Skip to main content

Biokompatible Keramische Werkstoffe

  • Chapter
Book cover Medizintechnik
  • 4093 Accesses

Zusammenfassung

In Medizinprodukten werden hauptsächlich folgende keramischen Werkstoffe eingesetzt: Aluminiumoxid und Zirkonoxid sowie Calciumphosphate, bioaktive Gläser und Glaskeramiken. In der Medizin gibt es zudem breite Anwendungsgebiete für weitere nichtmetallisch-anorganische Werkstoffe. Beispiele hierfür sind Brillengläser oder Glasfasern für Endoskope. Am häufigsten werden keramische Werkstoffe in Medizinprodukten im Zusammenhang mit dem menschlichen Skelett, den Knochen, Gelenken und Zähnen eingesetzt (Tabelle 13.1). In der Dentalmedizin finden keramische Werkstoffe beispielsweise in Form von Porzellankronen, mit Glas gefüllten Zementen oder künstlichen Gebissen eine breite Anwendung [2]. Bei Hüftgelenk-Endoprothesen werden Aluminiumoxid sowie Zirkonoxid für Hüftkugeln und Calciumphosphate in Form von Hydroxylapatit als Beschichtung auf Prothesenschäften eingesetzt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Hench L.L., Wilson J., An introduction to bioceramics, 1–24, World Scientific Publishing Co. Pte. Ltd., Singapore, 1993.

    Google Scholar 

  2. Hench L.L., Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74, 7, 1991, p. 1487–1510.

    Article  Google Scholar 

  3. Kohn D.H., Materials for bone and joint replacement, in Materials science and technology, a comprehensive treatment, 14 -Medical and dental materials, Williams D.F. (ed.), VCH Verlag, Weinheim, 1992, p. 31–109.

    Google Scholar 

  4. Willmann G., 20 Jahre Aluminiumoxidkeramik für die Medizintechnik, Biomedizinische Technik, 39, 4, 1994, p. 73–78.

    Google Scholar 

  5. Hulbert S.F., The use of alumina and zirconia in surgical implants, in An introduction to bioceramics, Hench L.L., Wilson J. (eds.), World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, p. 25–40.

    Google Scholar 

  6. Oonishi H., Ishimaru H., Yamamoto M., Tsuji E., Kushitani S., Aono M., Nabeshima T., Comparison of bone ingrowth into porous Ti-6Al-4V beads with/without a plasma spray HA, CRC Handbook of Bioactive Ceramics, 2, 1990, p. 155–162.

    Google Scholar 

  7. Boutin P., T.H.R. using alumina-alumina sliding and a metallic stem: 1330 cases and an 11-year follow-up, in Orthopaedic ceramic implants, 1, Oonishi H., Ooi Y. (eds.), 1981.

    Google Scholar 

  8. Dörre E., Problems concerning the industrial production of alumina ceramic components for hip joint prosthesis, in Bioceramics and the human body, Ravaglioli A., Krajewski A. (eds.), Elsevier, London, 1991, p. 454–460.

    Google Scholar 

  9. Rieger W., Biocompatibility studies on zirconia and alumina in orthopaedic joint applications, The Monte Verità Conference 1993 on Biocompatible Materials Systems, Ascona, Switzerland, 1993.

    Google Scholar 

  10. Cales B., Stefani Y., Lilley E., Long-term in vivo and in vitro aging of zirconia ceramic used in orthopaedy, Journal of Biomedical Materials Research, 28, 5, 1994, p. 619–624.

    Article  Google Scholar 

  11. Stevens R., Zirconia and zirconia ceramics, 2nd Edition, Magnesium Elektron Ltd., 1986.

    Google Scholar 

  12. Ravaglioli A., Krajewki A., Bioceramics – Materials, properties, applications, Chapman & Hall, London, 1992.

    Google Scholar 

  13. Kay J.F., Bioactive surface coatings for hard tissue biomaterials, CRC Handbook of Bioactive Ceramics, 2, 1990, p. 111–122.

    Google Scholar 

  14. Spiro T.G., Calcium in biology, John Wiley & Sons, New York, 1983.

    Google Scholar 

  15. de Groot K., Klein C.P.A.T., Wolke J.G.C., de Blieck-Hogervorst J.M.A., Chemistry of calcium phosphate bioceramics, CRC Handbook of bioactive ceramics, 2, 1990, p. 3–16.

    Google Scholar 

  16. Nancollas G.H., In vitro study of calcium phosphate crystallization, in Biomineralization – Chemical and biochemical perspectives, Mann S., Webb J., Williams J.p. (eds.), VCH-Verlagsgesellschaft, Weinheim, 1989, p. 157–180.

    Google Scholar 

  17. Maxian S.H., Zawadsky J.P., Dunn M.G., In vitro evaluation of amorphous calcium phosphate and poorly crystallized HA coatings on titanium implants, Journal of Biomedical Materials Research, 27, 1993, p. 111–117.

    Article  Google Scholar 

  18. Geesink G.T., Hydroxyapatite-coated total hip prosthesis – Two year clinical and roentgenographic results of 100 cases, Clinical Orthopaedics and Related Research, 261, 1990, p. 39–58.

    Google Scholar 

  19. Wolke J.G.C., Klein C.P.A.T., de Groot V., Plasma-sprayed hydroxyapatite coatings for biomedical applications, 3rd National Thermal Spray Conference, Long Beach, CA, USA, 1990, p. 413–417.

    Google Scholar 

  20. Shirkhanzadeh M., Azadegan M., Stack V., Schreyer S., Fabrication of pure hydroxyapatite and fluoridated-hydroxyapatite coating by electrocrystallisation, Materials Letter, 18, 1994, p. 211–214.

    Article  Google Scholar 

  21. van Blitterswijk C.A., Bakker D., Leenders H., Brink J.v.d., Hesseling S.C., Bovell Y., Radder A.M., Sakkers R.J., Gaillard M., Heinze P.H.,Beumer G.J., Interfacial reactions leading to bone-bonding with PEO/PBT copolymers (Polyactive), in Bone-bonding biomaterials, Ducheyne P., Kokubo T., van Blitterswijk C.A. (eds.), Reed Healthcare Communications, Leiderdorp, The Netherlands, 1992, p. 13–30.

    Google Scholar 

  22. Gruner H., Plasmaspritzschichten für die Brennstoffzellentechnik, DSV-Berichte, 130, 1989, p. 194–196.

    Google Scholar 

  23. Lugscheider E., Jokiel P., Plasmaspritzen – Verfahren, Anwendungen, Entwicklungen, in Beschichten und Verbinden in Pulvermetallurgie und Keramik, VDI Verlag GmbH, Hagen, 1992, p. 7–32.

    Google Scholar 

  24. Wang B.C., Lee T.M., Chang E., Yang C.Y., The shear strength and the failure mode of plasma-sprayed HA coating to bone: The effect of coating thickness, Journal of Biomedical Materials Research, 27, 1993, p. 1315–1327.

    Article  Google Scholar 

  25. Dörre E., HA-Keramik-Beschichtungen für Verankerungsteile von Hüftgelenkprothesen (Techn. Aspekte), Biomedizinische Technik, 34, 3, 1989, p. 46–52.

    Article  Google Scholar 

  26. Hulbert S.F., Young F.A., Mathews R.S., Klawitter J.J., Talbert C.D., Stelling F.H., Potential of ceramic materials as permanently implantable skeletal prostheses, Journal of Biomedical Materials Research, 4, 1970, p. 433–456.

    Article  Google Scholar 

  27. Harris D.H., Overview of problems surrounding the plasma spraying of HA coatings, Third National Thermal Spray Conference, Long Beach, CA, USA, 1990, p. 419–423.

    Google Scholar 

  28. Osborn J.F., Die biologische Leistung der HA-Keramik-Beschichtung auf dem Femurschaft einer Ti-Prothese, Boimedizinische Technik, 32, 7–8, 1987, p. 177–183.

    Google Scholar 

  29. de Groot K., Klein C.P.A.T., Wolke J.G.C., de Blieck-Hogervorst J.M.A., Plasma-sprayed coatings of calcium phosphate, in CRC Handbook of Bioactive Ceramics, 2, Yamamuro T., Hench L.L., Wilson J. (eds.), CRC Press, Boca Raton, Ann Arbor, Boston, 1990, p. 133–142.

    Google Scholar 

  30. Niki M., Ito G., Matsuda T., Ogino M., Comparatived push-out data of bioactive and non-bioactive materials of similar rugosity, in The bone-biomaterial interface, Davies J.M. (ed.), University of Toronto Press, Toronto, 1990, p. 350–356.

    Google Scholar 

  31. van Blitterswijk C.A., Grote J.J., Kuypers W., Daems W.T., de Groot K., Macropore tissue ingrowth: A quantititavie and qualitative study on hydroxylapatite ceramic, Biomaterials, 7, 1986, p. 137 ff.

    Article  Google Scholar 

  32. Zyman Z., et al., Amorphous phase and morphological structure of hydroxyapatite plasma coatings, Biomaterials, 14, 3, 1993, p. 225–228.

    Article  Google Scholar 

  33. Galgut P.N., Waite I.M., Tinkler S.M.B., Histological investigation of the tissue response to hydroxyapatite used as an implant material in periodontal treatment, Clinical Materials, 6, 1990, p. 105–121.

    Article  Google Scholar 

  34. Ellinger R.F., Nery E.B., Lynch K.L., Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics. A case report, Int. J. Perio. Restor. Dent., 3, 1986, p. 223–233.

    Google Scholar 

  35. Jarcho M., Bolen C.H., Hydroxylapatite synthesis and characterization in dense polycrystalline form, Journal of Materials Science, 11, 1976, p. 2027–2035.

    Article  Google Scholar 

  36. Daculsi G., LeGeros R.Z., Heughebaert M., Barbieux I., Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics, Calcified Tissue International, 46, 1990, p. 20–27.

    Article  Google Scholar 

  37. Oonishi H., Tsuji E., Ishimaru H., Yamamotot M., Delecrin J., Clinical significance of chemical bondes between bioactive ceramics and bone in orthopaedic surgery, in Bioceramics, 2, Heimke G. (ed.), German ceramic society, Köln, 1990, p. 286–293.

    Google Scholar 

  38. de Groot K., Ceramics of calcium phosphates: Preparation and properties, in Bioceramics of calcium phosphate, de Groot K. (ed.), CRC Press, Boca Raton, USA, 1983, p. 100–114.

    Google Scholar 

  39. Hench L.L., Andersson Ö., Bioactive glasses, in An introduction to bioceramics, Hench L.L., Wilson J. (eds.), World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, p. 41–62.

    Google Scholar 

  40. Wilson J., Douek E., Rust K., Bioglass middle ear devices: Ten year clinical results, in Bioceramics 8, Wilson J., Hench L.L., Greenspan D. (eds.), Elsevier Science Ltd., Florida, USA, 1995, p. 239–245.

    Google Scholar 

  41. Wilson J., Yli-Urpo A., Happonen R.-P., Bioactive glasses: Clinical applications, in An introduction to bioceramics, Hench L.L., Wilson J. (eds.), World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, p. 63–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ha, SW., Wintermantel, E. (2009). Biokompatible Keramische Werkstoffe. In: Wintermantel, E., Ha, SW. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93936-8_13

Download citation

Publish with us

Policies and ethics