
Towards a Theory of Extractable Functions

Ran Canetti1,� and Ronny Ramzi Dakdouk2,��

1 Tel Aviv University, Tel Aviv, Israel
canetti@tau.ac.il

2 Yale University, New Haven, CT
dakdouk@cs.yale.edu

Abstract. Extractable functions are functions where any adversary that outputs
a point in the range of the function is guaranteed to “know” a corresponding
preimage. Here, knowledge is captured by the existence of an efficient extractor
that recovers the preimage from the internal state of the adversary. Extractability
of functions was defined by the authors (ICALP’08) in the context of perfectly
one-way functions. It can be regarded as an abstraction from specific knowledge
assumptions, such as the Knowledge of Exponent assumption (Hada and Tanaka,
Crypto 1998).

We initiate a more general study of extractable functions. We explore two
different approaches. The first approach is aimed at understanding the concept
of extractability in of itself; in particular we demonstrate that a weak notion of
extraction implies a strong one, and make rigorous the intuition that extraction
and obfuscation are complementary notions.

In the second approach, we study the possibility of constructing cryptographic
primitives from simpler or weaker ones while maintaining extractability. Results
are generally positive. Specifically, we show that several cryptographic reduc-
tions are either “knowledge-preserving” or can be modified to be so. Examples
include reductions from extractable weak one-way functions to extractable strong
ones, from extractable pseudorandom generators to extractable pseudorandom
functions, and from extractable one-way functions to extractable commitments.
Other questions, such as constructing extractable pseudorandom generators from
extractable one way functions, remain open.

1 Introduction

Extractability plays a central role in cryptographic protocol design and analysis. In its
basic form, it relates to two-party protocols where one of the parties (a “prover”) has
secret input, and tries to convince the other party (a “verifier”) that it holds the secret.
The idea is to argue that if the verifier accepts the interaction, then the prover indeed
“knows” the secret. More concretely, extractability makes the following requirement:
Given access to the internals of any (potentially malicious) prover, it is possible to
explicitly and efficiently compute the secret value as long as the verifier accepts an
interaction. (Many variants of this notion exist, of course. See e.g. [12].)

� Supported by NSF grant CFF-0635297 and US-Israel Binational Science Foundation Grant
2006317, a European Union Marie Curie grant, and the Check Point Institute for Information
Security.

�� Supported by NSF grant #0331548.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 595–613, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

596 R. Canetti and R.R. Dakdouk

The notion of extractable functions extends the concept of extractability to the
more basic setting of computing a function. Here the task of “convincing a verifier”
is replaced by “outputting a value in the range of the function”. More specifically, any
machine that generates a point in the range “knows” a corresponding preimage in the
sense that a preimage is efficiently recoverable given the internal state of the machine.

Extractable functions were coined in [8] for the specific goal of defining extractable
perfectly one-way (EPOW) functions.1 These functions were demonstrated to have
some interesting applications, such as new ways to realize Random Oracles and new
three-round Zero-Knowledge arguments based on weaker assumptions than previously
known. Furthermore, it was demonstrated that extractable functions can be viewed as an
abstraction from specific knowledge assumptions, such as the Knowledge of Exponent
(KE) assumption [16,3] or the Proof of Knowledge (POK) assumption [20], in much
the same way as the notion of one-way function is an abstraction of the Discrete Log
(DL) assumption.

This work attempts to initiate a more general study of extractable functions. Specif-
ically, we address two goals: First, we try to understand exactly what extraction means
and how different notions of extraction (and lack of it) are related. Second, we study
the possibility of constructing complex primitives from simpler ones while preserving
extractability. We note that the latter approach may help in basing cryptographic pro-
tocols that use or require specific knowledge assumptions, on a general computational
notion, which in turn may be concretely realized by alternative assumptions.

Before discussing this work in more detail, we provide a high level overview of
the two versions of knowledge extraction defined in [8]: interactive and noninteractive
extraction.

Noninteractive extraction. Noninteractive extraction is an abstraction of specific knowl-
edge assumptions as mentioned in the previous paragraph. Informally, there is a family
of functions and the adversary gets a description of a specific function from the family,
and tries to output a point in the range of this function. This function family is con-
sidered noninteractively extractable if whenever the adversary generates a point in the
range, it knows a corresponding preimage. In other words, for every such adversary
there is a corresponding extractor that computes a preimage from the private input of
the adversary. One extreme example of extractable functions is the identity function
where the output itself reveals the input. Obviously, such functions are of lesser interest
to cryptographic applications than functions with computational hardness properties.
On another extreme, if the function is a one-way permutation, then it is easy to output
a valid image without knowing a preimage; specifically, output a random string in the
range. In this work, we concentrate on functions that enjoy both properties, namely,
extractability and computational hardness.

Unlike proofs of knowledge [15,2], this notion of extraction does not require effi-
cient verification. In other words, the range of the function is not necessarily efficiently
verifiable. Therefore, it may not be possible to decide if the adversary generates a point
in the range (and consequently, knows a preimage). However, this notion guarantees the
implication: If the adversary generates an image, it knows a preimage. We mention that
the construction in [8] has a range that is efficiently verifiable in the presence of some
auxiliary information (about the function itself).

1 Informally, a probabilistic function is perfectly one-way if it hides all partial information about
the input [7].

Towards a Theory of Extractable Functions 597

Extraction can be studied with or without auxiliary information. We would like to
consider extraction in the presence of auxiliary information as this is a more useful
and meaningful notion. Auxiliary information can be either dependent or independent
[14] (here, the dependence is on the specific function under study). We remark that
dependent auxiliary information is inseparable from independent auxiliary information
when extraction is required for a single function, f . This is so because it is not possible
to prevent an adversary with access to auxiliary information from receiving dependent
auxiliary information, e.g., f(x). Moreover, the notion of a single extractable function
with auxiliary information is not realizable for one-way functions. Specifically, by the
one-wayness assumption, there is no extractor for the adversary that receives f(x), for a
uniform x, and simply outputs it. Consequently, we relax the requirement to extraction
for a family of functions, i.e., a function is chosen uniformly from the family. Indeed,
the KE assumption is already formulated in terms of function families.

In this work, we focus on extraction with independent auxiliary information only.
Formulating and realizing extraction with dependent auxiliary information is tricky.
For instance, it is possible that f(x) is hidden in the input in some clever way such
that it is easy to recover f(x) but not x. For example, the input of the adversary may
look like (r1, u1), . . . , (rn, un), where the ith bit of f(x) is 〈ri, ui〉. [8] addresses this
issue by restricting the dependency of auxiliary information so that only a sequence of
images under f can be part of dependent auxiliary information. Moreover, Zheng and
Seberry [25] follow the same approach under the notion of “sole-samplability”.

Interactive extraction. This notion is geared towards probabilistic functions, and can
work for single functions as well as families. In interactive extraction, the adversary
engages in a 3-round game with a challenger. The objective of the game is to show
that the adversary is capable of computing a function, f , on some point, x, that he
chooses, but using random coins for f that the challenger chooses. In other words, the
goal is to show that the adversary is capable of computing a “large” fraction of the
possible images of x under f (recall f is probabilistic). In more detail, the adversary,
A, sends, in the first round, a point, y0 = f(x, r0), where x and r0 are chosen by
A. The challenger responds with random coins, r1, in the second round and A has
to send back y1 = f(x, r1). In this setting, consistency means that y0 and y1 have
a common preimage x. Interactive extraction means if the adversary is able to answer
consistently, then it knows a common preimage. As in the noninteractive case, this form
of knowledge is captured computationally by the existence of an extractor that recovers
a preimage from the private input of the adversary.We emphasize that no verification of
consistency is assumed to occur. The knowledge requirement states that if the adversary
is consistent, it must know a preimage.

Unlike noninteractive extraction, interactive extraction is required to work for any
function. In other words, the function is fixed once and for all, and any auxiliary infor-
mation is allowed to depend on this function. Intuitively, this is realizable because the
challenge in the second round forces the adversary to compute an image “online”.

In interactive extraction, we focus mainly on probabilistic functions because for de-
terministic functions, this notion is equivalent to noninteractive extraction. (To use the
3-round game of interactive extraction on a deterministic function, f , view f as a prob-
abilistic function that simply ignores the random coins, i.e. f(x, r) = f(x) for any x
and r.)

598 R. Canetti and R.R. Dakdouk

It is worth mentioning that noninteractive extraction can be viewed as a two-round
interactive extraction analogous to the three-round extraction discussed above. Specif-
ically, in the first round the challenger sends a random function from the family and
the adversary responds with a point in the range of this function. That is, there is a
fixed function, g, the challenger sends a random r, and the adversary responds with
g(x, r) = fr(x).

1.1 Our Work

We approach extractable functions from two different angles.
First, we attempt to address the question: What makes a function extractable? More-

over, if a function is extractable with noticeable success, does this mean that it is ex-
tractable in a strong sense? Towards answering these questions, we show that every
function satisfies either a “mild” form of obfuscation [1] or a “mild” form of extraction.
In other words, lack of extractability can be viewed as inability to “reverse engineering”
or obfuscatability. This is indeed what one might naı̈vely expect - a function is either
extractable or obfuscatable, and we show that this naı̈ve thinking is correct to some
extent. We then address the second question posed at the beginning of this paragraph.
We find out that for a large class of functions, notably, POW functions with auxiliary
information, the answer to this question is positive.

Second, we try to construct complex extractable primitives from simpler ones. In
general, extractable functions exist, e.g., the identity function. However, extractable
functions are more useful in cryptographic applications if they satisfy certain hardness
assumptions. Thus, in the second line of work, we address the question: Is it possible to
build primitives with complex hardness properties from weaker hardness assumptions
while maintaining extractable properties? For instance, suppose we have an extractable
weak one-way function, can we build an extractable strong one-way function? Results
indicate that answers to such questions are mostly positive.

On the first line of work. We discuss interactive extraction before noninteractive ex-
traction.

On interactive extraction versus obfuscation. This line of work starts with an observa-
tion that extraction and obfuscation complement each other in a natural way. In other
words, if a function is not extractable, then this lack of extractability is some form of
obfuscation. Specifically, we call a function weakly (and interactively) extractable if
for any adversary that is consistent in the interactive game with noticeable probabil-
ity, there is a corresponding extractor that recovers a preimage with noticeable success.
Moreover, the obfuscation mentioned previously relates to inability to “reverse engi-
neer” an obfuscated program that produces images under the function. In other words,
there is an obfuscated code that receives r as input and computes f(x, r) for some x
“hidden” in the obfuscated code. In more detail, we call f weakly obfuscatable if the
following holds. There is an obfuscator that produces a program capable of correctly
computing the function fx(r) = f(x, r) with noticeable probability, where x is chosen
according to some well-spread distribution and then “hidden” in the program. Also, the
program is considered obfuscated in the sense that it is hard to recover x from the ob-
fuscated program, when x is drawn from the well-spread distribution mentioned above.
The corresponding theorem can be stated in words as:

Towards a Theory of Extractable Functions 599

Theorem 1: Every family of probabilistic functions is either weakly extractable or
weakly obfuscatable.

We emphasize that Theorem 1 is a general observation on any family of functions and
does not assume anything about the family, not even that it is efficiently computable. In-
formally, this theorem can be argued for as follows. Suppose a function, f , is not weakly
extractable. Then, there is an adversaryA that answers consistently in the 3-round game
of interactive extraction, and yet there is no extractor that recovers a preimage x. We use
A to construct an obfuscation for the function fx. The obfuscation simply contains the
description of A and a corresponding private input that causes A to answer consistently.
To compute fx(r), simulate A, send r in the second round of the extraction game, and
output the response of A. Functionality of this obfuscation follows from consistency of
A while the hiding property follows directly from the assumption that no extractor is
able to recover x. We point out that finding an obfuscation of fx may not be efficient,
however, the obfuscation itself is efficient because A is.

Amplifying knowledge extraction. Theorem 1 is not entirely satisfactory because extrac-
tion is guaranteed to occur only noticeably often. So, we address the issue of amplifying
extraction.We show how to do so under a necessary (for the class of injective functions)
and sufficient assumption on the function. Specifically, we assume what we call “weak
verification”. Weak verification is a notion introduced to show that some form of verifi-
cation is necessary and sufficient for knowledge amplification. Moreover, it is implied
by common verification notions such as public verification for probabilistic functions
[7]. Informally, weak verification means for any adversaryA that outputs images in the
range of f , there is a corresponding verifier, V , which given some x and the private
input of A, decides whether the output of A is a valid image of x under f . In other
words, V has to decide whether there exists an r such that f(x, r) = A(z, rA), where z
and rA are the auxiliary information and random coins for A. Moreover, V is allowed
to fail with some arbitrary small, yet noticeable probability.We use the term “extraction
(respectively, verification) with vanishing but noticeable error” to mean that for every
polynomial, p, there is an extractor (respectively, verifier) that fails no more than 1

p

fraction of the time. The corresponding theorem can be stated in words as follows.

Theorem 2: Every weakly-verifiable family of probabilistic functions is either weakly
obfuscatable or extractable with vanishing but noticeable error. Moreover, if an in-
jective family of functions is extractable with vanishing but noticeable error, then it
is weakly verifiable.

At a very high level, the proof of Theorem 2 uses a variant of Impagliazzo’s hard-core
lemma [19] to amplify weak extraction to extraction with vanishing but noticeable error.
Informally, we use the lemma to construct a family,U, of machines that take the input of
A and attempt to extract a preimage, x, from it. This family has the property that when
all its members fail, no machine can succeed noticeably. We then construct a family
of distributions on the input of A, one distribution for each input length n, such that
any member of U succeeds only negligibly often (as n increases). Consequently, if U is
not a family of extractors with vanishing but noticeable error, then the distributions just
mentioned have a noticeable weight in proportion to the original one. Using Theorem
1 on A and the new distributions imply the existence of an extractor with noticeable
success. However, this contradicts the amplification lemma.

600 R. Canetti and R.R. Dakdouk

Interactively-extractable POW functions. An important corollary to Theorem 2 is that
every POW function with auxiliary information is interactively extractable (see Corol-
lary 2 for a more formal presentation). This supersedes the corresponding transfor-
mation of [8] from POW with auxiliary information to extractable POW function.
Moreover, the current result is more efficient in that the challenger needs to send a
single challenge instead of n.

Towards negligible error. We can obtain negligible failure probability if we relax the
notion of extraction so that it applies only to “reliably-consistent adversaries”. Intu-
itively, an adversary is reliably consistent if its consistency is noticeable. In other words,
disregarding input on which the adversary is consistent only negligibly often, there is
a fixed polynomial, p, such that 1

p is a lower bound on the probability of consistency
(here, the probability is taken over the random challenge). The corresponding theorem
can be stated as follows:

Theorem 3: Every weakly-verifiable family of probabilistic functions is either weakly
obfuscatable or extractable with negligible error for adversaries that are reliably
consistent.

Moreover, if an efficiently computable and verifiable family of functions is ex-
tractable with negligible error, then every corresponding adversary is reliably
consistent.

The proof this theorem is very similar to the previous one but it uses a stronger amplifi-
cation lemma in the uniform model. Informally, the lemma states that there is a family
of polynomial-time machine, U, such that no machine can succeed in inverting a func-
tion where all members of U fail. (Contrast this lemma with the previous one, where
the guarantee is that no machine can succeed noticeably where U fails.)

On noninteractive extraction versus obfuscation. Results similar to those for interac-
tive extraction hold in this case. However, they are weaker in the sense that functions
seem to be more likely to satisfy a weaker notion of obfuscation. Informally, the obfus-
cated program receives a function description, k, as input and outputs fk(x) for some
x hidden in the program that may depend on k. Moreover, it is hard to recover x from
the obfuscated code. The results and proofs are similar. Two issues are worth high-
lighting. First, following the discussion at the beginning of this introduction, the func-
tion is not fixed in advance. Rather, it is sampled from a well-spread distribution and
given to the adversary. Second, a corollary to these results states that injective functions
that are extractable with vanishing but noticeable error are extractable with negligible
error.

On the second line of research: Constructing extractable functions. Taking another
approach towards a theory of extractable functions, we study knowledge-preserving
reductions among cryptographic primitives. In other words, we address the question:
given a noninteractively extractable cryptographic primitive, is it possible to construct
another primitive while maintaining extraction? We attempt to answer this question by
reviewing the literature on cryptographic reductions and investigating whether these
reductions maintain extraction. Here, we focus solely on noninteractive extraction be-
cause deterministic one-way functions are not interactively extractable (Corollary 1).
The results are positive: Most reductions maintain extractability or can be modified to
do so. The following is a list of reductions that preserve extractability.

Towards a Theory of Extractable Functions 601

1. Extractable weak one-way functions =⇒ extractable strong one-way functions.
(This is the standard reduction [24,12].)

2. Extractable pseudorandom generators =⇒ extractable pseudorandom functions.
This reduction uses the construction of [13]. We assume, in addition to the ex-
tractable pseudorandom generator, G1, another pseudorandom generator, G2 that
is not necessarily extractable but remains pseudorandom in the presence of G1, i.e.,
G1(x), G2(x) is pseudorandomwhen x is uniform.

3. Extractable one-way functions =⇒ extractable 1 − 1 trapdoor functions. This
construction assumes, in addition, the existence of a 1 − 1 trapdoor function that
remains one-way in the presence of the extractable function.

4. Extractable one-way functions =⇒ extractable public-key encryption. This re-
duction, assumes, in addition, a trapdoor permutation. Here, extractable public-key
encryption is against passive adversaries and it means that it is hard to generate a
ciphertext without knowledge of the plaintext and without seeing another cipher-
text. On the other hand, extractability against active adversaries, that is adversaries
that can see other ciphertext is known in the literature as plaintext-aware encryp-
tion [5,18,4,11]. We mention that this notion requires extraction with dependent
auxiliary information and is left for future work.

5. Extractable one-way functions =⇒ extractable 2-round commitments. Extractable
commitments means if the sender commits correctly (i.e., the commitment can be
opened) then it knows the message at the commit stage. This reduction uses ei-
ther the construction of [6] or of [21]. We note that [23] independently constructs
extractable 2-round commitments from plaintext-aware encryption.

The main reduction missing from this list is from one-way functions to pseudorandom
generators. Even though we give a reduction from the KE and DDH assumptions to
extractable pseudorandom generators, constructing such generators from extractable
one-way functions remains open. In this work, we take a step towards this goal by
giving a reduction from a “strongly” extractable one-way function, where extraction is
required to hold even when f(x) is represented unambiguously in a different way. Refer
to Section 4 for a detailed presentation of all results regarding knowledge-preserving
reductions.

Organization. We present the first approach in the context of interactive extraction in
Section 3 (the corresponding results on noninteractive extraction can be found in the full
version of the paper), and the second line of research in Section 4. Formal definitions of
extractable functions appear in Section 2. Due to space limitation, formal proofs appear
only in the full version of the paper.

2 Preliminaries

We define here interactive and noninteractive extraction. Note that these definitions re-
quire negligible extraction error. In Section 3, we study weaker forms of extraction,
where the extractor succeeds noticeably or fails with vanishing but noticeable proba-
bility.

Definition 1 (Noninteractive extraction). A randomized family ensemble, F =
{{Fk}k∈Kn}n∈N, is called noninteractively extractable if for any PPT A, any

602 R. Canetti and R.R. Dakdouk

well-spread distribution, Kn, on the function description, any distribution, ZR =
{ZRn}n∈N, on auxiliary information and the private input of A, there is polynomial-
time machines,K, such that:

Pr[(z, rA) ← ZRn, k ← Kn, y = A(k, z, rA), x = K(k, z, rA) :

∃r, fk(x, r) = y or ∀x′, r′, y �= fk(x′, r′)] > 1 − µ(n).

Definition 2 (Interactive Extraction). A randomized family ensemble, F =
{{Fk}k∈Kn}n∈N, is called interactively extractable if for any PPT A, any distribu-
tion, ZR = {ZRn}n∈N, on auxiliary information and the private input of A, there is
polynomial-time machines, K, such that for any k ∈ Kn:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

∃r0, fk(x, r0) = y0 or (∀x′, (∀r0, y0 �= fk(x′, r0)) or y1 �= fk(x′, r1))] > 1 − µ(n).

3 On Obfuscation Versus Interactive Extraction

We present the three theorems mentioned in the introduction concerning the connection
between obfuscation and interactive extraction with different extraction rates. Recall,
the first theorem says that every function is either weakly extractable or weakly obfus-
catable. The second theorem builds on the first one to imply that every weakly verifiable
function is either weakly obfuscatable or extractable with vanishing but noticeable er-
ror. The final theorem states that negligible-error extraction can be achieved if and only
if certain conditions on the adversary are met. These conditions, termed “reliable con-
sistency” in the introduction, are discussed and formalized in Section 3.2.

The statement that any function is either extractable or obfuscatable is to some degree
intuitive. After all, these two notions are complementary in some way. For instance,
suppose there is an obfuscated program that hides a license key inside it and is able to
compute a new hash of the key. If we look at such a program from an extractability point
of view, this means that there is a machine that simulates this program and computes the
functionality mentioned above. Moreover, no extractor can recover the license key by
the assumption that the obfuscated program hides it. Going in the reverse direction, it
seems intuitive that the existence of an extractor for every adversary implies the absence
of an obfuscation of such a functionality.

In the next theorem, we formalize and show that the intuition mentioned in the pre-
vious paragraph is sound. In more detail, statement 1 of this theorem (the obfuscation
clause) states that there is a well-spread distribution, X, on the input (think of this as the
license key of the previous example) and an obfuscator, Gn, that takes a license key, x,
and produces an obfuscated program, g(x). In turn, g(x) takes an input r and produces
a new image of x using r as random coins for the function, i.e., g(x)(r) = f(x, r).
Moreover, g(x) is required to be one-way in x but not required to succeed in computing
this functionality more than noticeably often. In the theorem, we use the terminology
g(x)(⊥) to refer to a fixed hash of x available in the clear in the obfuscated program.
On the other hand, statement 2 (the extraction clause) says that any adversary, A, with
any distribution on its input, z, rA (z is auxiliary information and rA is the random
coins for A), that is consistent in the 3-round game discussed in the introduction, there

Towards a Theory of Extractable Functions 603

is a corresponding extractor that recovers a preimage. In more detail, A is supposed to
produce, with noticeable success, an image, y0 in the first round and then again y1 in
the third round, such that there is a preimage common to both y0 and y1. Moreover, the
extractor is supposed to succeed only noticeably often.

Theorem 1. Let F = {fn}n∈N be any randomized family of functions and R =
{Rn}n∈N be any distribution on the randomness domain of F. Then, exactly one of
the following two statements should hold:

1. There is a well-spread distribution X on the input domain of F, a probabilistic
function, G = {Gn} such that for any nonuniform polynomial-time machine, A:
(Obfuscation)

Pr[x←Xn, g(x)←Gn(x), x′=A(g(x)) : ∃r′, g(x)(⊥)=fn(x′, r′)] ≤ µ(n). 2

(Functionality)

Pr[x ← Xn, g(x) ← Gn(x), r ← Rn : ∃r′, g(x)(r) = fn(x, r) and g(x)(⊥)
= fn(x, r′)],

is nonnegligible in n. Moreover, g(x)(r) is efficiently computable, for any r.
2. For any probabilistic polynomial-time machine (PPT), A, any infinite subset of

security parameters, N′, any distribution, ZR = {ZRn}n∈N′ , on auxiliary infor-
mation and the private input of A, if:
(Consistency)

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))], (1)

is nonnegligible in n, then there exists a nonuniform polynomial-time machine, K,
such that:
(Extraction)

Pr[(z, rA) ← ZRn, (y0, s) = A(z, rA), x = K(z, rA) : ∃r0, y0 = fn(x, r0)],
(2)

is nonnegligible in n.

We emphasize that the previous theorem holds for any function. That is, it does not
assume anything about the function, not even that it is efficiently computable. At a
high level, the proof proceeds as follows. If f is not extractable, we take an adversary
that violates this property and construct from it a distribution on the input to f (for
clarity, refer to this as the license distribution) and an obfuscation on this distribution
such that the obfuscation hides the license but is able to compute new images of it.
In more detail, the license distribution is the distribution induced by A on preimages
of its consistent output. For instance, if A always outputs fn(0, r0) in the first round
and fn(0, r1) in the third round (in this case there is a straightforward extractor), then
the induced distribution always samples 0. Moreover, the corresponding obfuscation

2 Here and in the rest of the paper, µ denotes a negligible function.

604 R. Canetti and R.R. Dakdouk

is simply the input of A that causes A to output valid images of the license. Observe
that the license distribution is well-spread because otherwise the nonuniform extractor
can invert with noticeable probability. Therefore, using this license distribution with the
corresponding obfuscation, statement 1 follows from the negation of statement 2. The
other direction is easier to see and has been referred to in the second paragraph of this
section.

Corollary 1. Any deterministic one-way function is not even weakly extractable. That
is, any deterministic one-way function satisfies statement 1 of Theorem 1. Moreover,
this remains true if the function is not efficiently computable.

3.1 Amplifying Extraction

Theorem 1 says each function has a weakly extractable or weakly obfuscatable property.
Next, we investigate conditions that allow for amplifying knowledge extraction in the
interactive setting. In particular, the goal in this section is to reach a vanishing but
noticeable extraction error. Recall from the introduction, this term means that for every
polynomial, p, there is an extractor that may depend on p and fails at most 1

p of the time.
In Section 3.2, we address extraction with negligible error.

Not surprisingly, functions that admit such a property require more than the negation
of statement 1 of Theorem 1. Recall that Theorem 1 holds for any function, in particular,
not efficiently-computable functions. However, to decrease the extraction error, efficient
verification is needed. For the purpose of amplifying extraction, common notions of
verification (e.g., Definition 3) are sufficient. However, a weaker but contrived form of
verification is also sufficient, and, in the case of injective functions (i.e., for all y, there
is no more than one x such that y = fn(x, r) for some r), is also necessary. Thus, we
use this notion in the following theorem for the purpose of achieving a characterization
instead of an implication. Informally, weak verification means that there is a verifier
tailored for every adversary,A. It receives x and the input of A and determines whether
the output of A is a valid image of x. Moreover, the verifier is allowed to fail, when A
is consistent, with noticeable probability.

Definition 3 (Efficient Verification, [7])
A function family , F = {fn}n∈N, satisfies efficient verification if there exists a deter-
ministic polynomial time algorithm, VF such that:

∀n ∈ N, x ∈ {0, 1}n, y ∈ range(fn), VF(x, y) = 1 iff ∃r, y = fn(x, r).

Definition 4 (Weak Verification)
A function family , F = {fn}n∈N, satisfies weak verification if for every PPT, A (with
input z, rA), any distribution, ZR = {ZRn}n∈N′ , on auxiliary information and the
private input of A, and any polynomial p, there exists a nonuniform polynomial-time
machine, VA,ZR,p, such that for sufficiently large n ∈ N′:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(∃x, r0, VA,ZR,p(x, z, rA) �= 1 and fn(x, r0) = y0 or ∃x, VA,ZR,p(x, z, rA) = 1
and ∀r0, fn(x, r0) �= y0)

Towards a Theory of Extractable Functions 605

and (∃x, r0, fn(x, r0) = y0 and fn(x, r1) = y1)] <
1

p(n)
.

Theorem 2. Let F = {fn}n∈N be any randomized function family that is weakly ex-
tractable (satisfies statement 2 of Theorem 1). If F is weakly verifiable (as in Definition
4), then for any PPT A, any distribution, ZR = {ZRn}n∈N′ , on auxiliary information
and the private input of A, there exists a family of nonuniform polynomial-time ma-
chines, U = {Ui}i∈N such that for any polynomial p, there is an index ip where for all
i ≥ ip and sufficiently large n ∈ N′:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = Ui(z, rA) :

(∃r0, fn(x, r0)=y0 or (∀x′, (∀r0, y0 �= fn(x′, r0)) or y1 �= fn(x′, r1))] > 1− 1
p(n)

.

(3)
Moreover, this implication is an equivalence for injective functions.

The proof uses, in an essential way, an amplification lemma which is a version of Im-
pagliazzo’s hard-core lemma [19] applied to this setting. At a very high level, this
lemma asserts the existence of a family of machines, U, such that “no machine can
succeed noticeably where all of these machines fail”. Using this lemma, we then claim
that for every polynomial, p, there is a member Uip ∈ U that fails in extracting a preim-
age with a probability at most 1

p . If this were not to be the case, then this means that

there is some polynomial p, where every machine in U fails with probability at least 1
p .

This implies that there is a noticeable fraction of the domain where A is consistent yet
all members of U fail. Lets restrict the distribution on the input of A to those on which
such an event occurs. We then apply Theorem 1, in particular, statement 2, to obtain an
extractor with noticeable success contradicting the lemma.

The following corollary is one of the main applications of this result.

Corollary 2. Every POW function with auxiliary information that is collision resistant
and has public randomness is extractable with vanishing but noticeable error in the
interactive setting (as in Theorem 2).

3.2 Towards Extraction with Negligible Error

The previous section underscores the conditions that are necessary (at least for injective
functions) and sufficient for extraction with vanishing but noticeable error. Here, we
address the question of obtaining extraction with negligible error. As before, we show
necessary and sufficient conditions to achieve this objective. However, unlike the pre-
vious results, the conditions are on the adversary itself and not on the function under
study. Moreover, as we discuss later on, this result is in the uniform setting only.

Conditions for extraction with negligible error. As we mentioned in the introduction,
extraction with negligible error requires “reliable consistency” on the behalf of the ad-
versary. Informally, we show that negligible extraction error is possible for a particular
adversary, A, if it can answer challenges consistently with probability bounded from
below by the inverse of some fixed polynomial. Informally, it may be the case that A
answers consistently with noticeable probability. Yet, depending on its input, its corre-
sponding consistency probability (taken over the random coins of the challenger) can

606 R. Canetti and R.R. Dakdouk

be arbitrary small though still noticeable. In such a scenario, extraction can not achieve
negligible error because as answers are less likely to be consistent, extraction requires
more effort and time to find a preimage. On the other hand, if for almost all of its input,
A answers consistently with a probability bounded from below by an inverse poly-
nomial, this bound can be translated into an upper bound on the running time of the
extractor.

We elaborate on these conditions through a toy example. Suppose there is a function,
f and an adversaryA with the following properties. A outputs a consistent pair (y0, y1)
with probability 1

ni for every element in the ith 2n

n fraction of the input domain for
A. Here, the probability is taken over random coins sent by the challenger in round 2.
Formally, we have for every n, and every (z, rA) ∈ [i2n

n , (i+1)2n

n]:

Pr[r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) : ∃x, r0, fn(x, r0) = y0

and fn(x, r1) = y1] =
1
ni

.

Now, it may be the case that extraction depends on how successful A is in answering
challenges. If this is so, then extraction is proportional to consistency. In other words,
as A becomes less consistent (that is, as its input is chosen from the upper fraction of
the domain), extraction requires more time to achieve the same success rate. In such
a scenario, it turns out that overwhelming success requires super-polynomial time. In
other words, noticeable extraction error is unavoidable.

In the previous example, we assume that A has a noticeable success in every fraction
of the input domain. Also, we assume that A can not do any better. In other words, A
can not amplify its success rate. However, there are cases where A can indeed amplify
its success, e.g., A may provide wrong answers intentionally even though it can easily
compute the correct ones. In such a scenario, extractionwith negligible error is possible.
As an example, consider an adversary, A, that provides wrong answers intentionally.
A receives x as input, computes i such that x ∈ [i2n

n , (i+1)2n

n], and gives the correct
answer only if r1 ∈ [0, 2n

ni]. Even thoughA satisfies the previous condition, an extractor
can easily recover x by reading it from the input. So, we need a meaningful way to
separate the notion of “truthful” failure from “intentional” failure. In the next theorem,
we capture the notion of intentional failure through the existence of another machine
A′ that behaves similarly to A, yet it amplifies its consistency.

Uniform Setting. The proof of Theorem 2 uses a diagonalization technique to show that
no machine can succeed “substantially” where the family U fails. The diagonalization
is over machines that succeeds noticeably over inputs of some length n. This technique
works because this set of machines is enumerable. (Specifically, there are at most n
machines that each succeeds exclusively with probability 1

n and so on.) However, this
technique fails when we try to use it to achieve negligible error in polynomial time.
Two factors seem to prevent this technique from working. First, the set of nonuniform
polynomial-time machines is not enumerable and so we can not diagonalize over this
set (as we discuss later on, we use the enumeration of uniform machines to prove this
result in the uniform setting). Second, if we instead consider machines that succeed
exclusively, as in the previous theorem, we need to take into account those that suc-
ceed with negligible probability, yet the probability is not “very negligible”, say, 1

nlogn .

Towards a Theory of Extractable Functions 607

However, this causes U to be slightly super-polynomial. Consequently, the next theo-
rem applies to the uniform setting only. It uses a uniform version of Theorem 1 which
can be found in the full version of the paper.

In words, reliable consistency in the next theorem refers to a new machine, A′, that
replaces an adversary, A, with the purpose of undoing any intentional failure on behalf
of A. The conditions on A′ are as follows: (1) the output of A′ is equivalent to A in the
first round, (2) the consistency of A′ is not any worse than that of A, and (3) there is a
fixed polynomial, pA′ , such that almost all inputs to A′ cause it to be either consistent
negligibly or with probability at least 1

pA′ . If there is such an A′ then extraction with
negligible extraction error is possible. Moreover, the converse is also true for efficiently
computable and verifiable functions.

Theorem 3. Let F = {fn}n∈N be any randomized function family that satisfies the
uniform version of statement 2 of Theorem 1 and is weakly verifiable (as in Definition
4, except with respect to uniform deterministic machines).

Let A be any PPT and ZR = {ZRn}n∈N′ be any distribution on auxiliary infor-
mation and the private input of A. If there is another PPT, A′, satisfying the following
three conditions of reliable consistency:

1. A′(z, rA) = A(z, rA) for all z, rA.
2.

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))]

≥ Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))] − µ(n)

3. There exists a polynomial pA′ , such that for any polynomial q > pA′ :

Pr[(z,rA)←ZRn:

1
q(n)≤Pr[r1←Rn, (y0,s)=A′(z,rA), y1=A′(s,r1,aA′): ∃x′, r0, y0=fn(x′,r0) and

y1=fn(x′,r1)]≤ 1
p

A′ (n)]≤µ(n)

then there is a deterministic polynomial-time machine,K such that for n ∈ N′:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

∃r0, fn(x, r0) = y0 or (∀x′(∀r0, y0 �= fn(x′, r0)) or y1 �= fn(x′, r1))] > 1 − µ(n).
(4)

Moreover, if F is efficiently computable and verifiable (as in Definition 3), then the
converse is also true.

The proof is similar to that of Theorem 2. There are two points worth highlighting. The
proof uses a uniform version of the amplification lemma. Informally, this lemma pro-
vides a family of machines, U, such that any machine can not succeed even negligibly
where this family fails. At a high level, each Ui ∈ U contains the first i machines in an
enumeration of uniform polynomial-timemachine. This ensures that every polynomial-
time machine is eventually included in the family. We claim that there is a member of

608 R. Canetti and R.R. Dakdouk

this family that achieves negligible extraction error. If this were not to be the case, then
for every member Ui there is a polynomial pi such that Ui fails with probability at least
1
pi
. Note that pi may increase as i increases. However, by the third condition on A′,

consistency of A′ is bounded from below by the inverse of a fixed polynomial which
is independent of pi. This is important because when we restrict the input distribution
to where A′ is consistent and U fails, A′ remains consistent with noticeable probabil-
ity. Consequently, we can apply Theorem 1 to get an extractor with noticeable success
contradicting the lemma.

Corollary 3. Any deterministic and efficiently-verifiable (i.e., given x and y, it is easy
to decide whether f(x) = y) function is extractable with negligible error if and only if
it is weakly extractable in the uniform setting.

4 Knowledge-Preserving Reductions

In Section 3, we investigate the relationships among different notions of extraction.
We address questions regarding the possibility that functions satisfy some extractabil-
ity properties, such as weak extraction, extraction with noticeable error, or extraction
with negligible error. Results in this line of work show equivalence among some no-
tions of extraction, e.g., extraction with noticeable error is equivalent to extraction with
nonnegligible success for deterministic and efficiently verifiable functions (Corollary3).

Here, we take a different approach. Specifically, we investigate building extractable
functions with additional hardness properties from extractable functions with simpler
computational assumptions. In particular, we revisit the literature on reductions among
primitives to see if these reductions or variations of preserve noninteractive extraction.

The results are mostly positive. In particular, reductions from weak one-way func-
tions to strong one-way functions, from one-way functions to 2-round commitments
and public-key encryption scheme (assuming in addition a trapdoor permutation) are
knowledge preserving or can be easily modified to be so. Moreover, extractable pseudo-
random generators imply extractable pseudorandom functions and extractable 2-round
commitments. One important open question is whether extractable one-way functions
imply extractable pseudorandom generators. In pursuit of answering this question, we
show that the HILL construction [17] is not knowledge preserving. On the other hand,
an extractable pseudorandom generator can be constructed from the KE and the DDH
assumptions.

Next, we provide a detailed presentation of these results. They address noninterac-
tive extraction with negligible error only. Interactive extraction is primarily useful for
probabilistic functions because by Corollary 1, deterministic one-way functions and
pseudorandom generators are not interactively extractable. As for probabilistic func-
tions, [8] provides a transformation from POW functions to interactively-extractable
POW functions. Moreover, every POW function with auxiliary information and public
randomness is interactively extractable (Corollary 2).

From extractable weak one-way to extractable strong one-way functions. The stan-
dard reduction from weak one-way functions to strong one-way functions [24,12] is
knowledge preserving. Specifically, let F = {{fk}k∈Kn}n∈N be a family of weak
functions with 1

p as a lower bound on the failure probability of all polynomial-time

Towards a Theory of Extractable Functions 609

machines. Furthermore, suppose that F is extractable with negligible error with re-
spect to some well-spread distribution,K, on the function description. Then, the family,
G = {{gk}k∈Kn}n∈N, where gk(x1, ..., xnp(n)) = fk(x1), ..., fk(xnp(n)), is also ex-
tractable with respect to K.

Let A be any adversary that receives k, z, rA as input (where z and rA are auxiliary
information and random coins of A, respectively) and outputs y in the range of Gk.
Let B be a machine that receives k, z, rA, i as input and outputs yi, where i is uniform
and A(k, z, rA) = y1, ..., ynp(n). Note that B outputs a valid image under fk with at
least the same probability as A outputs a valid image under gk. Therefore, there is a
corresponding extractor, KB , for B. Let KA be an extractor for A that runs KB on
k, z, rA, i for i = 1 to np(n). Except with negligible probability, if A outputs a valid
image, KB computes the correct images for all fk(xi). Thus, KA is a negligible-error
extractor for A.

From extractable one-way functions to extractable pseudorandomgenerators. First, we
point out that the HILL construction [17] of pseudorandom generator from even injec-
tive one-way functions is not knowledge preserving. Specifically, the family, G, is not
extractable, where Gk(x, h) = h(fk(x)), h, p(x), fk is an extractable, 1 − 1 one-way
function,h is a hash function, and p is a hardcore predicate for fk. This is so because the
adversary, that receives and outputs a random string, succeeds with noticeable proba-
bility in producing a valid image under Gk. On the other hand, no extractor can recover
a preimage because Gk is pseudorandom.

Constructing extractable pseudorandom generators from extractable one-way func-
tions remains open. The obstacle seems to be that somehow, fk(x), should be easy to
compute from the output of the generator so that it is possible to use the original extrac-
tor to recover x. Consequently, for G to be a pseudorandom generator, it should also be
easy to compute fk(x) from a random string, for some x. However, the range of f may
be distinguishable from uniform, e.g., the first n bits may always be 0. So, it is not clear
how to put fk(x) in the output without compromising pseudorandomness.

A point worth mentioning here is that it is possible to construct extractable pseudo-
random generators from a stronger knowledge requirement on the one-way function.
The original knowledge assumptions states that any adversary that outputs fk(x) as a
sequence of bits “knows” x. Consider the following stronger version. Informally, if an
adversary outputs fk(x) specified in another representation, it should still know x. In
particular, the type of representation,R, we are interested in is a randomized represen-
tation of strings, where R(y, r) is indistinguishable from uniform and every R(y, r)
has a unique preimage (except with negligible probability). We give a concrete exam-
ple: Let π be a one-way permutation and b be a corresponding hardcore predicate. Then,
R(y, r1, ..., r|y|) = π(r1), ..., π(r|y|), y ⊕ b(r1), ..., b(r|y|). Note that R is pseudoran-
dom and unambiguous, in that there is a single y as a valid preimage of any output. Now,
if fk is extractable with respect to this representation, then the following construction
is an extractable family of pseudorandom generators.

Gk(x, r1, ..., r|fk(x)|) = R(fk(x), r1, ..., r|fk(x)|), G′(x) ⊕ r1, ..., r|fk(x)|,

where G′ is another pseudorandom generator with a suitable expansion factor that re-
mains pseudorandom in the presence of f (but G′ is not assumed to be extractable). In

610 R. Canetti and R.R. Dakdouk

other words, f(x), G′(x) is assumed to be indistinguishable from f(x), U|G′(x)| (in this
section, Ul denotes a uniform variable over strings of length l).3

Finally, we mention that the knowledge of exponent assumption [16] (with the DDH
assumption) imply the existence of extractable pseudorandom generators, specifically,
Gg,ga(x) = gx, gax, where g is a generator for the group for which these assumptions
apply.

From extractable pseudorandom generators to extractable pseudorandom functions.
The notion of extractable pseudorandom functions is slightly different from the notions
considered so far. Informally, a pseudorandom function is extractable if any adversary
that computes fk(x, r), for any r that a challenger chooses, has a corresponding extrac-
tor that recovers x.

Formally, for any PPT A, any well-spread distribution, Kn, on the function descrip-
tion, any distribution,ZR = {ZRn}n∈N′ , on auxiliary information and the private input
of A, there is polynomial-time machines, K, such that:

Pr[(z, rA) ← ZRn, k ← Kn, x = K(k, z, rA) :

∃r, fk(x, r) �= A(k, z, rA, r) and ∃x′, ∀r′, fk(x′, r′) = A(k, z, rA, r′)] ≤ µ(n).

The construction of extractable pseudorandom functions uses the construction of
[13] on all input, except 0. On input 0, the output is exactly that of the extractable
generator in order to allow for successful extraction. Formally, let G1 be any injective
and extractable pseudorandom generator with a 2n2 (or more) expansion factor. Let
b a hardcore bit for G1 and G2

k(x1, . . . , xn) = G1
k(b(x1), . . . , b(xn)), where |x1| =

· · · = |xn| = n. W.l.o.g. assume G2 has a 2n expansion factor, otherwise, trim the
output to a suitable length. Let F′ be the family of pseudorandom functions obtained by
applying the construction of [13] on G2. Then, the extractable family of pseudorandom
functions, F = {{fk}k∈Kn}n∈N, is defined as follows:

fk((x1, . . . , xn), r) =

{
G1

k(x1), . . . , G1
k(xn) if r = 0

f ′
k((x1, . . . , xn), r) otherwise

Let A be any PPT that receives k, z, rA, r and outputs fk(x1, . . . , xn, r) for some
x1, . . . , xn. Let B be a machine that receives k, z, rA, i (where i is uniform), computes
A(k, z, rA, 0) = G1

k(x1), . . . , G1
k(xn) and outputs G1(xi). Since G1 is extractable,

there is a machine, KB that recovers the corresponding xi on input k, z, rA, i. Then,
the extractor,KA, for A and F, simulates KB on input k, z, rA, i, for i = 1, . . . , n, and
outputs x1, . . . , xn.

From extractable one-way functions to extractable public-key encryption. Before we
discuss extractable public-key encryption, we briefly mention that private-key encryp-
tion with a “strong” extraction property (that is, plaintext-aware [5]) can be easily
constructed from standard computational assumptions without knowledge assumptions.
However, we emphasize that not all private-key encryption are extractable, e.g., a ran-
dom string is a valid ciphertext under Esk(m, r) = r, m ⊕ fsk(r) [12], where fsk is

3 Note that the machine that outputs a random string as a possible representation of fk(x) under
R does not succeed considerably better than the machine that output a random string as a
possible fk(x).

Towards a Theory of Extractable Functions 611

a pseudorandom function. However, the previous construction can be easily modified
to become extractable. Specifically, Esk=(sk1,sk2)(m, r) = r, m ⊕ fsk1(r), fsk2 (m, r)
has the property that without knowledge of sk, it is hard to find a new ciphertext even
if the adversary sees encryption of multiple messages.

Extractable one-way functions can be used with a trapdoor permutation to construct
public-key encryption schemes with the property that any adversary that computes a
ciphertext without seeing another ciphertext “knows” the corresponding plaintext. This
notion is similar to plaintext-aware encryption [5,18,4,11]. Informally, the latter notion
says that no adversary, with access to ciphertext of messages it may not know, can pro-
duce a ciphertext without knowing the corresponding plaintext. In this work we focus
on extraction with independent auxiliary information only. So, we leave the study of
constructing plaintext-aware encryption from extractable functions to future work as it
requires extractionwith dependent auxiliary information [8]. We note that [8] constructs
plaintext-aware encryption from extractable POW functions with dependent auxiliary
information.

Let F = {{fk}k∈Kn}n∈N and Π = {{πpk}pk∈PKn}n∈N be families of extractable
one-way functions and trapdoor permutations, respectively. Moreover, suppose that F
and Π remain one-way with respect to each other, specifically, for a uniform r, k, pk,
fk(r), πpk(r) is one-way. Let b be a hardcore predicate for the function gk,pk(r) =
fk(r), πpk(r). Note that g is extractable and injective. Let Ek,pk(m, (r1, . . . , rn)) =
gk,pk(r1), . . . , gk,pk(rn), m ⊕ b(r1), . . . , b(rn). It can be show that for any adversary
that computes a valid ciphertext, without seeing another ciphertext, there is an extractor
that recovers r1, . . . , rn and consequently,m.

From extractable one-way functions to extractable 1 − 1 trapdoor functions. Observe
that g, as defined above, is an extractable 1 − 1 trapdoor function if F and Π remain
one-way with respect to each other. Moreover, the same result holds when Π is a family
of 1 − 1 trapdoor functions.

Extractable commitments. Informally, an extractable commitments guarantee at the
commit stage that the sender knows the secret if the commitment is valid (that is, it can
be opened). Even though in a stand-alone protocol, this additional property may seem
irrelevant (because the sender reveals the secret in the decommit stage and nothing hap-
pens between these two stages), it is one of several important properties that come into
play in more complex protocols with stronger security requirement. Thus, extractable
commitments in the CRS model were introduced and studied in [22,9,10] as part of
zero-knowledge proofs and universally-composable commitments.

We show that known commitments constructions from injective one-way function
[6] and from pseudorandom generators [21] can be easily modified into 2-round ex-
tractable commitments if the underlying primitives are extractable. We note that Ven-
tre and Visconti [23], independently construct 2-round extractable commitments from
plaintext-aware encryption schemes (with additional assumptions).

Extractable commitments from 1 − 1 extractable, one-way functions. Let F be a
family of injective and extractable one-way functions. The 2-commitment starts with
the receiver sending a random function description, k, and the sender responds with
fk(u1), . . . , fk(un), m ⊕ b(u1), . . . , b(un), where b is a hardcore bit for fk. Note that
it is essential for the hiding property that the family, F be one-way with respect to any
function in the family.

612 R. Canetti and R.R. Dakdouk

Extractable commitments from extractable pseudorandom generators. We modify the
2-round commitment scheme of [21] to make it extractable. In the first round, the re-
ceiver sends random strings r1, . . . , rn and the description, k, for the pseudorandom
generator. In the second round, the senders responds with gk(u1)⊕ rm1

1 , . . . , gk(un)⊕
rmn
n , where rmi

i = ri if mi = 0 and rmi

i = 03n, otherwise. As in the previous con-
struction, every function in the family is assumed to be pseudorandom.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.:
On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, p. 1. Springer, Heidelberg (2001)

2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289.
Springer, Heidelberg (2004)

4. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without random ora-
cles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg
(2004)

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

6. Blum, M.: Coin flipping by phone. In: IEEE Computer conference (1982)
7. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial informa-

tion. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer,
Heidelberg (1997)

8. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L., Damgård,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg (2008)

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

10. Di Crescenzo, G.: Equivocable and extractable commitment schemes. In: Cimato, S., Galdi,
C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 74–87. Springer, Heidelberg (2003)

11. Dent, A.W.: The cramer-shoup encryption scheme is plaintext aware in the standard model.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289–307. Springer, Hei-
delberg (2006)

12. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cambridge (2001)
13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the

ACM 33 (1986)
14. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In:

FOCS (2005)
15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-

systems. In: STOC (1985)
16. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk,

H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 408. Springer, Heidelberg (1998)
17. Hastad, J., Levin, L., Impagliazzo, R., Luby, M.: Construction of a pseudorandom generator

from any one-way function. SIAM Journal on Computing (1999)
18. Herzog, J.C., Liskov, M., Micali, S.: Plaintext awareness via key registration. In: Boneh, D.

(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)
19. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: FOCS (1995)

Towards a Theory of Extractable Functions 613

20. Lepinski, M.: On the existence of 3-round zero-knowledge proofs. M.S. Thesis (2002)
21. Naor, M.: Bit commitments using pseudorandom generators. Journal of Cryptology (1991)
22. De Santis, A., Di Crescenzo, G., Persiano, G.: Necessary and sufficient assumptions for non-

interactive zero-knowledge proofs of knowledge for all NP relations. In: Welzl, E., Monta-
nari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 451. Springer, Heidelberg
(2000)

23. Ventre, C., Visconti, I.: Message-aware commitment schemes (unpublished manuscript,
2008)

24. Yao, A.C.: Theory and application of trapdoor functions. In: FOCS (1982)
25. Zheng, Y., Seberry, J.: Immunizing public key cryptosystems against chosen ciphertext at-

tacks. Journal on Selected Areas in Communication (1993)

	Towards a Theory of Extractable Functions
	Introduction
	Our Work

	Preliminaries
	On Obfuscation Versus Interactive Extraction
	Amplifying Extraction
	Towards Extraction with Negligible Error

	Knowledge-Preserving Reductions
	References

