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Abstract. Although the H.264 Deblocking Filter process is a relatively small 
piece of code in a software implementation, profile results shows it cost about a 
third of the total CPU time in the decoder. This work presents a high perform-
ance architecture for implementing a H.264 Deblocking Filter IP that can be 
used either in the decoder or in the encoder as a hardware accelerator for a 
processor or embedded in a full-hardware codec. A developed IP using the pro-
posed architecture support multiple high definition processing flows in real-
time. 

1   Introduction 

The standard developed by the ISO/IEC MPEG-4 Advanced Video Coding (AVC) 
and ITU-T H.264 experts set new levels of video quality for a given bit-rate. In fact, 
H.264 (from this point the standard will be referred only by its ITU-T denomination) 
outperforms previous standards in bit-rate reduction. In H.264 an Adaptative De-
blocking Filter is included in the standard to reduce blocking artifacts, very common 
in very high compressed video streams. In fact, most video codecs use some filtering 
as a pre/post-processing task. The main goal of the inclusion of this kind of filter as a 
part of the standard was to put it inside the feedback loop in the encoding process. As 
a consequence, a standardized, well tuned, and inside the encoding loop filter could 
be designed, achieving better objective and subjective image quality for the same bit-
rate. The H.264 Deblocking Filter is located in the DPCM loop as shown in Figure 1 
for the decoder (it is also called Loop Filter by this reason). Exactly the same filter is 
used in the encoder and the decoder. The Deblocking Filter in the H.264 standard is 
not only a single low pass filter, but a complex decision algorithm and filtering proc-
ess with 5 different filter strengths. Its objective is to maintain the sharpness of the 
real images while eliminating the artifacts introduced by intra-frame and inter-frame 
predictions at low bit-rates, while mitigating the characteristic “blurring” effect of the 
filter at high bit-rates.  

The filter itself is very optimized, with very small kernels of simple coefficients, 
but the complexity of the decision logic and filtering process makes the H.264 De-
blocking Filter responsible for about one third [4] of the processing power needed in 
the decoder process. 
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In this paper an architecture for the H.264 deblocking filter is proposed. The archi-
tecture was developed focusing FPGA, aiming making a balanced use of the resources 
(logic, registers, and memory) available in FPGA architectures, although it can be 
synthesized using an ASIC flow. The performance goal was to exceed 1080p re-
quirements when synthesized to a XILINX Virtex II FPGA.  A Xilinx Virtex II pro 
FPGA was used to validate the developed IP.  
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Fig. 1. H.264 Decoder 

The rest of this paper is organized as follows. The section 2 describes the standard-
ized algorithm for the H.264 deblocking filter. Section 3 presents the proposed archi-
tecture and section 4 the results obtained. Finally the section 5 presents the conclusions 
and future work. 

2   Deblocking Filter Algorithm 

In the H.264 standard the image is divided in small units called blocks. Each block is 
4x4 pixels. The color format is YCbCr 4:2:0 (main profile), meaning the crominance 
(croma) components being sub-sampled to half the sample rate of the luminance 
(luma) in both directions. The blocks are then grouped in macroblocks which is a 4x4 
block matrix for luma and 2x2 matrix for each croma component. Each block edge 
has to be filtered. The Deblocking Filter is applied to each decoded block of a given 
macroblock for luma and croma samples in raster scan order. For each block, four 
different edges are filtered separately, in the sequence presented in Figure 2. 
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Fig. 2. Edge positions for a given 4x4 block inside a 16x16 macroblock 
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For each block edge, the filter is applied to the pixel component values perpendicu-
lar to that edge. The naming conventions for the pixels around the edge are showed in 
figure 3. Pixel components in both the current (Q) and the previews (P) block can 
have values changed. Pixels already modified during a filter stage can be modified 
again in a subsequent filter operation (this causes some data dependencies). The filter-
ing algorithm is adaptive, so that the pixel values, the position of a block inside the 
macroblock, the type of prediction employed (inter or intra), the motion vectors (inter 
prediction) and the quantization parameter are taken into account for the boundary 
strength calculation.  

p3 p2 p1 p0 q0 q1 q2 q3

p3 p2 p1 p0 q0 q1 q2 q3

p3 p2 p1 p0 q0 q1 q2 q3

p3 p2 p1 p0 q0 q1 q2 q3

Previews Block (P) Current Block (Q)

Sample (Y, Cb, or Cr) LOPEdge
 

Fig. 3. Filter conventions 

The boundary strength (BS) can assume five different values from 0 (no filtering) 
to 4 (strongest filtering) and is defined as follows.  

• If the edge is not a slice edge (the filter is not applied across slice edges) then 
the filter can be applied, else BS=0. Based on pixel values, it can be found that a edge 
can contain a natural discontinuity in the values, making the BS to be set to 0. 
    • If the block is intra coded, then BS=3 if it is an internal edge or BS=4 if it is 
a external edge. Internal edges are those involving two blocks of the same macrob-
lock, while external edges are those involving two blocks from different macoblocks. 

• If neither blocks are intra-coded and at least one contain coded coefficients 
(non zero transform residues) then BS=2 

• BS=1 is used when none of the above conditions are satisfied and the refer-
ence frames of two blocks are different or when the reference frames are the same but 
any component of the two motion vectors has difference more than 4 (1 pixel sample).  

The Boundary Strength for croma is the same as for the corresponding luma block, 
but the filters employed for luma and croma are different. The quantization parameter 
(QP) and the pixel values are taken into account. The parameters α and β are QP de-
pendent and set thresholds for filtering to be applied. Saturation functions (clip and 
clip3) need do be used in some steps of the calculations. This makes the BS decision 
logic a complex set of sequential calculations. The BS calculation needs to be done 
for every LOP (Line Of Pixels –  figure 3) pair. More details on Deblocking Filter 
process can be obtained in [1] and a complete flowchart in [3]. 
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3   Proposed Architecture 

The proposed architecture was developed to exceed HDTV 1080p resolution require-
ments (1920x1080x30) in the H.264 Main Profile. The initial architectural concept 
was initially based on the work developed by [4], but was evolved to be a datapath 
block, different from the coprocessor block proposed by [4]. The primary differences 
from this work related to others found in the literature ([4], [5] and their references) 
are the use of local memory for the whole process, instead of accessing the main 
memory. The use of FPGAs as a primary implementation device also leaded to some 
architectural decisions that leaded to a more efficient resources usage and higher 
speed. In this scenario, the development of high-depth pipeline architecture was 
straightforward: each Logic Element in current FPGA can behave as a look-up-table 
(LUT), a single bit flip-flop (register), and a carry logic at the same time. The un-
needed parts of the logic elements (ex. Flip-flops in combinational logic block) are 
bypassed and can not be used in other blocks due to routing limitations in typical 
FPGA architectures. 

3.1   Numbering and Color Conventions  

Figure 4 illustrates the block numbering and macroblock color convention adopted 
from this point. 
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Fig. 4. Luma and Croma block enumeration; Macroblock color diagram 

0 1 4 5 2 3 6 7 8 9 12 13

10 11 14 15 16 17 18 19 20 21 22 23  

Fig. 5. Input block sequence in the input buffer of the Deblocking Filter 

The input data for a given luma/croma macroblock arrives in the sequence pre-
sented in Figure 5: Y first, then Cb and Cr; double Z scan for luma.  

3.2   Proposed Filter Architecture 

In the Deblocking Filter process, the edge filter is the heart of the process. It is re-
sponsible for all filter functionality, including the thresholds and BS calculation and 
filtering itself.  The remaining of the process is only sequence control and memory for 
block ordering.  
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The Edge Filter architecture can accept one LOP per cycle for Q and P blocks and 
produce the filtered Q’ and P’ LOP. This process is illustrated in Figure 6 (parameter 
lines are omitted for simplicity). Using this scheme, an entire block border will enter 
in the Edge Filter each four cycles (one block border is four LOPs tall, as illustrated in 
Figure 3). 

Edge Filter
Q Q’

P P’  

Fig. 6. Edge Filter 

Based on the diagram presented in Figure 6, a pipelined architecture for the Edge 
Filter was designed. As stated before, the procedure for calculation of all parameters 
needed to decide whether to filter or not and what BS to use requires a lot of sequen-
tial calculations (data dependencies). The pipelined architecture was designed so that 
only one arithmetic or logic operation is to be done every stage of the pipeline. This 
lead to an 11-stage pipeline only to calculate the BS, used to select the correct filter. 
All the filters could be done in parallel to BS calculation, so a 12 stage pipeline would 
be enough to achieve the maximum possible operation frequency. However, if an 
entire column of luma blocks (for vertical edges) that consist of four blocks stacked 
are processed before the next one, the first LOP of the first Q block (the uppermost) 
will be the first LOP of the first P block after 16 LOP cycles. If an Edge Filter archi-
tecture with a 16 stage pipeline can be designed, the output P’ could be connected 
directly to the input Q. The croma Cb and Cr, wich are half the height (only 2 blocks 
tall), can be stacked so they can be processed as a luma block. This approach makes 
the implementation of the control logic much simpler. A 16-stage pipelined Edge 
Filter, presented in Figure 7, was then designed to meet the above criteria. 
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Fig. 7. Edge Filter 
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The architecture presented in figure 7 consumes two LOPs (one for Q and other for 
P blocks) and their respective parameters (QP, offsets, prediction type and neighbor-
hood information) every clock cycle, producing two filtered LOPs (Q’ and P’) 16 
clock cycles later. 

This pipelined edge filter can be then encapsulated in such way only the Q input 
and P’ outputs are visible, as illustrated in Figure 8. 
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Q LOP
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Fig. 8. Filter encapsulation 
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Fig. 9. Proposed Deblocking Filter architecture 

Using this encapsulation turns the control logic simpler, but at a cost of a small 
overhead: P data can only be fed by the Q input, so the first P data need to be fed 16 
cycles before the filtering process can start. During this 16 cycles, the BS should be 
forced to 0, so that no filtering is applied to P data while they passes through the Q 
datapath. After finishing the processing of a macroblock, the Edge filter must be emp-
tied, so another 16 cycle have to be spent. Fortunately, the empting and filling phases 
stages can be overlapped, so the overhead is much lower.  

Finally, the architecture of the proposed deblocking filter is presented in Figure 9. 
As stated in section 2, the filter has to be applied to both vertical and horizontal edges. 
In the proposed architecture, a single Edge Filter filters both horizontal and vertical 
edges. A transpose block is employed to convert vertically aligned samples in the 
block into horizontally aligned ones, so that horizontal edges can be filtered by the 
same Edge Filter. 

The input buffer is needed only for data reordering, as input blocks arrive in a dif-
ferent order they are consumed in the deblocking process. 

The MB and Line buffers are used to store blocks and block information data  
(QP, type, filter offset, state) which are not completely filtered (horizontal or vertical 
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filtering is missing). The size of MB buffer is 32 blocks (512 samples plus 32 block 
information data) and the line buffer depends on the maximum frame size the filter is 
supposed to process (7680 samples, plus 480 block information data for a 1080p 
HDTV frame). 

3.3   Filter Operation 

The filter data flow description follows. First, pixel and control data are fed to the 
filter toward the Input Buffer. This buffer is needed because data is read from input 
buffer in a different order it comes in. Also this buffer provides some burst capability, 
as it accept one LOP per clock cycle. Once a complete luma/croma macroblock is 
available in the input buffer, the filtering process can be started.  

The Encapsulated Edge Filter entity contains a 16 stage pipeline edge filter where 
the input P is connected to the output Q. The mux1 and mux2 are set so that MB 
buffer data is fed to the input Q of the Encapsulated Edge Filter. The data read from 
the MB buffer is the blocks 3, 7, 11, and 15 from the left macroblock. As the data is 
read one LOP at a time, it takes four clock cycles to read an entire block into the En-
capsulated Edge Filter.  

Exactly 16 cycles are needed to read four 4x4 blocks. During this phase the filter is 
set to bypass (BS=0), so pixel data fed are not filtered. As stated before, the Q output 
of the Edge Filter is connected to the P input in the encapsulated edge filter. The next 
clock cycle after the load of the aforementioned blocks will put then into the edge 
filter again, but in the P input. At this point, the mux1 is switched so the Encapsulated 
Edge Filter can receive data from the Input Buffer. The blocks 0, 4, 8, and 12 is read 
from input buffer, a LOP at a time.  

The Edge Filter Process now is being fed with the data needed for the filtering 
process for the external vertical edge to start. Immediately after the block 12 the 
blocks 1, 5, 9, and 13 can be fed and then the blocks 2, 6, 10, 14  and 3, 7, 11, 15.  32 
cycles after the block 3 from the left MB started being read from the MB buffer, the 
filtered block 3 will appear at the P output of the Encapsulated Edge Filter.  

The data can take 3 different destinations: the MB Buffer, The Line Buffer or the 
output of the filter. In the case of the blocks 3, 7 and 11, there is no other processing 
to be done for these blocks, and the mux3 is selected to output directly from the out-
put P of the Encapsulated Edge Filter. The block 15 from the left macroblock is fed to 
the Line Buffer toward the Transpose process to be used latter in the horizontal filter-
ing process. The blocks 0 to 15 are sent to the MB buffer toward the Transpose to be 
filtered horizontally. The Transpose takes for cycles for reading the entire block and 
makes it available in the transposed form.  

After filtering the vertical edge of all luma blocks the job for the horizontal edge 
can be done. In order to obtain the maximum throughput, the croma vertical filtering 
is done immediately after the luma. Then, blocks 17, 19, 21, and 23 from the left Cb 
and Cr macroblock are read from the MB Buffer. Notice that the Cb and Cr blocks are 
stacked in order to achieve the 16 LOPs needed to fill the Edge Filter pipeline.  As 
with the luma blocks, this initial operation only loads the Edge Filter with the P 
blocks and then the filter is deactivated. Then the croma blocks 16, 18, 20, and 22 are 
read from Input Buffer and then the blocks 17, 19, 21, and 23. The blocks 17 and 21 
from the left Cb and Cr macroblocks, respectively are completely filtered and then 
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can be sent to the output. The blocks 19 and 23 from the left Cb and Cr macroblocks 
respectively are send to the Line Buffer toward the Transposer in order to be used in 
the horizontal external edge filtering. The blocks from the current Cb and Cr macrob-
locks are stored transposed in the MB Buffer for the horizontal filtering process.  

At this moment, the horizontal edge filtering for luma and croma can take place. 
The luma data dependency was solved by the luma/croma interleaving and the blocks 
12, 13, 14, and 15 from the upper macroblock stored in the Line Buffer are fed to the 
Encapsulated Edge Filter, followed by the blocks 0, 1, 2 and 3 from the current mac-
roblock stored in the MB Buffer. The process follows by reading the blocks 4, 5, 6, 
and 7 and then 8, 9, 10, 11 and finally, 12, 13, 14 and 15. The output of the Encapsu-
lated Edge Filter has different destinations. The blocks 12, 13, 14, and 15 from the 
upper macroblock are completely filtered and can be output from the filter, as well as 
the blocks 0, 1, 2, 4, 5, 6, 8, 9, 10. The remaining blocks takes two destinations: The 
blocks 3, 7, 11, 15 goes to the MB Buffer toward the Transpose for the next external 
vertical edge filtering; The blocks 12, 13, 15 goes to the Line Buffer, without being 
transposed (they are actually transposed and will be used as upper blocks in the filter-
ing process for the macroblock below them).  

The last phase of the filtering is the application of horizontal edge filtering to the 
croma blocks. As in the vertical edge filtering, the croma macroblocks need to be 
aligned and filtered together in order to fit in the 16 stage pipeline edge filter. The 
horizontal edges filtering for croma samples starts by reading the blocks 18, 19, 22, 
and 23 from the upper macroblocks stored in Line Buffer followed by reading the 
blocks 16, 17, 20, and 21 from the current macroblock stored in the MB Buffer, and 
finally the blocks 18, 19, 22, and 23. The blocks 16 and 20 are completely filtered and 
can be output from the filter. The blocks 17, 19, 21, and 23 are stored in the MB 
Buffer toward the Transpose and the blocks 18 and 22 are stored in the Line Buffer. 

A total of 256 clock cycles are needed to process an entire 4:2:0 macroblock (24 
blocks). If data is not available at the beginning of a 256 cycle operation, a bubble is 
inserted in the pipeline. All pipelines are emptied and the filter operation stops until 
there is data available in the input buffer. The stop cycle is also a 256 cycle operation.  

Figure 10 illustrates the output sequence of blocks (as enumerated in figure 4) for 
the implemented filter architecture. Observe that for the 24 blocks output correspond-
ing to an entire luma/croma macroblock processing cycle, the output have blocks 
belonging to three different macroblocks interleaved. The destination of that data is 
the reference frames (or the output video, when a frame is ready to display). A simple 
look-up-table can be implemented to ease the reference frame memory address.   

3 7 11 17 21 12 13 14 15 0 1 2

4 5 6 8 9 10 18 19 22 23 16 20  

Fig. 10. Filter Output block sequence 

4   Implementation and Results 

The architecture presented in Section 3 was described in VHDL. About 3,500 lines  
of code were written. The design behavior was validated by simulation using some 
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testbench files and data extracted from the JVT reference software using some public 
domain video sequences. The validated behavioral design was then synthesized, the 
post place and route was validated and performance results were obtained for a Xilinx 
Virtex2-pro FPGA.  

Using the reference software CODEC, extracted data before and after the Deblock-
ing Filter process was used to ensure the correctness of the implemented architecture. 
Table 1 presents the number of Xilinx LUTs and BRAMs used to synthesize the de-
veloped Deblocking Filter. Observe the balance between the amount of logic (LUTs) 
and memory employed, related to the total amount available in the target device.  

Table 1. Synthesis results 

Device XC2VP30 XC5VLX30 
LUTs 4008/27392 (14%) 4275/19200 (21%) 
BRAMs  20/136 (14%) 7/32 (21%) 
Fmax (MHz) 148 197 
FPS@1080p 71 95 

Running at 148MHz in the Virtex II Pro device, this implementation is 2.36 times 
faster than the requirement for HDTV (1080p). For the Virtex-5, running at 197MHz, 
it is 3.14 times the requirement for HDTV. This IP can be used to build an encoder or 
decoder for a systems with the following characteristics: 

• Ultra-high definition (4K x 2K pixel @ 24fps); 
• High definition stereo video (two HDTV streams); 
• Multi stream surveillance (up to 2K CIF streams); 
• Scalable high definition; 
• Low-power HDTV, where the device can operate at lower frequency, lower 

voltages and still achieve HDTV requirements. 

Table 2 presents some performance comparison. The IP implemented with the de-
veloped architecture only loses to [5], but [5] do not include the external memory 
access penalty needed to obtain the upper MB data.  

Table 2. Literature comparison 

 

 

 
 
 

The maximum resolution achievable by the proposed architecture is only limited to 
the size of the line buffer (Figure 9) implemented. This buffer represents a significant 
amount of the total memory employed by this design and impacts the number of 
Block RAM (BRAM) used by the IP. The results presented in Table 1 is for a 2048 

 Cycles/MB Memory type fps@1080p 
our 256 Dual-port 95 
[4] variable Two-port 45 
[5] 96 Two-port 100 
[6] 192 Dual-port 30 
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pixel wide frame, including the memory necessary to store block parameters, needed 
by the BS decision process. The maximum picture width is determined by a parameter 
in the synthesizable code and the height is unlimited.  

5   Conclusion 

This work presented a high performance architecture for H.264 Deblocking Filter IP 
targeted to exceed HDTV requirements in FPGA. The primary contribution of this 
work was the high performance deep pipeline architecture employed to improve the 
speed in the Boundary Strength decision and at the same time reducing the control 
logic. The proposed architecture stores all intermediate information in its own mem-
ory, differently from most works in literature that rely on external memory to store 
some blocks not completely filtered in a line of macroblocks. The developed IP based 
on the proposed architecture was synthesized to a Virtex II Pro and for a Virtex 5 
device and prototyped in a XUP-V2Pro (Virtex II-Pro XC2VP30 device). Results 
showed its capability to exceed the processing rate for HDTV, reaching 71 frames per 
second in the Virtex II Pro device and 95 frames per second in the Virtex 5 device at 
1080p (1920x1080) resolution.  

Future work will address the support for high profiles, scalability and multi-view 
amendments of the H.264 standard, which require small modification in the BS deci-
sion logic and in the data width for pixel values.  
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