates a keypair and requests that it be certified by a trusted CA.

OTObtainCred(U(pkD, skU , ΠC),D(pkU , skD, ΠC , S)): U registers with the sys-
tem and receives a credential Cred which binds her to a policy graph Πid

and starting state S.
OTAccessAndUpdate(U(pkD, skU ,Cred, t),D(skD, E)): U requests an item at in-

dex i in the database from state S by selecting a tag t = (pid, S → T, i) from
the policy graph. The user then updates her credential Cred, in such a way
that D does not learn her identity, her attributes, or her current state. Si-
multaneously, U obtains a message from the database at index i. At the end
of a successful protocol, U updates the state information in Cred, and D
updates a local datastore E.

Security. We informally describe the security properties of an oblivious database
system, with a formal definition given in Appendix A.

Database Security: No (possibly colluding) subset of corrupted users can obtain
any collection of items that is not specifically permitted by the users’ policies.

User Security: A malicious database controlling some collection of corrupted
users cannot learn any information about a user’s identity or her state in the
policy graph, beyond what is available through auxiliary information from the
environment.

5.2 The Construction

In our model, many users share access to a single database server. To construct
our protocols, we extend the basic credential scheme of Section 4.1 by linking
it to the adaptive OT protocol of Camenisch et al. [15]. The database opera-
tor commits to a collection of N messages, along with a special null message
at index N + 1. It them distributes these commitments (e.g., via a website).
Each user then registers with the database using the OTObtainCred protocol,
and agrees to be bound by a policy that will control her ability to access the
database.

To obtain items from the database, the user runs the OTAccessAndUpdate
protocol, which proves (in zero knowledge) that its request is consistent with its
policy. Provided the user does not violate her policy, the user is assured that the
database operator learns nothing about its identity, or the nature of its request.
Figures 4 and 5 describe the protocols in detail.
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Setup(U(1k),D(1k, Π1, . . . , Πn, M1, . . . , MN )): When the database operator D is
initialized with a database of messages M1, . . . , MN , it conducts the following
steps:

1. D selects parameters for the OT scheme as γ = (q, G, GT , e, g) ←
BMsetup(1κ), h

$← G, x
$← Zq, and H ← e(g, h). D generates two CL sign-

ing keypairs (spkD, sskD) and (gpkD, gskD), and U generates her keypair
(pkU , skU ) as in the credential Setup protocol of Figure 1.

2. For i = 1 to (N + 1), D computes a ciphertext Ci = (Ai, Bi) as:
(a) If i ≤ N , then Ai = g

1
x+i and Bi = e(h,Ai) · Mi.

(b) If i = (N + 1), compute Ai as above and set Bi = e(h, Ai).
3. For every graph Π to be enforced, D generates a cryptographic representation

ΠC as follows:
(a) D parses Π to obtain a unique policy identifier pid.
(b) For each tag t = (pid, S, T, i) with i ∈ [1, N + 1], D computes the

signature σS→T,i ← CLSign(gskP , (pid, S, T, i)). Finally, D sets ΠC ←
〈Π,∀t : σS→T,i〉.

4. D sets pkD = (spkD, gpkD, γ, H, y = gx, C1, . . . , Cn) and skD =
(sskD, gskD, h). D then publishes each ΠC and the OT parameters pkD via
an authenticated channel.

OTObtainCred(U(pkD, skU , ΠC),D(pkU , skD, ΠC, S)): When user U wishes to join
the system, it negotiates with D to agree on a policy Π and initial state S, then:

1. U picks a random show nonce Ns ∈ Zq and computes
A ← Commit(skU , Ns).

2. U conducts an interactive proof to convince D that A correlates to pkU , and D
conducts an interactive proof of knowledge to convince U that e(g, h) = H .a

3. U and P run the CL signing protocol on committed values so that U ob-
tains the state signature σstate ← CLSign(sskP , (skU , Ns, pid, S)) with pid, S
contributed by P .

4. U stores the credential Cred = (ΠC, S, σstate, Ns).

a This proof can be conducted efficiently in four rounds as in [15].

Fig. 4. Setup and user registration algorithms for an access controlled oblivious
database based on the Camenisch, Neven and shelat oblivious transfer protocol [15].
The database operator and users first run the Setup portion of the protocol. Each user
subsequently registers with the database using OTObtainCred.

Theorem 2. The scheme described above satisfies database and user secu-
rity (as defined in Definition 1) under the q-PDDH, q-SDH, and Strong RSA
assumptions.

A full proof of Theorem 2 appears in the full version of this work [21]. We sketch
the broad outlines of the proof in Appendix B.
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OTAccessAndUpdate(U(pkD, skU ,Cred, t),D(pkD, E)): When U wishes to obtain
the message indexed by i ∈ [1, N + 1], it first identifies a tag t in Π such that
t = (pid, S → T, i).

1. U parses Cred = (ΠC, S, σstate, Ns), and parses ΠC to find σS→T,i.

2. U selects N ′
s

$← Zq and computes A ← Commit(skU , N ′
s, pid, T ).

3. U then sends (Ns, A) to D. D checks the database E for (Ns, A
′ �= A), and if

it finds such an entry it aborts. Otherwise it adds (Ns, A) to E.
4. U parses Ci = (Ai, Bi). It selects a random v ← Zq and sets V ← (Ai)v. It

sends V to D and proves knowledge of (i, v, skU , σS→T,i, σstate, pid, S, T, N ′
s)

such that the following conditions hold:
(a) e(V, y) = e(g, g)ve(V, g)−i.
(b) A = Commit(skU , N ′

s, pid, T ).
(c) CLVerify(spkP , σstate, (skU , Ns, pid, S)) = 1.
(d) CLVerify(P , σS→T,i, (pid, S, T, i)) = 1.

5. If these proofs verify, U and D run the CL signing protocol on committed
values such that U obtains σ′

state ← CLSign(sskD, A). U stores the updated
credential Cred′ = (ΠC, T, σ′

state, N
′
s).

6. Finally, D returns U = e(V, h) and interactively proves that U is correctly
formed (see [15]). U computes the message Mi = Bi/U1/v .

Fig. 5. Database access protocol for an access-controlled oblivious database based on
the Camenisch, Neven and shelat adaptive oblivious transfer protocol [15]

5.3 Extensions to Compact Access Policies in Practice

Extension #1: Equivalence Classes. Thus far, the protocol requires that a
tag in the policy graph must be defined on every item index in the database.
Yet, there are cases where many items may have the same access rules applied,
and therefore we can reduce the number tags used by referring to the entire
group with a single tag. A simple solution is to replace specific item indices
with general equivalence classes in the graph tags. The OT database can be re-
organized to support this concept by renumbering the item indices (previously
[1, N ]) using values of the form (c||i) ∈ Zq, where c is the identity of the item
class, and || represents concatenation. During the OTAccessAndUpdate protocol,
U can obtain any item (c||i) by performing a zero-knowledge proof on the first
half of the selection index, showing that the selected tag contains the class c.

Extension #2: Encoding Contiguous Ranges. An alternative approach re-
quires the database operator to arrange the identities of objects in the same
class so that they fall in contiguous ranges. In this case, we will label the graph
edges with ranges of items rather than single values. The credentials will also
replace the value i with an upper and lower bound for the range that the
holder of the credential is permitted to access. We make a slight change to
the OTAccessAndUpdate protocol so that rather than proving equality between
the requested object and the object present in the tag, the user now proves
that the requested object lies in the range described in the user selected tag, as
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described by the hidden range proof technique in Section 3. Notice that while
this approach requires that the database be reorganized such that classes of items
remain in contiguous index ranges, it can be used to represent more advanced
data structures, such as hierarchical classes.

6 Conclusion

In this paper, we presented a flexible and efficient system that allows content
providers to control access to their data, while simultaneously maintaining the
privacy provided by the oblivious and anonymous protocols. Specifically, we de-
scribed techniques for augmenting traditional anonymous credentials with state,
and showed how to combine these credentials with Oblivious Transfer to permit
oblivious access to a database enforcing a variety of non-trivial access control
policies. The flexibility of our approach makes it relatively straightforward to
apply to a diverse set of anonymous and oblivious protocols. For example, our
stateful anonymous credentials can be used to control which messages are signed
with several blind signature schemes, including those of Waters [35], Boneh and
Boyen [4], and Camenisch and Lysyanskaya [11,12], without ever revealing the
message to the signer. Other interesting applications include augmenting obliv-
ious versions of Identity-Based key extraction [28] and keyword search proto-
cols [31] with strong access controls.
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A Security Definition for an Oblivious Database

Definition 1 (Security for Oblivious Databases with Access Controls).
Security is defined according to the following experiments, which are based on
those of Camenisch et al. [15]. Although we do not explicitly specify auxiliary
input to the parties, we note that this information can be provided in order to
achieve sequential composition.

Real experiment. The real-world experiment RealD̂,Û1,...,Ûη
(η, N, k, Π1, . . . ,

Πη, M1, . . . , MN , Σ) is modeled as k rounds of communication between a
possibly cheating database D̂ and a collection of η possibly cheating users
{Û1, . . . , Ûη}. In this experiment, D̂ is given the policy graph for each user
Π1, . . . , Πη, a message database M1, . . . , MN and the users are given an adaptive
strategy Σ that, on input of the user’s identity and current graph state, outputs
the next action to be taken by the user.

At the beginning of the experiment, the database and users conduct the Setup
and OTObtainCred protocols. At the end of this step, D̂ outputs an initial state
D1, and each user Ûi output state U1,i. For each subsequent round j ∈ [2, k],
each user may interact with D̂ to request an item i ∈ [1, N + 1] as required
by the strategy Σ. Following each round, D̂ outputs Dj, and the users output

http://www.google.com/intl/en-US/health/about/index.html
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(U1,j , . . . , Uη,j). At the end of the kth round the output of the experiment is
(Dk, U1,k, . . . , Uj,k).

We will define the honest database D as one that honestly runs its portion
of Setup in the first round, honestly runs its side of the OTObtainCred and
OTAccessAndUpdate protocols when requested by a user at round j > 1, and
outputs Dk = params . Similarly, an honest user Ui runs the Setup protocol
honestly in the first round, and executes the user’s side of the OTObtainCred,
OTAccessAndUpdate protocols, and eventually outputs the received value Cred
along with all database items received.

Ideal experiment. In experiment IdealD̂′,Û ′
1,...,Û ′

η
(η, N, k, Π1, . . . , Πη, M1, . . . ,

MN , Σ) the possibly cheating database D̂′ generates messages (M∗
1 , . . . , M∗

N)
and sends these, along with the policy graphs to the trusted party T (each
policy graph specifies its initial state). In each round j ∈ [1, k], every user Û ′

(following strategy Σ) selects a message index i ∈ [1, N +1] and sends a message
containing the user’s identity and (i, S, T ) to T . T then checks the policy graph
corresponding to that user to determine if Û ′ is in state S and a transition to
T is permitted, sending D̂′ a bit b1 indicating the outcome of this test. D̂′ then
returns a bit b2 determining whether the transaction should succeed. If b1 ∧ b2,
then T returns M∗

i (or ⊥ if i = N + 1) to Û ′
i , otherwise it returns ⊥. Following

each round, D̂′ outputs Dj , and the users output (U1,j , . . . , Uη,j). At the end of
the kth round the output of the experiment is (Dk, U1,k, . . . , Uη,k).

We will define the honest database D as one that sends M1, . . . , MN in the
first round, returns b2 = 1 in all rounds, and outputs Dk = ε. Similarly, an honest
user U ′

i runs the Setup protocol honestly in the first round, makes queries and
transitions according to the selection policy, and eventually outputs all received
database items as its output.

Let �(·), c(·), d(·) be polynomials. We now define database and user security in
terms of the experiments above.

Database Security. A stateful anonymous credential scheme is database-secure
if for every collection of (possibly corrupted) real-world p.p.t. receivers Û1, . . . , Ûη

there exists a collection of p.p.t. ideal-world receivers Û ′
1, . . . , Û ′

η such that ∀N =
�(κ), η = d(κ), k ∈ c(κ), Σ, and every p.p.t. distinguisher:

RealD,Û1,...,Ûη
(η, N, k, Π1, . . . , Πη, M1, . . . , MN , Σ)

c≈
IdealD,Û ′

1,...,Û ′
η
(η, N, k, Π1, . . . , Πη, M1, . . . , MN , Σ)

User Security. A stateful anonymous credential scheme provides Receiver secu-
rity if for every real-world (possibly corrupted) p.p.t. database D̂ and collection
of (possibly corrupted) users Û1, . . . , Ûη, there exists a p.p.t. ideal-world sender
D̂′ and ideal (possibly corrupted) users Û ′

1, . . . , Û ′
η such that ∀N = �(κ), η = d(κ),

k ∈ c(κ), Σ, and every p.p.t. distinguisher:

RealD̂,Û1,...,Ûη
(η, N, k, Π1, . . . , Πη, M1, . . . , MN , Σ)

c≈
IdealD̂′,Û ′

1,...,Û ′
η
(η, N, k, Π1, . . . , Πη, M1, . . . , MN , Σ)
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B Proof Sketch of Theorem 2

We now sketch a proof of Theorem 2, arguing security for the oblivious database
protocol of §5.2. Our sketch will refer substantially to the original proof of the un-
derlying adaptive oblivious transfer protocol, which is due to Camenisch, Neven
and shelat [15]. Our proof will consider two components: (1) the security of the
underlying OT scheme (which is based on the proof of [15]), and a separate proof
of the anonymous credential scheme.

Proof outline. We separately consider User and Database security.

User Security. Let us assume that an adversary has corrupted a database
D and some subset of the users Û1, . . . , ÛN . In this model, corruptions will be
static. We show that for every such adversary, we can construct a simulator such
that the output of the ideal experiment conducted with the simulator will be
indistinguishable from the output of the real experiment.

Our simulator operates as follows. First, D outputs the parameters for the
credential system, the cryptographic representation of each graph, and the values
pk , C1, . . . , CN . If these parameters are incorrectly formed, the simulator aborts.
The simulator next generates a credential key for each uncorrupted user and
negotiates with D to join the system under an appropriate policy. When D
executes the proof of knowledge that H = e(g, h) with some uncorrupted user,
our simulator rewinds to extract the value h (this extraction succeeds with all
but negligible probability). For i = 1 to N , the simulator decrypts Ci using h to
obtain Mi. This collection of plaintexts is sent to the trusted party T .

When a corrupted user Û queries the database, we pass its communications
along to D̂ unmodified. Whenever an uncorrupted user U queries T to obtain
message i (according to a state transition defined in their policy), T verifies
that this request is permitted by policy and updates its view of the user’s state.
Next, it notifies our simulator which runs the OTAccessAndUpdate protocol on an
arbitrary (uncorrupted) user’s policy under index N + 1 (this is the “dummy”
transition and is always permitted by the credential system). If this protocol
succeeds, the simulator sends a bit 1 to T which returns Mi to the user.

Claim. The transcript produced by this simulator is indistinguishable from the
transcript produced by the real experiment. This is true for following reasons:

1. The probability that the simulator incorrectly extracts h (or fails to extract
it) is negligible.

2. The probability that the adversary distinguishes a protocol executed on an
arbitrary user/dummy index is negligible: this is due to (a) the fact that the
element V transmitted to D during OTAccessAndUpdate is randomly dis-
tributed, and (b) the attached proof-of-knowledge is witness indistinguish-
able and therefore does not reveal the value of i or the user’s identity.

We do not need to argue the unforgeability of the anonymous credential
scheme here, since we consider only actions taken by the uncorrupted user.
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Database Security. Let us assume that an adversary has corrupted some sub-
set of the users Û1, . . . , ÛN (corruptions are static). We show that for every such
adversary, we can construct a simulator such that the output of the ideal exper-
iment conducted with the simulator will be indistinguishable from the output of
the real experiment.

Our simulator operates as follows. First, it generates the public and privacy
parameters for the credential scheme along with the cryptographic represen-
tation of the policies provided by T . It generates the parameters for the OT
scheme pk , sk as normal, but sets the plaintext for each database element to
a dummy value (the identity element) and produces ciphertexts C1, . . . , CN

(and generates the dummy message C(N+1) as normal). It sends these parameters
to each corrupted user, and to each user proves that H = e(g, h).

Whenever a corrupted user initiates the OTAccessAndUpdate protocol with
D, the simulator verifies that the user’s request (including ZK proofs) verifies,
and that neither Nu or Ns has been seen before. If so, it rewinds and uses
the extractors for the ZK proofs to learn the user’s identity, the index of the
message i being requested, the blinding factor v, and the user’s current and
previous credential state S, T . The server transmits the user’s identity values
(i, S, T ) to T which verifies that they satisfy the policy (updating the policy
state in the process). If T returns ⊥, then D aborts the protocol with the user.
Otherwise if T returns Mi, then the simulator parses Ci = (Ai, Bi) and returns
U = (Bv

i )/Mi. The simulator uses rewinding to simulate the proof and convince
the user that U has been correctly formed.

Claim. The transcript produced by this simulator is indistinguishable from one
produced by the real experiment. This claim rests on the following points:

1. The false message collection C1, . . . , C(N+1) is indistinguishable from the
real message by the semantic security of the encryption scheme, which holds
under the q-PDDH assumption (see [15] for the full argument).

2. The simulated proof of U ’s structure is indistinguishable from a real proof.
3. The simulator never queries T on a tuple (i, S, T ) that violates the user’s

policy. This reduces to the unforgeability of the CL signature (which is in
turn based on Strong RSA). Specifically, to violate policy, a user must satisfy
one of the following conditions:
(a) Prove knowledge of a signature σδ that it was not given, or
(b) Prove knowledge of a signature σS→T that it was not given. In either

case, the simulator can use the extractor for the proof system to obtain
the forged signature and win the CL signature forgery game.

(c) Misuse the CL signing protocol such that it receives a signature that is
not equivalent to a signature on the commitment A (or mispresent the
structure of A).
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