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Abstract. We review the definition of differential privacy and briefly
survey a handful of very recent contributions to the differential privacy
frontier.

1 Background

Differential privacy is a strong privacy guarantee for an individual’s input to a
(randomized) function or sequence of functions, which we call a privacy mech-
anism. Informally, the guarantee says that the behavior of the mechanism is
essentially unchanged independent of whether any individual opts into or opts
out of the data set. Designed for statistical analysis, for example, of health or
census data, the definition protects the privacy of individuals, and small groups
of individuals, while permitting very different outcomes in the case of very dif-
ferent data sets.

We begin by recalling some differential privacy basics. While the frontier of
a vibrant area is always in flux, we will endeavor to give an impression of the
state of the art by surveying a handful of extremely recent advances in the field.

Formally, The degree of privacy offered is described by a parameter, €.

Definition 1. A randomized function K gives e-differential privacy if for all
data sets D and D' of Hamming distance d(D,D’) <1 and all S C Range(K),

Pr[K(D) € S] < e® x Pr[K(D') € S] (1)
The probability is taken is over the coin tosses of K.

The definition represents a paradigm shift: instead of a simulation-style defi-
nition, in which we compare what an adversary can learn about an individual
with, versus without, access to the outputs of the privacy mechanism, differential
privacy focuses on limiting the additional risk — of anything! — incurred by an
individual as a consequence of opting into (or opting out of) a data set. This is
no accident, as any “with vs. without access” definition is doomed to fail [59].
The defintion is suited to the real world because it is a property of the mecha-
nism alone, and has no bearing on what the consumer of information produced
in a differentially private fashion might or might not know. In consequence the
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outputs of a differentially private mechanism preserve differential privacy inde-
pendent of the information and computational power available to an adversary,
now or in the future.

Two principal techniques for ensuring differential privacy have appeared, one
for the case of (vectors of) real-valued outputs and the other for outputs of
arbitrary types [7I20]; the former is efficient, the latter may not be [10]. These
positive results and a key precursor [I1] (which used a cumbersome definition
now known to imply a natural, mild relaxation of pure differential privacy and
which showed that if the number of queries is sublinear in the size of the data
set then privacy can be obtained “for free,” i.e., with noise smaller than the
sampling error) have been used to obtain highly accurate differentially private
solutions to a host of problems in datamining, statistics, and learning (see, e.g.,
[2ITIT9I3]). A central concept is the sensitivity of a real-valued function mapping
data sets to (vectors of) reals:

Definition 2. Let D denote the space of all databases. For f : D — R, the
sensitivity of f is

Af = max 1£(D) = f(D)]lx
for all D, D’ of distance at most 1.

Roughly speaking, real-valued data analyses that have low sensitivity permit
highly accurate differentially private mechanisms [7]. The true answer is com-
puted and Lapalacian (symmetric exponential) noise is added with variance de-
pending on ¢ and the sensitivity of the query. For analyses whose outcome need
not be real (it might be the choice of a color, or a set of locations, or a string),
or in cases where the output is real-valued but adding noise makes no sense (the
output might be a price when the data set is a collection of bids in an auction),
if there is an insensitive function for evaluating the quality of an output (for
example, revenue, in the case of an auction), then again high-quality outputs
can be obtained in a differentially private fashion [20]. This is done using the
exponential mechanism which, roughly speaking, weights each possible answer
with a density that falls exponentially with its (in)utility, again depending on ¢
and also the sensitivity, this time, of the utility functio

Very recently Ghosh et al. considered the question of what it means for a pri-
vacy mechanism to be optimal [I4]. Intuitively, different users may have different
preconceptions before seeing the output of a privacy mechanism, and therefore
two users might place different values on the same piece of information. In such
a setting what sort of utility function should the mechanism employ? Using a
very general notion of utility, and permitting each user to have her own utility
function, Ghosh et al. show that a discretized version of the Laplace distribution
used in [7] simultaneously maximizes utility for all users for the case of counting
functions (“How many rows in the data set satisfy predicate P?”).

! The addition of Laplacian noise to a real-valued output is a special case of the
exponential mechanism: the (in)utility of an output is its L; distance from the true
answer.
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2 Differentially Private Synthetic Data Sets and Coresets

A series of negative results concerning privacy, says, roughly, that there is a
class of queries with the property that it is blatantly non-private (allowing al-
most full reconstruction) if “too many” queries receive “overly accurate” re-
sponses [48IT2]. These results have been viewed as saying that, in contrast to
the sublinear queries work discussed above, one cannot privately answer a small
polynomial number of queries, say, n® or even n?, with reasonably small noise
(here, n is the number of elements in the data set).

The idea of creating a synthetic data set whose statistics closely mirror those
of the original data set, but which preserves privacy of individuals, was proposed
in the statistics community as far back as 1993 [24]. However, the negative results
imply that no such data set can safely provide very accurate answers to too many
questions, motivating the interactive approach to private data analysis ([I1] et
sequelae). Intuitively, the advantage of the interactive approach is that only the
questions actually asked receive responses, while to offer the same utility in
the non-interactive approach all, or at least most, questions must receive very
accurate responses, leading to blatant non-privacy.

Against this backdrop, Blum, et al. revisited the non-interactive case from
a learning theory perspective, and challenged the above interpretation about
the necessity of limiting the number of queries [3]. Let X be a universe of data
items and C be a “concept” class consisting of efficiently computable functions
¢ : X — {0,1}. Given a sufficiently large database z € X", Blum et al. ineffi-
ciently, but with differential privacy, obtain a synthetic database that maintains
approximately correct fractional counts for all concepts in C. That is, letting y
denote the synthetic database produced, with high probability over the choices
made by the privacy mechanism, for every concept ¢ € C, the fraction of elements
in y that satisfy c¢ is approximately the same as the fraction of elements in x
that satisfy A

This remarkable result has rekindled interest in synthetic databases in par-
ticular and non-interactive solutions in general. When can differentially private
synthetic databases be constructed efficiently? Very roughly, if either the universe
X of data items or the concept class C is of size superpolynomial in a computa-
tion parameter x, then, under standard computational assumptions, there exists
a distribution on databases and a concept class C for which there is no efficient
(in k) mechanism for privately generating synthetic databases. In contrast, if
both the concept class and the data universe are of size polynomial in « then
not only is there an efficient mechanism, but the size of the input database can
be surprisingly small, namely |C|°") - log | X| (or even 0(2\/1°glcl log | X)) [10].
Thus C can be very large, as a function of n (while still polynomial in ).

Interestingly, for the potentially easier problem of privately generating a data
structure (as opposed to a synthetic data set) from which it is possible to

2 This does not contradict the negative results because of the size of the error in
the case of attacks using a polynomial number of queries, or the size of the input
database in the case of attacks using an exponential number of queries.
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approximate counts, there is a tight “if and only if” connection between hardness
of sanitization and the existence of traitor tracing schemes in cryptography [10].

2.1 Coresets

In computational geometry a coreset for a point set P is a small, weighted, point
set C' that is useful in computing approximate solutions of problems for P. For
example, the queries might consist of a set of k points (not necessarily related to
P), and the exact answer to the query might be the sum of the distances from
each point p € P to its closest point in the query set Q; this is a k-median query.
Coresets enjoy an extensive literature; different techniques are used for creating
coresets appropriate for different sorts of queries.

Feldman et al. define private coresets. These are coresets in the traditional
sense, but they are generated from P in a differentially private fashion [I3]. Thus,
the private coreset problem is similar to the problem of private generation of a
synthetic data set, where the class of queries to be handled by the coreset plays a
role analagous to the fractional concept class counts. Using similar techniques to
those in [3], Feldman et al. show how any coreset construction can (ineffeciently)
be modified to yield differentially private coresets, and using new techniques they
obtain an efficient construction of coresets for k-median queries.

3 Connections to Other Fields of Study

As the study of privacy broadens, differential privacy productively blends, Zelig-
like, with a surprising variety of conceptﬂ. We have already seen this in the
connection between traitor-tracing and non-interactive sanitization. Here we of-
fer four additional examples.

Truthful Mechanisms for Strategic Agents. In a truthful mechanism, re-
porting one’s true value is a dominant strategy. Designing mechanisms to be
truthful simplifies their analysis, making truthful mechanisms a widely studied
solution concept in economics. One way of ensuring truthfulness is to arrange
that the price paid by an individual is independent of his or her reported value.
Analogously, if a price is set by a differentially private mechanism, then the price
paid by an individual is “almost” independent of her bid. This intuition has
been validated: differential privacy can be used to obtain “approximate truth-
fulness” [20], yielding the first collusion-resilient mechanism; it can also be used
to better approximately solve combinatorial public project problems than can
be done with any efficient truthful solution (unless NP C BPP) [15]. In each
case an agent can gain only slightly by lying.

Additive Combinatorics and Dense Model Theorems. Reingold et al. [23]
give (almost) the following definition of density: Consider distributions X and

3 The Internet Movie Database summarizes Woody Allen’s Zelig: “Fictional docu-
mentary about the life of human chameleon Leonard Zelig, a man who becomes a
celebrity in the 1920s due to his ability to look and act like whoever is around him.”
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Y over a set R. X is e®-dense in Y if for all x € R, Pr[X = 2] < e®Pr[Y = z].
Thus, a randomized mechanism f is e-differentially private if and only if f(D)
is e°-dense in f(D’) for all D, D’ such that d(D,D’) < 1. This connection
between differential privacy and (mutually) dense distributions has been ex-
ploited in an investigation of computational differential privacy, i.e., differential
privacy against a computationally bounded adversary. [2I], which extends the
dense model theorem in [23] to demonstrate equivalence between two definitions
(indistinguishability-based and simulatability-based, respectively) of computa-
tional differential privacy.

Robust Statistics and the Influence Function. Robust statistics is the sub-
field of statistics that attempts to cope with outliers. In consequence, in a robust
analysis the specific data for any one individual should not greatly affect the
outcome of the analysis, suggesting a connection to differential privacy. Indeed,
independently of our community and unknown to us, as early as 2005 Heitzig [17]
proposed adapting, for the sake of privacy, a specific robust technique for reduc-
ing bias and estimating variance, known as the Jackknife [22//25].

The Jackknife is related to the the influence function IF (z,T; F'), which de-
scribes how an estimator T applied to samples from distribution F' changes
if we replace F' by a distribution G with an infinitesimal contamination at x:
G=(1-1t)F+tA,, for very small ¢t. (See [I8/16].) This, in turn, is related to
sensitivity “in a statistical setting” (that is, whp over samples from the distri-
bution F). Typically, robust estimators are designed to have bounded influence
function, implying wvanishing sensitivity in a statistical setting. Heitzig’s intu-
ition, supported by detailed statistical insight but not made rigorous, was that
it should be possible to ensure privacy by reporting an interval for the results of
an analysis, rather than the exact value, where the size of the interval is deter-
mined by his (randomized) Jackknife-like procedure. Independently of Heitzig,
but later, Dwork and Lei were also inspired by the implications of vanishing sen-
sitivity offered by bounded influence functions. They adapted several robust al-
gorithms, for varying statistical tasks, to provably (and always) yield differential
privacy, with excellent accuracy whenever certain mild statistical assumptions
hold [6].

4 Concluding Remarks

We have surveyed at least six very recent contributions on the differential privacy
frontier. In several cases the work has forged links with other fields and com-
munities: statistics, cryptography, complexity, geometry, mechanism design, and
optimization. The plethora of new techniques, the formulation of new problems,
and the fruitful interplay with other fields provides fertile ground for ebullient
growth in an intellectually exciting and socially valuable endeavor.

Acknowledgements. I am grateful to all the authors of the new works for
sharing their results with me before publication. Thanks also to Guy Rothblum
for his helpful comments on an early draft of this extended abstract.
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