Graph Drawing for Security Visualization™

2

Roberto Tamassia®, Bernardo Palazzi!+?3, and Charalampos Papamanthou!

! Brown University, Department of Computer Science, Providence, RI, USA
{rt,bernardo, cpap}@cs.brown.edu
2 Roma TRE University, Rome, Italy
palazzi@dia.uniroma3.it
3 ISCOM Italian Ministry of Economic Development-Communications, Rome, Italy

Abstract. With the number of devices connected to the internet growing rapidly
and software systems being increasingly deployed on the web, security and pri-
vacy have become crucial properties for networks and applications. Due the
complexity and subtlety of cryptographic methods and protocols, software archi-
tects and developers often fail to incorporate security principles in their designs
and implementations. Also, most users have minimal understanding of security
threats. While several tools for developers, system administrators and security
analysts are available, these tools typically provide information in the form of
textual logs or tables, which are cumbersome to analyze. Thus, in recent years,
the field of security visualization has emerged to provide novel ways to display
security-related information so that it is easier to understand. In this work, we
give a preliminary survey of approaches to the visualization of computer security
concepts that use graph drawing techniques.

1 Introduction

As an increasing number of software applications are web-based or web-connected, se-
curity and privacy have become critical issues for everyday computing. Computer sys-
tems are constantly being threatened by attackers who want to compromise the privacy
of transactions (e.g., steal credit card numbers) and the integrity of data (e.g., return
a corrupted file to a client). Therefore, computer security experts are continuously de-
veloping methods and associated protocols to defend against a growing number and
variety of attacks. The development of security tools is an ongoing process that keeps
on reacting to newly discovered vulnerabilities of existing software and newly deployed
technologies.

Both the discovery of vulnerabilities and the development of security protocols can
be greatly aided by visualization. For example, a graphical representation of a complex
multi-party security protocol can give experts better intuition of its execution and se-
curity properties. In current practice, however, computer security analysts read through

This work has been presented at the 2008 Symposium on Graph Drawing in
a invited talk dedicated to the memory of Paris C. Kanellakis, a prominent
computer scientist and Brown faculty member who died with his family in
an airplane crash in December 1995. His unbounded energy and outstanding
scholarship greatly inspired all those who interacted with him.

L.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 2413] 2000.
(© Springer-Verlag Berlin Heidelberg 2009



Graph Drawing for Security Visualization 3

large logs produced by applications, operating systems, and network devices. The visual
inspection of such logs is quite cumbersome and often unwieldy, even for experts. Moti-
vated by the growing need for automated visualization methods and tools for computer
security, the field of security visualization has recently emerged as an interdisciplinary
community of researchers with its own annual meeting (VizSec).

In this paper, we give a preliminary survey of security visualization systems that use
graph drawing methods. Thanks to their versatility, graph drawing techniques are one
of the main approaches employed in security visualization. Indeed, not only computer
networks are naturally modeled as graphs, but also data organization (e.g., file systems)
and vulnerability models (e.g., attack trees) can be effectively represented by graphs.
In the rest of this paper, we specifically overview graph drawing approaches for the
visualization of the following selected computer security concepts:

1. Network Monitoring. Monitoring network activity and identifying anomalous be-
havior, such as unusually high traffic to/from certain hosts, helps identifying several
types of attacks, such as intrusion attempts, scans, worm outbreaks, and denial of
service.

2. Border Gateway Protocol (BGP). BGP manages reachability between hosts in
different autonomous systems, i.e., networks under the administrative control of
different Internet Service Providers. Understanding the evolution of BGP routing
patterns over time is very important to detect and correct disruptions in Internet
traffic caused by router configuration errors or malicious attacks.

3. Access Control. Access to resources on a computer system or network is regulated
by policies and enforced through authentication and authorization mechanisms. It
is critical to protect systems not only from unauthorized access by outside attackers
but also from accidental disclosure of private information to legitimate users. Ac-
cess control systems and their associated protocols can be very complex to manage
and understand. Thus, it is important to have tools for analyzing and specifying
policies, identifying the possibility of unauthorized access, and updating permis-
sions according to desired goals.

4. Trust Negotiation. Using a web service requires an initial setup phase where the
client and server enter into a negotiation to determine the service parameters and
cost by exchanging credentials and policies. Trust negotiation is a protocol that
protects the privacy of the client and server by enabling the incremental disclosure
of credentials and policies. Planning and executing an effective trust negotiation
strategy can be greatly aided by tools that explore alternative scenarios and show
the consequences of possible moves.

5. Attack Graphs. A typical strategy employed by an attacker to compromise a sys-
tem is to follow a path in a directed graph that models vulnerabilities and their
dependencies. After an initial successful attack to a part of a system, an attacker
can exploit one vulnerability after the other and reach the desired goal. Tools for
building and analyzing attack graphs help computer security analysts identify and
fix vulnerabilities.

In Table[T] we show the graph drawing methods used by the systems surveyed in this
paper.



4 R. Tamassia, B. Palazzi, and C. Papamanthou

Table 1. Graph drawing methods used in the security visualization systems surveyed in this paper

Force-Directed Layered Bipartite Circular Treemap 3D

Network Monitoring [9] 12} 14, 21]] (L4 24]  [20]
BGP (19 (19 [18]
Access Control [13] [10]
Trust Negotiation [23]
Attack Graphs (L6l 117]

2 Network Monitoring

Supporting Intrusion Detection by Graph Clustering and Graph Drawing [21)]. In this
paper, the authors use a combination of force-directed drawing, graph clustering, and
regression-based learning in a system for intrusion detection (see Fig.[I(a)). The system
consists of modules for the following functions: packet collection, graph construction
and clustering, graph layout, regression-based learning, and event generation.

The authors model the computer network with a graph where the nodes are com-
puters and the edges are communication links with weight proportional to the network
traffic on that link. The clustering of the graph is performed with a simple iterative
method. Initially, every node forms its own cluster. Next, nodes join clusters that al-
ready have most of their neighbors. A force-directed approach is used to place clusters
and nodes within the clusters. Since forces are proportional to the weights of the edges,
if there is a lot of communication between two hosts, their nodes are placed close to
each other. Also, in the graph of clusters, there is an edge between clusters A and B if
there is at least one edge between some node of cluster A and some node of cluster B.
The layout of the graph of clusters and of each cluster are computed using the classic
force-directed spring embedder method [6].

Various features of the clustered graph (including statistics on the node degrees, num-
ber of clusters, and internal/external connectivity of clusters) are used to describe the
current state of network traffic and are summarized by a feature vector. Using test traffic
samples and a regression-based strategy, the system learns how to map feature vectors
to intrusion detection events. The security analyst is helped by the visualization of the
clustered graph in assessing the severity of the intrusion detection events generated by
the system.

Graph-Based Monitoring of Host Behavior for Network Security [12)]. In this paper, the
authors show how to visualize the evolution over time of the volume and type of network
traffic using force-directed graph drawing techniques (see Fig. [I(D)). Since there are
different types of traffic protocols (HTTP, FTP, SMTP, SSH, etc.) and multiple time
periods, this multi-dimensional data set is modeled by a graph with two types of nodes:
dimension nodes represent traffic protocols and observation nodes represent the state
of a certain host in a given time interval. Edges are also of two types: trace edges link
observation nodes of consecutive time intervals and attraction edges link observation
nodes with dimension nodes and have weight proportional to the traffic of that type.
The layout of the above graph is computed starting with a fixed placement of the
dimension nodes and then executing a modified version of the Fruchterman-Reingold



Graph Drawing for Security Visualization 5

dimension nodes - . SSH

atiraction forces
Fe @ . @ v
& Y
6]
observation I:IOUOS
|

L
B 'Y
S
DNS.@ @ .IMAP
\\
\
traces

@

@

@ hosta
O noste . @
HTTP Undefined

(b)

Fig.1. (a) Force-directed clustered drawing for intrusion detection (thumbnail of image
from [21])). (b) Evolution of network traffic over time (thumbnail of image from [12]]): dimension
nodes represent types of traffic and observation nodes represent the state of a host at a given time.

force-directed algorithm [8] that aims at achieving uniform edge lengths. The authors
show how intrusion detection alerts can be associated with visual patterns in the layout
of the graph.

A Visual Approach for Monitoring Logs [9]. This paper (see Fig. presents a tech-
nique to visualize log entries obtained by monitoring network traffic. The log entries are
basically vectors whose elements correspond to features of the network traffic, includ-
ing origin IP, destination IP, and traffic volume. The authors build a weighted similarity
graph for the log entries using a simple distance metric for two entries given by the sum
of the differences of the respective elements. The force-directed drawing algorithm of
[3]] is used to compute a drawing of the similarity graph of the entries.

A Visualization Methodology for Characterization of Network Scans [[I4)]. This work
considers network scans, often used as the preliminary phase of an attack. The authors
develop a visualization system that shows the relationships between different network
scans (see Fig.[2(b)). The authors set up a graph where each node represents a scan and
the connection between them is weighted according to some metric (similarity measure)
that is defined for the two scans. Features taken into consideration for the definition of
the similarity measure include the origin IP, the destination IP and the time of the con-
nection. To avoid displaying a complete graph, the authors define a minimum weight
threshold, below which edges are removed. The LinLog force directed layout method
[13] is used for the visualization of this graph. In the drawing produced, sets of sim-
ilar scans are grouped together, thus facilitating the visual identification of malicious
scans.

VisFlowConnect: NetFlow Visualizations of Link Relationships for Security Situational
Awareness [24)]. In this work, the authors apply a simple bipartite drawing technique
to provide a visualization solution for network monitoring and intrusion detection (see
Fig. B(@)). The nodes, representing internal hosts and external domains, are placed on
three vertical lines. The external domains that send traffic to some internal host are



6 R. Tamassia, B. Palazzi, and C. Papamanthou

e
W

B o
B oo

(a) (b)

Fig. 2. (a) Similarity graph of log entries (thumbnail of image from [9]]). (b) Similarity graph of
network scans (thumbnail of image from [14]).

placed on the left line. The domains of the internal hosts are placed on the middle
line. The external domains that receive traffic from some internal host are placed on
the right line. Each edge represents a network flow, which is a sequence of related
packets transmitted from one host to another host (e.g., a TCP packet stream). Ba-
sically, the layout represents a tripartite graph. The vertical ordering of the domains
along each line is computed by the drawing algorithm with the goal of minimizing
crossings.

The tool uses a slider to display network flows at various time intervals and provides
three views. In the global view, the entire tripartite graph is displayed to show all the
communication between internal and external hosts. In the internal view and domain
view, the tool isolates certain parts of the network, such as internal senders and internal
receivers, and correspondingly displays a bipartite graph. The domain view and inter-
nal view are easier to analyze and provide more details on the network activity being
visualized but on the other hand, the global view produces a high-level overview of the
network flows. The authors apply the tool in various security-related scenarios, such as
virus outbreaks and denial-of-service attacks.

Home-Centric Visualization of Network Traffic for Security Administration [[I]]. In this
paper the authors use a matrix display combined with a simple graph drawing method
in order to visualize the traffic between domains in network and external domains (see
Fig.[3(b)). To visualize the internal network, the authors use a square matrix: each entry
of the matrix corresponds to a host of the internal network. External hosts are repre-
sented by squares placed outside the matrix, with size proportional to the traffic sent or
received. Straight-line edges represent traffic between internal and external hosts and
can be colored to denote the predominant direction of the traffic (outgoing, incoming,
or bidirectional). The placement of the squares arranges hosts of the same class A, B



Graph Drawing for Security Visualization 7

m| iD.'

AN
L ) -Dm
o

g0

\\
B0 B

\
|
i

o

ot P

=

4 ma..
Ellm -]

m [ 8
-m j
0 Dl_/ .
ﬂlmua

(a) (b)

Fig. 3. (a) Global view of network flows using a tripartite graph layout: nodes represent external
domains (on the left and right) and internal domains (in the middle) and edges represent network
flows (packet streams) between domains (thumbnail of image from [24]). (b) Visualization of
internal vs. external hosts using a matrix combined with a straight-line drawing. Internal hosts
correspond to entries of the matrix while external hosts are drawn as squares placed around the
matrix. The size of the square for an external host is proportional to the amount of traffic from/to
that host (thumbnail of image from [T)).

or C network along the same vertical line and attempts to reduce the number of edge
crossings. Further details on the type of traffic can be also displayed in this tool. For
example, vertical lines inside each square indicate ports with active traffic. This system
can be used to visually identify traffic patterns associated with common attacks, such
as virus outbreaks and network scans.

EtherApe: A Live Graphical Network Monitor Tool [20]. This tool shows traffic cap-
tured on the network interface (in a dynamic fashion) or optionally reads log files like
PCAP (Fig.[d(a)). A simple circular layout places the hosts around a circle and repre-
sents network traffic between hosts by straight-line edges between them. Each protocol
is distinguished by a different color and the width of an edge shows the amount of
traffic. This tool allows to quickly understand the role of a host in the network and
the changes in traffic patterns over time. Beyond the graphical representation, it is also
possible to display detailed traffic statistics of active ports.

RUMINT [4]. This system (named after RUMor INTelligence) is a free tool for net-
work and security visualization (Fig. [#(D)). It takes captured traffic as input and vi-
sualizes it in various unconventional ways. The most interesting visualization related
to graph drawing is a parallel plot that allows one to see at a glance how multiple
packet fields are related. An animation feature allows to analyze various trends over
time.



8 R. Tamassia, B. Palazzi, and C. Papamanthou

LI rumint: Combined Visualization
652

Eiherape HEl

(@) (b)

Fig. 4. (a) Traffic monitoring with Etherape (thumbnail of image from [20]). (b) Visualization of
an NMAP scan with RUMINT (thumbnail of image from [4])).

3 Border Gateway Protocol

BGP Eye: A New Visualization Tool for Real-Time Detection and Analysis of BGP
Anomalies [19)]. In this paper, the authors present a visualization tool, called BGP Eye,
that provides a real-time status of BGP activity with easy-to-read layouts (Fig.3). BGP
Eye is a tool for root-cause analysis of BGP anomalies. Its main objective is to track the
healthiness of BGP activity, raise an alert when an anomaly is detected, and indicate its
most probable cause. BGP Eye allows two different types of BGP dynamics visualiza-
tion: internet-centric view and home-centric view. The internet-centric view studies the
activity among ASes (autonomous systems) in terms of BGP events exchanged. The
home-centric view has been designed to understand the BGP behavior from the per-
spective of a specific AS. The inner ring contains the routers of the customer AS and
the outer ring contains their peer routers, belonging to other ASes. In the outer layer, the
layout method groups together routers belonging to the same AS and uses a placement
algorithm for the nodes to reduce the distance between connected nodes.

VAST: Visualizing Autonomous System Topology [[I8]. This tool (Fig. uses 3D
straight-line drawings to display the BGP interconnection topology of ASes with the
goal of allowing security researchers to extract quickly relevant information from raw
routing datasets. VAST employs a quad-tree to show per-AS information and an octo-
tree to represent relationships between multiple ASes. Routing anomalies and sensitive
points can be quickly detected, including route leakage events, critical Internet infras-
tructure and space hijacking incidents. The authors have also developed another tool,
called Flamingo, that uses the same graphical engine as VAST but is used for real-time
visualization of network traffic.



Graph Drawing for Security Visualization 9

mumber of prefa changey per AS link node,

2L 11608 16150

S AsToe

(a) (b)

Fig. 6. (a) Some large autonomous systems in the internet visualized with VAST (thumbnail of
image from [18]]). (b) In BGPlay, nodes represent autonomous systems and paths are sequences
of autonomous systems to be traversed to reach the destination (thumbnail of image from [3])).

BGPlay: A system for visualizing the interdomain routing evolution [15]]. BGPlay and
iBGPlay (Fig.[6(b)) provide animated graphs of the BGP routing announcements for a
certain IP prefix within a specified time interval. Both visualization tools are targeted to
Internet service providers. Each nodes represents an AS and paths are used to indicate
the sequence of ASes needed to be traversed to reach a given destination. BGPlay shows
paths traversed by IP packets from several probes spread over the Internet to the chosen
destination (prefix). iBGPlay shows data privately collected by one ISP. The ISP can
obtain from iBGPlay visualizations of outgoing paths from itself to any destination.
The drawing algorithm is a modification of the force-directed approach that aims at
optimizing the layout of the paths.

4 Access Control

Information Visualization for Rule-based Resource Access Control [13]. In this pa-
per, the authors provide a visualization solution for managing and querying rule-based



10 R. Tamassia, B. Palazzi, and C. Papamanthou

Fig.7. (a) Visualization of permissions in the NTFS file system with TrACE (thumbnail of im-
age from [10]). (b) Drawing of the trust-target graph generated by a trust negotiation session
(thumbnail of image from [23])).

access control systems. They develop a tool, called RubaViz, which makes it easy to an-
swer questions like “What group has access to which files during what time duration?”.
RubaViz constructs a graphs whose nodes are subjects (people or processes), groups,
resources, and rules. Directed edges go from subjects/groups to rules and from rules to
resources to display allowed accesses. The layout is straight-line and upward.

Effective Visualization of File System Access-Control [[I0]. This paper presents a tool,
called TrACE, for visualizing file permissions in the NTFES file system (Fig. [7(a)).
TrACE allows a user or administrator to gain a global view of the permissions in a
file system, thus simplifying the detection and repair of incorrect configurations lead-
ing to unauthorized accesses. In the NTFES file system there are three types of permis-
sions: (a) explicit permissions are set by the owner of each group/user; (b) inherited
permissions are dynamically inherited from the explicit permissions of the ancestor
folders; and (c) effective permissions are obtained by combining the explicit and in-
herited permissions. The tool uses a treemap layout to draw the file system tree
and colors the tiles with a palette denoting various access levels. The size of a tile in-
dicates how much the permissions of a folder/file differ from those of its parent and
children. Advanced properties, such as a break of inheritance at some folder, are also
graphically displayed. The tool makes is easy to figure out which explicit and inherited
permissions of which nodes affect the effective permissions of a given node in the file
system tree.

5 Trust Negotiation

Visualization of Automated Trust Negotiation [23]]. In this paper, the authors use a lay-
ered upward drawing to visualize automated trust negotiation (ATN) (Fig. [7(b)). In a
typical ATN session, the client and server engage in a protocol that results in the col-
laborative and incremental construction of a directed acyclic graph, called trust-target
graph, that represents credentials (e.g., a proof that a party has a certain role in an
organization) and policies indicating that the disclosure of a credential by one party is
subject to the prior disclosure of a set of credentials by the other party [22]. A tool based



Graph Drawing for Security Visualization 11

on the Grappa system [2]], a Java port of Graphviz [7], is used to generate successive
drawings of the trust-target graph being constructed in an ATN session.

6 Attack Graphs

Multiple Coordinated Views for Network Attack Graphs [16|] This paper describes a
tool for visualizing attack graphs (Fig. §). Given a network and a database of known
vulnerabilities that apply to certain machines of the network, one can construct a di-
rected graph where each node is a machine (or group of machines) and an edge denotes
how a successful attack on the source machine allows to exploit a vulnerability on the
destination machine. Since attack graphs can be rather large and complex, it is essential
to use automated tools to analyze them. The tool presented in this paper clusters ma-
chines in order to reduce the complexity of the attack graph (e.g., machines that belong
to the same subnet may be susceptible to the same attack). The Graphviz tool [[7] is used
to produce a layered drawing of the clustered attack graph. Similar layered drawings for
attack graphs are proposed in [17].

Fig. 8. Visualization of an attack graph (thumbnail of image from [16]))

7 Conclusions

In this paper, we have presented a preliminary survey of security visualization meth-
ods that use graph drawing techniques. The growing field of security and privacy offers
many opportunities to graph drawing researchers to develop new drawing methods and
tools. In computer and network security applications, the input to the visualization sys-
tem is often a large multidimensional and temporal data set. Moreover, the layout needs
to support color, labels, variable node shape/size and edge thickness. In most of the
security visualization papers we have reviewed, either simple layout algorithms have
been implemented (e.g., spring embedders) or open-source software has been used (e.g.,
Graphviz). In order to make a larger collection of sophisticated graph drawing tech-
niques available to computer security researchers, it is important for the graph drawing
community to develop and distribute reliable software implementations.



12

R. Tamassia, B. Palazzi, and C. Papamanthou

Acknowledgments

This work was supported in part by the U.S. National Science Foundation under grants
1IS-0713403 and CCF-0830149, by the Kanellakis Fellowship at Brown University,
and by the Italian Ministry of Research under grant RBIPO6BZWS8.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

Ball, R., Fink, G.A., North, C.: Home-centric visualization of network traffic for security
administration. In: Proc. Workshop on Visualization and Data Mining for Computer Secu-
rity (VIZSEC/DMSEC), pp. 55-64 (2004)

Barghouti, N.S., Mocenigo, J., Lee, W.: Grappa: A GRAPh PAckage in Java. In: DiBattista,
G. (ed.) GD 1997. LNCS, vol. 1353, pp. 336-343. Springer, Heidelberg (1997)

Chalmers, M.: A linear iteration time layout algorithm for visualising high-dimensional
data. In: Proc. Conference on Visualization (VIS), pp. 127-132 (1996)

Conti, G.: Security Data Visualization. No Starch Press, San Francisco (2007),
http://www.rumint.org

Di Battista, G., Mariani, F., Patrignani, M., Pizzonia, M.: Bgplay: A system for visualizing
the interdomain routing evolution. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 1353, pp. 295-
306. Springer, Heidelberg (2003)

Eades, P.: A heuristic for graph drawing. Congr. Numer. 42, 149-160 (1984)

Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz and dyna-
graph - static and dynamic graph drawing tools. In: Graph Drawing Software, pp. 127-148.
Springer, Heidelberg (2003)

Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Softw. — Pract.
Exp. 21(11), 1129-1164 (1991)

Girardin, L., Brodbeck, D.: A visual approach for monitoring logs. In: Proc. of USENIX
Conference on System Administration (LISA), pp. 299-308 (1998)

Heitzmann, A., Palazzi, B., Papamanthou, C., Tamassia, R.: Effective visualization of file
system access-control. In: Goodall, J.R., Conti, G., Ma, K.-L. (eds.) VizSec 2008. LNCS,
vol. 5210, pp. 18-25. Springer, Heidelberg (2008)

Johnson, B., Shneiderman, B.: Tree maps: A space-filling approach to the visualization of
hierarchical information structures. In: Proc. Conference on Visualization (VIS), pp. 284—
291 (1991)

Mansmann, F., Meier, L., Keim, D.: Graph-based monitoring of host behavior for network
security. In: Proc. Visualization for Cyper Security (VIZSEC), pp. 187-202 (2007)
Montemayor, J., Freeman, A., Gersh, J., Llanso, T., Patrone, D.: Information visualization
for rule-based resource access control. In: Proc. of Int. Symposium on Usable Privacy and
Security (SOUPS) (2006)

Muelder, C., Ma, K.L., Bartoletti, T.: A visualization methodology for characterization of
network scans. In: Proc. Visualization for Cyber Security (VIZSEC) (2005)

Noack, A.: An energy model for visual graph clustering. In: Liotta, G. (ed.) GD 2003.
LNCS, vol. 1353, pp. 425-436. Springer, Heidelberg (2003)

Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple coordinated views for network attack
graphs. In: Proc.Visualization for Cyber Security (VIZSEC), pp. 99-106 (2005)

Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical ag-
gregation. In: Proc. Workshop on Visualization and Data Mining for Computer Security
(VIZSEC/DMSEC), pp. 109-118 (2004)


http://www.rumint.org

(18]

[19]

[20]

[21]

[22]
[23]

[24]

Graph Drawing for Security Visualization 13

Oberheide, J., Karir, M., Blazakis, D.: VAST: Visualizing autonomous system topology. In:
Proc. Visualization for Cyber Security (VIZSEC), pp. 71-80 (2006)

Teoh, S.T., Ranjan, S., Nucci, A., Chuah, C.N.: BGP Eye: a new visualization tool for real-
time detection and analysis of BGP anomalies. In: Proc. Visualization for Cyber Security
(VIZSEC), pp. 81-90 (2006)

Toledo, J.: Etherape: a live graphical network monitor tool,
http://etherape.sourceforge.net

Tolle, J., Niggermann, O.: Supporting intrusion detection by graph clustering and graph
drawing. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907. Springer,
Heidelberg (2000)

Winsborough, W.H., Li, N.: Towards practical automated trust negotiation. In: Proc. Work-
shop on Policies for Distributed Systems and Networks (POLICY), pp. 92-103 (2002)
Yao, D., Shin, M., Tamassia, R., Winsborough, W.H.: Visualization of automated trust ne-
gotiation. In: Proc. Visualization for Cyber Security (VIZSEC), pp. 65-74 (2005)

Yin, X., Yurcik, W., Treaster, M., Li, Y., Lakkaraju, K.: VisFlowConnect: Netflow visual-
izations of link relationships for security situational awareness. In: Proc. Workshop on Vi-
sualization and Data Mining for Computer Security (VizZSEC/DMSEC), pp. 26-34 (2004)


http://etherape.sourceforge.net

	Graph Drawing for Security Visualization
	Introduction
	Network Monitoring
	Border Gateway Protocol
	Access Control
	Trust Negotiation
	Attack Graphs
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




