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Abstract. A nonplanar graph G is near-planar if it contains an edge
e such that G − e is planar. The problem of determining the crossing
number of a near-planar graph is exhibited from different combinatorial
viewpoints. On the one hand, we develop min-max formulas involving ef-
ficiently computable lower and upper bounds. These min-max results are
the first of their kind in the study of crossing numbers and improve the
approximation factor for the approximation algorithm given by Hliněný
and Salazar (Graph Drawing GD 2006). On the other hand, we show
that it is NP-hard to compute a weighted version of the crossing number
for near-planar graphs.

1 Introduction

Crossing number minimization is one of the fundamental optimization problems
in the sense that it is related to various other widely used notions. Besides its
mathematical interest, there are numerous applications, most notably those in
VLSI design [1,8,9], in combinatorial geometry and even in number theory, see,
e.g, [16]. We refer to [10,15] and to [18] for more details about diverse applications
of this important notion.

A nonplanar graph G is near-planar if it contains an edge e such that G − e
is planar. Such an edge e is called a planarizing edge. It is easy to see that near-
planar graphs can have arbitrarily large crossing number. However, it seems that
computing the crossing number of near-planar graphs should be much easier
than in unrestricted cases. This is supported by a less known, but particularly
interesting result of Riskin [14], who proved that the crossing number of a 3-
connected cubic near-planar graph G can be computed easily as the length of a
shortest path in the geometric dual graph of the planar subgraph G−x−y, where
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xy ∈ E(G) is the edge whose removal yields a planar graph. Riskin asked if a
similar correspondence holds in more general situations, but this was disproved
by Mohar [13] (see also [5]). Another relevant paper about crossing numbers of
near-planar graphs was published by Hliněný and Salazar [6].

In this paper we show that several generalizations of Riskin’s result are in-
deed possible. We provide efficiently computable upper and lower bounds on the
crossing number of near-planar graphs in a form of min-max relations. These
relations can be extended to the non-3-connected case and even to the case of
weighted edges. As far as we know, these results are the first of their kind in the
study of crossing numbers. It is shown that they generalize and improve some
known results and we foresee that generalizations and further applications are
possible.

On the other hand, we show that computing the crossing number of weighted
near-planar graphs is NP-hard. This discovery is a surprise and brings more
questions than answers.

Drawings and crossings. A drawing of a graph G is a representation of G in the
Euclidean plane R

2 where vertices are represented as distinct points and edges
by simple polygonal arcs joining points that correspond to their endvertices. A
drawing is clean if the interior of every arc representing an edge contains no
points representing the vertices of G. If interiors of two arcs intersect or if an arc
contains a vertex of G in its interior we speak about crossings of the drawing.
More precisely, a crossing of a drawing D is a pair ({e, f}, p), where e and f
are distinct edges and p ∈ R

2 is a point that belongs to interiors of both arcs
representing e and f in D. If the drawing is not clean, then the arc of an edge
e may contain in its interior a point p ∈ R

2 that represents a vertex v of G. In
such a case, the pair ({v, e}, p) is also referred to as a crossing of D.

The number of crossings of D is denoted by cr(D) and is called the crossing
number of the drawing D. The crossing number cr(G) of a graph G is the
minimum cr(D) taken over all clean drawings D of G. When each edge e of G
has a weight we ∈ N, the weighted crossing number wcr(D) of a clean drawing
D is the sum

∑
we · wf over all crossings ({e, f}, p) in D. The weighted crossing

number wcr(G) of G is the minimum wcr(D) taken over all clean drawings D of
G. Of course, if all edge-weights are equal to 1, then wcr(G) = cr(G).

We shall discuss both, the weighted and unweighted crossing number. Most
of the results are treated for the general weighted case. However, some results
hold only in the unweighted case or are too technical to state for the weighted
case. For a graph we shall assume that it is unweighted (i.e., all edge-weights are
equal to 1) unless stated explicitly or when it is clear from the context that it is
weighted.

A clean drawing D with cr(D) = 0 is also called an embedding of G. By a
plane graph we refer to a planar graph together with a fixed embedding in the
Euclidean plane. We shall identify a plane graph with its image in the plane.

Dual and facial distances. Let G0 be a plane graph and let x, y be two of its
vertices. A simple (polygonal) arc γ : [0, 1] → R

2 is an (x, y)-arc if γ(0) = x and
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γ(1) = y. If γ(t) is not a vertex of G0 for every t, 0 < t < 1, then we say that γ
is clean. For an (x, y)-arc γ we define the crossing number of γ with G0 as

cr(γ, G0) = |{t | γ(t) ∈ G0 and 0 < t < 1}|. (1)

This definition extends to the weighted case as follows. If the graph G0 is
weighted and the edge xy realized by an (x, y)-arc γ also has weight wxy, then
each crossing of γ with an edge e contributes wxy ·we towards the value cr(γ, G0),
and each crossing ({v, xy}, p) of xy with a vertex of G0 contributes 1 (indepen-
dently of the edge-weights).

Using this notation, we define the dual distance

d∗(x, y) = min{cr(γ, G0) | γ is a clean (x, y)-arc}.

We also introduce a similar quantity, the facial distance between x and y:

d′(x, y) = min{cr(γ, G0) | γ is an (x, y)-arc}.

It should be observed at this point that the value d′(x, y) is independent of
the weights – since all weights are integers, we can replace each crossing of an
edge with a crossing through an incident vertex and henceforth replace weight
contributions simply by counting the number of crossings.

Let G∗
x,y be the geometric dual graph of G0 − x − y. Then d∗(x, y) is equal

to the distance in G∗
x,y between the two vertices corresponding to the faces of

G0 − x − y containing x and y. Of course, in the weighted case the distances
are determined by the weights of their dual edges. This shows that d∗(x, y) can
be computed in linear time by using known shortest path algorithms for planar
graphs. Similarly, one can compute d′(x, y) in linear time by using the vertex-face
incidence graph (see [12]).

Clearly, d′(x, y) ≤ d∗(x, y). Note that d∗ and d′ depend on the embedding
of G0 in the plane. However, if G0 is (a subdivision of) a 3-connected graph,
then this dependency disappears since G0 has essentially a unique embedding.
To compensate for this dependence, we define d∗0(x, y) (and d′0(x, y)) as the
minimum of d∗(x, y) (resp. d′(x, y)) taken over all embeddings of G0 in the
plane.

Overview of results. The following proposition is clear from the definition of d∗:

Proposition 1. If G0 is a weighted planar graph and x, y ∈ V (G0), then
cr(G0 + xy) ≤ d∗0(x, y).

This result shows that the value d∗0(x, y) is of interest. Gutwenger, Mutzel, and
Weiskircher [5] provided a linear-time algorithm to compute d∗0(x, y). In Sect. 2
we study d∗0(x, y) from a combinatorial point of view and obtain a min-max
characterization that results very useful.

Riskin [14] proved the following strengthening of Proposition 1 in a special
case when G0 is 3-connected and cubic:
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Theorem 1 ([14]). If G0 is a 3-connected cubic planar graph, then

cr(G0 + xy) = d∗0(x, y).

Riskin asked in [14] if Theorem 1 extends to arbitrary 3-connected planar graphs.
One of the authors [13] has shown that this is not the case: for every integer
k, there exists a 5-connected planar graph G0 and two vertices x, y ∈ V (G0)
such that cr(G0 + xy) ≤ 11 and d∗0(x, y) ≥ k. See also Gutwenger, Mutzel, and
Weiskircher [5] for an alternative construction.

However, several extensions of Theorem 1 are possible, and some of them are
presented throughout this paper. In particular, we show how to deal with graphs
that are not 3-connected, and what happens when we allow vertices of arbitrary
degrees.

Theorem 2. If G0 is a weighted planar graph and x, y ∈ V (G0), then

d′0(x, y) ≤ cr(G0 + xy) ≤ d∗0(x, y).

The proof of this result is given in Sect. 3.
If G0 is a cubic graph, then for every planar embedding of G0, d′(x, y) =

d∗(x, y). Therefore, d′0(x, y) = d∗0(x, y), and Theorem 2 implies Theorem 1.
Theorem 2 is also the main ingredient to improve the approximation factor

in the algorithm of Hliněný and Salazar [6]; see Corollary 3.
A key idea in our results is to show that d∗0(x, y) (respectively d′0(x, y)) is

closely related to the maximum number of edge-disjoint (respectively vertex-
disjoint) cycles that separate x and y. The notion of the separation has to be
understood in a certain strong sense that is introduced in Sect. 2. This result
yields a dual expression for d∗0 (respectively d′0) and is used to show that d∗0(x, y)
is closely related to the crossing number of G0 + xy, while d′0(x, y) is in the
same way related to the minor crossing number, mcr(G0 + xy), a version of the
crossing number that works well with minors; see Bokal et al. [2].

Finally, we show in Sect. 5 that computing the crossing number of weighted
near-planar graphs is NP-hard. Our reduction uses weights that are not poly-
nomially bounded, and therefore it does not imply NP-hardness for unweighted
graphs.

Intuition. To understand the difficulty in computing the crossing number of a
near-planar graph, let us consider the graph shown in Fig. 1 (taken from [13]),
where the subgraph inside each of the “darker” triangles is a sufficiently dense
triangulation that requires many crossings when crossed by an arc. By drawing
the vertex x in the outside, we see that this graph is near-planar. The drawing
in Fig. 1 shows that its crossing number is at most 11, but it is also clear that
d∗(x, y) can be made as large as we want.

This construction can be generalized such that a similar redrawing as made
there for x is necessary also for y (in order to bring these two vertices “close to-
gether”). At the first sight this seems like the only possibility which may happen
– to “flip” a part of the graph containing x and to “flip” a part containing y.



42 S. Cabello and B. Mohar
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y

Fig. 1. The graph Qk

And maybe some repetition of such changes may be needed. If this would be the
only possibility of making the crossing number smaller than the one coming from
the planar drawing of G0, this would most likely give rise to a polynomial time
algorithm for computing the crossing number of near-planar graphs. However,
the authors can construct examples, in which additional complications arise.

Despite these examples and despite our NP-hardness result for the weighted
case, the following question may still have a positive answer:

Problem 1. Is there a polynomial time algorithm which would determine the
crossing number of G0 + xy if G0 is an unweighted 3-connected planar graph?

2 Planar Separations and the Dual Distance

Let G0 be a planar graph, x, y distinct vertices of G0, and let Q be a subgraph
of G0 − x − y. We say that Q planarly separates vertices x and y if for every
embedding of G0 in the plane, x and y lie in the interiors of distinct faces of the
induced embedding of Q.

Let Q be a subgraph of G. A Q-bridge in G is a subgraph of G that is either
an edge not in Q but with both ends in Q (and its ends also belong to the
bridge), or a connected component of G − V (Q) together with all edges (and
their endvertices in Q) which have one end in this component and the other end
in Q. Let B be an Q-bridge. Vertices of B ∩ Q are vertices of attachment of B
(shortly attachments).

Let C be a cycle in G0 − x − y. Let Bx and By be the C-bridges in G0
containing x and y, respectively. Two C-bridges B and B′ are said to overlap
if either (i) C contains four vertices a, a′, b, b′ in this order such that a and b
are attachments of B and a′, b′ are attachments of B′, or (ii) B and B′ have
(at least) three vertices of attachment in common. We define the overlap graph
O(G0, C) of C-bridges (see [12]) as the graph whose vertices are the bridges of C,
and two vertices are adjacent if the two bridges overlap on C. Since G0 is planar,
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the overlap graph is bipartite. Distinct C-bridges are weakly overlapping if they
are in the same connected component of O(G0, C), and in that component they
belong to distinct bipartite classes. The following result follows easily from the
definitions.

Lemma 1. A cycle C ⊆ G0 − x − y planarly separates x and y if and only if
Bx and By are weakly overlapping C-bridges.

Tutte [17] characterized when G0 +xy is non-planar, i.e., when cr(G0 +xy) ≥ 1
by proving

Theorem 3 (Tutte [17]). Let x, y be vertices of a planar graph G0. Then
G0 + xy is non-planar if and only if G0 − x − y contains a cycle C such that the
C-bridges of G containing x and y, respectively, are overlapping.

Let us observe that G0 + xy is non-planar if and only if G0 − x − y planarly
separates x and y. Therefore, the next lemma is closely related to Theorem 3.

Lemma 2. If Q ⊆ G0 − x − y planarly separates x and y, then there is a cycle
C ⊆ Q that planarly separates x and y.

The proof of this lemma is not hard but slightly technical, and we defer it to the
full version of this paper.

For a plane graph G0, a sequence Q1, . . . , Qk of edge-disjoint cycles of G0 is
nested if for i = 1, . . . , k − 1, all edges of the cycle Qi+1 lie in the exterior of Qi.

Lemma 3. Suppose that C and D are edge-disjoint cycles that planarly separate
vertices x and y. Then there exist nested cycles C1, C2 ⊆ C ∪ D that planarly
separate x and y.

Again, the proof is deferred for the full version of the paper.

Lemma 4. Let G0 be a plane graph. If Q1, . . . , Qk are edge-disjoint cycles of G0
that planarly separate vertices x and y of G0, then there are nested edge-disjoint
cycles Q′

1, . . . , Q
′
k such that ∪k

i=1E(Q′
i) ⊆ ∪k

i=1E(Qi) and such that Q′
1, . . . , Q

′
k

planarly separate x and y.

Proof. The proof follows rather easily by applying Lemma 3 consecutively on
pairs of cycles Qi, Qj. One has to make sure that after finitely many steps we
get a collection of nested cycles. This is done as follows. First we apply the
lemma in such a way that one of the cycles in the family has none of the edges
of the other k − 1 cycles in its interior. After this is done, we repeat the process
with the remaining k − 1 cycles. 	


After this preparation, we are ready to discuss a dual expression for the dual
distance, both for the 3-connected and for the general case.

Theorem 4. Let G0 be a planar graph and x, y ∈ V (G). If r is an integer, then
the following statements are equivalent:
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(a) r ≤ d∗0(x, y).
(b) There exists a family of r edge-disjoint cycles Q1, . . . , Qr that planarly

separate x and y.
(c) There exists a family of r nested cycles Q1, . . . , Qr that planarly separate

x and y.

Equivalence of (b) and (c) follows from Lemma 4. It is also clear from the defi-
nitions (cf. Lemma 1) that (b) implies (a). The proof of the reverse implication
that (a) yields (b) is by induction and also gives an efficient algorithm for find-
ing d∗0(x, y) nested cycles planarly separating x and y. Let us observe that for
3-connected graphs, the maximum number of nested cycles can be determined
by a simple “greedy” process.

Corollary 1. The value of d∗0(x, y) is equal to the maximum number of edge-
disjoint cycles that planarly separate x and y.

The above dual expression for d∗0(x, y) is a min-max relation which offers an
extension to the weighted case. Suppose that the edges of G0 + xy are weighted
and that all weights are positive integers. Then we can replace each edge e �= xy
by we parallel edges (each of weight 1). Let G̃0 be the resulting unweighted graph.
It is easy to argue that d∗0(G0, x, y) is equal to d∗0(G̃0, x, y) · wxy. By Corollary
1, this value can be interpreted as the maximum number of edge-disjoint cycles
planarly separating x and y in G̃0.

3 Facial Distance

In this section we shall prove Theorem 2. First, we need a dual expression for
d′(x, y) which can be viewed as a surface version of Menger’s Theorem.

Proposition 2. Let G0 be a plane graph and x, y ∈ V (G0) where y lies on the
boundary of the exterior face. Let r be the maximum number of vertex-disjoint
cycles, Q1, . . . , Qr, contained in G0−x−y, such that for i = 1, . . . , r, x ∈ int(Qi)
and y ∈ ext(Qi). Then d′(x, y) = r.

Proof. Since every (x, y)-arc intersects every Qi, we conclude that d′(x, y) ≥ r.
The converse inequality is proved by induction on d′(x, y). There is nothing to
show if d′(x, y) = 0. Let F be the subgraph of G0 containing all vertices and
edges that are cofacial with x. Then F contains a cycle Q such that x ∈ int(Q)
and y ∈ ext(Q). Delete all vertices and edges of F except x, and let G1 be the
resulting plane graph. It is easy to see that d′G1

(x, y) = d′G0
(x, y) − 1. By the

induction hypothesis, G1 has d′G0
(x, y)− 1 disjoint cycles that contain x in their

interior and y in the exterior. By adding Q to this family, we get d′(x, y) such
cycles. This shows that d′(x, y) ≤ r. 	


The cycles Q1, . . . , Qr in Proposition 2 all contain x in their interior and y in
their exterior. Therefore, they behave essentially like cycles on a cylinder that
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separate the two boundary components of the cylinder. Hence they are nested
cycles separating x and y.

The main result of this section, Theorem 2, involves the minimum facial dis-
tance taken over all embeddings of G0 in the plane. If G0 is 3-connected, then
d′(x, y) is the same for every embedding of G0, and Proposition 2 yields a dual
expression for the facial distance. For general graphs, we need a similar concept
as used in the previous section.

Let G0 be a graph and x, y ∈ V (G0). Then we define ρ(x, y, G0) as the largest
integer r for which there exists a collection of r vertex-disjoint cycles Q1, . . . , Qr

in G − x − y such that for every i = 1, . . . , r, x and y belong to distinct weakly
overlapping bridges of Qi. It is convenient to realize that it may be required that
the bridges containing x and y indeed overlap (not only weakly overlap), so we
get an extension of Tutte’s Theorem 3.

Lemma 5. Let r = ρ(x, y, G0). Then there exists a collection of r vertex-
disjoint cycles Q1, . . . , Qr in G0 − x − y such that for every i = 1, . . . , r, x
and y belong to distinct overlapping bridges of Qi.

Proof. For i = 1, . . . , r, let Bi
x (resp. Bi

y) be the Qi-bridge in G0 containing
x (resp. y). Note that every other cycle Qj (j �= i) is contained either in Bi

x

or in Bi
y. Therefore we can define a linear order ≺ on {Q1, . . . , Qr} by setting

Qi ≺ Qj if and only if Qj ⊆ Bi
y. By adjusting indices, we may assume that

Q1 ≺ Q2 ≺ · · · ≺ Qr.
The proof method used in particular by Tutte in [17] is to change each cycle

Qi by rerouting it through the Qi-bridges distinct from Bi
x and Bi

y in such a
way that the two bridges with respect to the new cycle still weakly overlap, but
contain more vertices. The actual goal is to minimize the number t of edges
that are neither on the cycle nor in one of these two bridges. If Bi

x and Bi
y do

not overlap but are weakly overlapping, it is possible to decrease t. It follows
that after a series of changes, that do not affect any of the other cycles, the
“big” bridges Bi

x and Bi
y overlap. We refer to [7] and to [11] for an algorithmic

treatment showing that these changes can be made in linear time. 	


The following lemma, whose proof is deferred to the full paper, is the analogue
of Theorem 4.

Lemma 6. d′0(x, y) = ρ(x, y, G0).

We are ready for the proof of Theorem 2.

Proof. (of Theorem 2). It has been shown before that cr(G0+xy) ≤ d∗0(x, y). The
heart of the proof is to show that d′0(x, y) is a lower bound on cr(G0 + xy). Let
r = d′0(x, y). Lemmas 5 and 6 show that there are r vertex-disjoint Q1, . . . , Qr

such that for every i = 1, . . . , r, x and y belong to distinct overlapping bridges
of Qi. Let us denote these overlapping Qi-bridges Bi

x and Bi
y as we did above.

To simplify the notation in the sequel, we define Q0 = {x} and Qr+1 = {y}.
Since Bi

x and Bi
y overlap, one of the following cases occurs:
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(i) There are paths P+
1 , P+

2 ⊆ Bi
y joining Qi with Qi+1, and there are paths

P−
1 , P−

2 ⊆ Bi
x joining Qi with Qi−1 such that the ends of these pairs of paths

on Qi interlace.
(ii) When the bridges Bi

x and Bi
y have precisely three vertices of attachment,

they may overlap only because their attachments a, b, c on Qi coincide. In that
case, we have paths P+

1 , P+
2 , P+

3 in Bi
y (resp. paths P−

1 , P−
2 , P−

3 in Bi
x) joining

a, b, c with Qi+1 (resp. Qi−1).
If Case (i) occurs, let Si be the union of the paths P−

1 and P−
2 and let Ri

be the union of the paths P+
1 and P+

2 . If Case (ii) occurs, we define Si and Ri

similarly, as the union of the three paths in (ii) certifying the overlapping.
Suppose that we have a clean drawing of G0 + xy in the plane. If two cycles

Qi and Qi+1 intersect, then they make at least two crossings, and we declare
one of them to be a crossing of type i, and the other one a crossing of type i+1.
If two edges of the same cycle Qi cross, we declare that crossing to be of type i
as well. If an edge e /∈ E(Q1 ∪ · · · ∪ Qr) ∪ Ri ∪ Si ∪ Ri−1 ∪ Si+1 (including the
possibility that e = xy) crosses an edge of Qi, we also declare the crossing to be
of type i. Finally, if two edges, e ∈ E(Qi−1 ∪ Si) and f ∈ E(Qi+1 ∪ Ri) cross,
we also say that the crossing is of type i. Observe that by this definition, none
of the crossings is of two different types (but for some of the crossings, the type
may not have been specified).

Our goal is to show that for every i = 1, . . . , r, there is a crossing of type i.
This will show that there are at least r crossings, so the theorem holds.

Suppose, reductio ad absurdum, that there is no crossing of type i (1 ≤ i ≤ r).
Then Qi does not cross itself and both x and y are in the interior of Qi (say)
since the edge xy does not cross Qi. Moreover, Qi is not crossed by any of the
other cycles Qj . Suppose now that Qi−1 and Qi+1 are both inside Qi (or both
outside). Then it is easy to see that a crossing of type i occurs between an edge
e ∈ E(Qi−1 ∪ Si) and an edge f ∈ E(Qi+1 ∪ Ri). This shows that one of Qi−1
and Qi+1 is inside, while the other one is outside Qi. We may assume that Qi+1
is inside and Qi−1 is outside Qi. There is a path from Qi−1 to x that is disjoint
from V (Qi) and does not use edges in Si or in Ri−1. This path must clearly cross
Qi, and yields a crossing of type i. This contradiction completes the proof. 	


As a corollary we get a generalization of Riskin’s Theorem 1.

Corollary 2. If the graph G0−x−y has maximum degree 3, then cr(G0+xy) =
d′0(x, y) = d∗0(x, y). In particular, the crossing number of G0 + xy is computable
in linear time.

Another corollary is an approximation formula for the crossing number of near-
planar graphs if the maximum degree is bounded.

Corollary 3. If the graph G0 − x − y has maximum degree Δ, then d′0(x, y) ≤
cr(G0 + xy) ≤ Δ

2 d′0(x, y).

Proof. Observe that d∗0(x, y) ≤ Δ
2 d′0(x, y) because there are at most Δ

2 edge-
disjoint cycles through any vertex and d∗0(x, y) is defined by a collection of
d∗0(x, y) nested cycles (c.f. Theorem 4). 	
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Corollary 3 is an improvement of a theorem of Hliněný and Salazar [6] who
proved analogous result with the factor Δ instead of Δ/2.

A graph G is said to be d-apex if G has a vertex v of degree at most d such
that G − v is planar. Let us observe that every near-planar graph is essentially
2-apex (subdivide the “non-planar” edge).

Problem 2. Is there a result similar to Corollary 2 for 3-apex cubic graphs?

4 The Minor Crossing Number and d′

Structural graph theory based on the Robertson and Seymour theory of graph
minors gives powerful results in relation to topological realizations of graphs.
However, it does not work well with crossing numbers. To overcome this defi-
ciency, Bokal et al. [2] introduced a related notion of the minor crossing number ,
mcr(G), which is defined as the minimum of cr(H) taken over all graphs H that
contain G as a minor.

It is easy to see that mcr(G0 + xy) ≤ d′0(x, y). However, a proof along similar
lines as the proof of Theorem 2 shows even more intimate relationship.

Theorem 5. mcr(G0 + xy) = d′0(x, y).

5 NP-Hardness of wcr(·) for Near-Planar Graphs

Consider the following decision problem:

Weighted Crossing Number

Input: G, k, where G is an edge-weighted graph and k > 0.
Question: Is wcr(G) ≤ k?

This problem is NP-complete because it generalizes the problem Crossing

Number , which is NP-complete [3]. We will see that this problem remains
NP-complete when restricted to near-planar graphs. We will use the notation
[n] = {1, . . . , n}.

Let a1, . . . , an be natural numbers, and let S =
∑

i∈[n] ai. We define the edge-
weighted graph G(a1, . . . , an) as follows (Fig. 2):

– its vertices are u1, . . . , un and v1, . . . , vn;
– there is a Hamiltonian cycle Q = u1 u2 · · ·un v1 v2 · · · vn u1, each edge with

weight S2;
– there are edges ei = uivi with weight ai for each i ∈ [n];

It is easy to note that G(a1, . . . , an) − u1vn planar, and hence G(a1, . . . , an)
is near-planar. For any subset of indices I ⊆ [n], let σI :=

∑
i∈I ai. Consider

a clean drawing D0 of G such that wcr(G) = wcr(D0). It is easy to see that
no edge of Q participates in a crossing, and therefore each edge ei is contained
either in the interior or in the exterior of the simple closed curve defined by Q.
Using that all the edges in the interior (or the exterior) of Q must cross each
other, we can show the following property.
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u1 u2 u3 un−2 un−1 un

vn vn−1 vn−2 v3 v2 v1

Fig. 2. The graph G(a1, . . . , an) with the cycle Q bolder

Lemma 7. It holds that

2 · wcr(G(a1, . . . , an)) = min
I⊆[n]

{
(σI)

2 +
(
σ[n]\I

)2
}

−
∑

i∈[n]

a2
i .

Lemma 8. It holds

wcr(G(a1, . . . , an)) = S2/4 −
∑

i∈[n]

a2
i /2

if and only if there exists I ⊂ [n] such that σI = σ[n]\I = S/2.

Proof. Note that

min
I⊆[n]

{
(σI)

2 +
(
σ[n]\I

)2
}

≥ min{A2+B2 | A+B = S, A ≥ 0, B ≥ 0} = S2/2,

and there is equality if and only if there is some I ⊂ [n] such that σI = σ[n]\I =
S/2. The result then follows from Lemma 7. 	


Theorem 6. The problem Weighted Crossing Number is NP-complete for
near-planar graphs.

Proof. A standard planarizing argument shows that the problem Weighted

Crossing Number is in NP. To show NP-hardness, consider the following NP-
complete problem [4].

Partition

Input: natural numbers a1, . . . , an.
Question: is there I ⊂ [n] such that

∑
i∈I ai =

∑
i∈[n]\I ai?

Consider the function φ that maps the input a1, . . . , an for Partition into the
input

G(a1, . . . , an), S2/4 −
∑

i∈[n]

a2
i /2

for Weighted Crossing Number . Clearly, φ can be computed in polynomial
time. Because of Lemma 8 both problems have the same answer. Therefore we
have a polynomial time reduction from Partition to Weighted Crossing

Number that only uses near-planar graphs. 	
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7. Juvan, M., Marinček, J., Mohar, B.: Elimination of local bridges. Math. Slovaca 47,
85–92 (1997)

8. Leighton, F.T.: Complexity issues in VLSI. MIT Press, MA (1983)
9. Leighton, F.T.: New lower bound techniques for vlsi. Math. Systems Theory 17,

47–70 (1984)
10. Liebers, A.: Planarizing graphs—a survey and annotated bibliography. J. Graph

Algorithms Appl. 5, 74pp. (2001)
11. Mishra, B., Tarjan, R.E.: A linear-time algorithm for finding an ambitus. Algorith-

mica 7(5&6), 521–554 (1992)
12. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press,

Baltimore (2001)
13. Mohar, B.: On the crossing number of almost planar graphs. Informatica 30, 301–

303 (2006)
14. Riskin, A.: The crossing number of a cubic plane polyhedral map plus an edge.

Studia Sci. Math. Hungar. 31, 405–413 (1996)
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