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Abstract. In this paper, we propose a method that can be used for im-
age texture recognition in the presence of concurrent rotation and scale
changes with tunable directional bandpass Gabor filter banks. The method
relies on the analysis of the frequency spectra of the image textures, and
from which the rotation and scale changes are estimated using a new spec-
tral shift measure. Tunable Gabor filter banks are designed based on the
spectral shift measure. Spectral features obtained from applying the tuned
Gabor filter bank are used in a novel search strategy to achieve texture
recognition. The proposed method is compared with a non-tunable Ga-
bor filter bank and the improvement in recognition performance is demon-
strated through the experimental results on 112 Brodatz textures.

1 Introduction

Texture analysis is important in image processing and computer vision. Tex-
ture recognition/retrieval has been an active research topic for more than three
decades. Applications of texture recognition can be found in medical image
analysis, remote sensing, content-based image retrieval, etc. The process of tex-
ture recognition is to identify the type of image texture from a finite set of
texture classes upon presentation of a newly captured image texture.
Numerous approaches have been reported on texture recognition/retrieval. Ma
and Manjunath[I3] has reported best retrieval rate on the entire Brodatz[l] and
USC texture database using Gabor filters, which is widely accepted as the bench-
mark method for texture classification and retrieval. However, the vast majority
of these approaches assume, either explicitly or implicitly, that the textures have
identical scale and orientation. Such an assumption cause their methods to fail
in many practical applications in which a texture maybe observed at different
orientation and scale from the trained reference texture. Noticing the limit, many
works started to address rotation and scale invariance issue. However, many of
these methods can only achieve rotation invariance[12][17] [21] [6] [16] [8] [L1].
Scale and rotation invariance is also considered in [7], but their method cannot
achieve concurrent rotation and scale invariance since if the spectrum is rotated
and scaled, the sum along each scale level will not hold constant while the rotation
of orientation also exists. The same happens while we sum along each orientation,
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since the sum will not hold constant if the rotation and scale is taking place con-
currently. However, most textures in real life are seen as rotated as well as scaled
concurrently. Therefore, it is a very important issue that must be addressed.

Despite of its importance, work on simultaneous scale and rotation invariant
texture recognition/retrieval is scarce. The major existing approaches include
psycho-physical transformation by [9], multi-resolution simultaneous autoregres-
sive(MRSAR) model[I8], log-polar wavelet signatures[19], multichannel Gabor
filtering[0] as well as using the Wold model for invariant texture analysis[20].
However, their methods were evaluated on a small selection of the image tex-
tures. In this paper, motivated by the success of multichannel Gabor filtering, we
explore and develop a method by tuning the directional bandpass Gabor filters
to achieve recognition of concurrently rotated and scaled textures, thus accom-
plishing invariant texture recognition with originally non-invariant directional
bandpass filters. We carried out the evaluation of our method on the entire 112
Brodatz textures. We assess the performance of our method against using a non-
invariant Gabor filter bank with due consideration to the perceptual properties
of texture based on the Wold texture model[10].

In section 2] we present the theoretical basis of our method, the derivation of
a tunable Gabor filter bank, the spectral shift measure and our search strategy
for texture recognition. In section [3] we introduce the Wold texture model and
the grouping of Brodatz texture perceptually based on the notion of perodicity,
directionality and randomness. We present the experimental evaluation on the
entire 112 Brodatz textures in section @ Conclusion is given in section B

2 Achieving Rotation and Scale Invariance

2.1 Ouwur Approach to the Problem of Invariance

According to Leung et.al[9], to a human being, matching scaled and rotated
patterns is a daily encounter and the biological human visual system appears to
be very good at this task. Experiments in human psychology show that the task
of matching rotated and scaled shapes is done by mentally rotating and scaling
one of the shapes into the orientation and size of the other one and then tested
for a match[15][3] [2][4].

Therefore, our method proposed here is to find out the rotation and scale
factor before the search in the database. A texture spectrum is compared with
the reference spectra to estimate the rotation and scale factor. Then the bank
of Gabor filters is tuned according to the rotation and scale factor determined
from the dominant frequency component by a spectral shift measure.

2.2 Conventional Gabor Filter Bank Design

A 2-D Gabor function g(z,y) and its Fourier transform G(u, v) can be expressed,
respectively, as:

1 1 /22 y2 .
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where o, = 27}@ and o, = 27(101 . In (@) and @), o, and o, characterize the

spatial extent and frequency bandwidth of the Gabor filter, and W represents
the center frequency of the filter. A set of Gabor functions g, n(x,y) can be
generated by rotating and scaling g(x,y) to form an almost complete and non-
orthogonal basis set:

Imn(2,y) = a”*" gmn(2', ) (3)

where
2’ = z cos(nf) + ysin(nh), (4)
y' = —xsin(nb) + y cos(nh), (5)

wherem =0,1,...,5—1,andn = 0,1, ..., K — 1. Parameter S is the total number
of scales, and parameter K is the total number of orientations.

The filter parameters are selected such that the adjacent half-peak magnitude
contours of the filter responses in the frequency domain are tangent to each other.
Follow the same derivation in [I3],

Uh 1
o) (6)

_ (a —Duy
(a+1)v2In2’

a=

2
Uy

o, = tan(n/2K) o2 o2, (8)

2.3 Tunable Gabor Filters Design

Here, we derive a Gabor filter that is tunable to scale and rotation changes. As
it is well-known, rotating and scaling a 2-D signal would also rotate and dilate
or shrink its spectrum. Such a spectral property gives the motivation of tuning
filters. The DFT of a 2-D scaled spatial signal f(z,y) satisfy the property:
u v
: F(C 9

flwrr,way) < (w1 o 9)
where F'(u,v) is the DFT of the signalf(z,y). The DFT of a rotated 2-D spatial
signal f(x,y) is given by:

F¢>o (’U,,’U) A F('LL/, 'U/) (10)

where(u/, v") = (ucos ¢o+vsin ¢g, —usin ¢g+v cos ¢g) is the rotated coordinates
in the spatial-frequency domain.

Suppose an input texture to be classified is from the same texture class as
the reference texture, but is spatially rotated and scaled. In order to locate the
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corresponding channels of frequency components, which are just rotated and
scaled in the spatial-frequency domain, the reference Gabor filter bank may be
tuned by rotating and scaling it accordingly. Therefore, each tuned Gabor filter
band will cover the corresponding shifted and/or rotated frequency components.
Suppose that the rotation and scale change(6¢;, 6p;) can be estimated through
the analysis of the spectrum,, the original Gabor filter bank can be tuned by,

Grn(z,y) = a 2™ G(u" 0", (11)
where

v’ =wucos(nd + §¢;) + vsin(nd + 8¢y), (12)
V" = —usin(nb + 6¢) + v cos(nd + S¢y), (13)

and the frequency domain standard deviation becomes:

- ].)'LLH
o, =0l /6p; = (a , 14
/o0 Spi(a+1)y/2In2 (14)

2K 2

o) = ol fop = TR g (15)

5pi V2ln2 W

Hence, through above formulae, the tunable Gabor filter bank can be con-
structed and used to locate the corresponding frequency components.

2.4 The Paradox of Using the Tunable Gabor Filter Bank

The problem of applying a tunable Gabor filter is that, the class label of an
image texture is not known unless the rotation and scale change is estimated.
This means that, the parameters to tune the Gabor filters could not be obtained
and the texture features cannot be extracted from the filtered output and thus
the matching with reference texture feature can not be carried out. However, if
we know about the rotation and scale change, then we know the class of that
texture already, this is because the rotation and scale can only be determined
correctly when we compare the texture with the corresponding reference texture.
Hence, we have to solve the chicken and egg problem.

The solution to the above problem is that, we don’t attempt to get the correct
parameter in the first place. Instead, we tune the Gabor filter using an estimate
based on the texture spectrum. The correct estimation will eventually emerge
at the last step since it’ll supposedly give us the smallest distance after the
comparison of the feature vectors with respect to the reference feature vector for
classification. The whole idea is explained in the next subsection.

2.5 Solution to the Paradox

The reference Gabor filter bank is used to extract texture features from all the
training reference texture samples. Whereas for any input texture, which may
have undergone a rotation and scale change, the bank of filters would be tuned
by estimating the rotation and scale change with respect to all the n reference
textures.
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Rotation and Scale Estimation. Our method of estimation works in the
polar coordinates of the frequency spectrum. We find the dominant frequency
peak after removing the DC component. The peak will be shifted along the p
axis if the texture is scaled and it will be rotated if the peak is shifted along the
f axis. A more stable peak estimation can be performed by picking the highest n
peaks and then find the value that occur most often by a weighted mean shifting
algorithm.

Gaussian Tapering. One crucial issue related to the parameter estimation is the
image boundaries. Proper handling of the boundaries is especially important
when the image has irregular boundaries or is not quite homogeneous[1(]. The
spreading out or “leakage” effect of the spectrum is due to energy being arti-
ficially generated by the discontinuity at the end points of the waveform, and
the solution is to multiply by a window weighting function before the FFT is
performed.

Therefore, before transforming the spectrum into polar coordinate, a Gaussian
Tapering is applied to reduce this spectrum leakage. The Gaussian tapering
window is defined as:

_ (m=N/2)24(n—N/2)2

gi(m,n) =e 202 ,(m,n) € D, (16)

where the standard deviation ¢ is 0.375[10], normalized by the image half-size
N/2.

The dominant peak of the spectrum will be more stable after the Gaussian
tapering, hence the estimation can be performed by measuring the peak shift in
the spectrum in polar coordinates. The polar coordinates of peak location of the
reference texture in each class(scale=1, rotation 0°) is calculated and saved as:
prand ¢,.. Then, for input texture image, the location of peak is also estimated as
prand ¢;. Therefore, the rotation and scale change is calculated by the following
spectral shift measure:

8¢ = ¢ — oy (17)
bpy="" (18)

T
Searching for the Correct Class. These rotation and scale change estimates,
only the estimation from correct reference class make sense, the other rotation
and scale estimation parameters all make no sense since we are comparing with
respect to incorrect texture references. This correct estimation hide somewhere
inside the estimations. These estimations of rotation and scale change are used
to tune the Gabor filter banks for respective classes. After that, the tuned Gabor
filter banks(among which, only one of them is correctly tuned) are then used to
extract feature vectors from the input image. The feature vectors are stacked to
form a matrix of n rows and the number of columns equals to the number of
dimensions of the feature vector. Therefore, out of all feature vectors extracted,
only one of them is the correct feature vector and will be located at the row
whose index is the class index. Let A be such a matrix, and B be the matrix
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Step 1: Create reference feature vectors

‘ referencefv(1,:) ‘
‘ referencefv(2,:) ‘

E—>‘ referencefv(n,:) ‘

Step 2: Estimation and classification

p161 Feature vector w.r.t first class
0262 Feature vector w.r.t 2nd class

Feature vector w.r.t nth class
pnbn >

referencefv(1,:)

The class generates
smallest distance sum referencefv(2,:)
is the correct class i

|
\ referencefv(n,:)

Fig. 1. Illustration of the principle of distance-based classification

formed in a similar way using reference textures(one for each class). The distance
measure is defined by

di=)Y

=1

(19)

o}

where A; and B; are the ith row of the matrix A and B, [ is the dimension of
the feature vector and o', is the standard deviation of the /th dimension over all
the n classes. Then we determine the class of input texture as:

c=argmin{d;},i =1,2,...,n. (20)

This idea is illustrated in Figure [Tl
All in all, we use the discriminative power of the Gabor filter bank combined
with the accurate tuning method to achieve rotation and scale invariance.
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3 Brodatz Textures According to the Wold Texture
Model

The Wold texture model is a recent method used to model texture[24]. The model
allows homogenous texture to be decomposed into three mutually orthogonal
components. The 2-D Wold theory applied to the textures is based on some
approximations that texture images are homogeneous random fields. A texture
image can be considered by the following decomposition:

y(m,n) = w(m,n) + p(m,n) + g(m,n),

where w(m,n) is the purely indeterministic component, p(m,n) the half-plane
deterministic component, and g(m,n) the generalized evanescent component. A
2-D homogeneous regular random field can be represented as the sum of a har-
monic components, a countable number of evanescent components and a purely
indeterministic component. Brodatz textures have been grouped according to
the wold texture model in [I0]

Based on this decomposition of homogenous textures, plus the inhomogeneous
classes from the Brodatz database, we perceptually classify all the 112 textures
into 4 categories according to the visual appearance of the textures and their
spectrums, namely:

— Inhomogeneous textures(Categoryl)

— Textures that exhibits periodicity(Category2)
Textures that exhibits directionality(Category3)
— Textures that exhibits randomness(Category4)

We are unable to show the textures in each category due to page limit, but these
are mostly visually similar to those in [I0]. Among the homogenous textures,
the textures in category 2 tend to exhibit strong spectral energy peaks. The
directional textures may have the spectral energy peaks and ridges along some
directions. The random textures show a isotropic Gaussian like spread of spectral
energies. By using the above categories, we are able to study the behavior of our
spectrum based texture analysis method and reveal some insight on our method
and the Gabor-filtering texture features.

4 Experiments and Discussion

4.1 Database Construction

The Brodatz database is widely used as the benchmark for testing recognition
results. We also use the Brodatz database to evaluate our method. The scaling
range is limited because human itself will perceive a different texture pattern
and while scaling is above a certain level, and Phil Brodatz himself regard 1x
and 2x magnifications as different classes of textures, so we restrict the scaling

range to \}2 ~ 1 x v/2. Figure @ illustrates this point: each column represents
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Fig. 2. Each column represents two images from the same texture (from left to
right:D18,026,D27,D87,D112) but of 4 times scale difference, and you can observe
that the texture is entirely different though the upper row is just a 4 up-scaled version
of the lower row

two different images of 4 times scale difference, and you can observe that the
texture is entirely different though the upper row is just a 4 up-scaled version
of the lower row. Hence, in this paper we use the entire Brodatz[I] database
with each original texture image rotated by 10 different angles (0° to 180°) with
20° as interval, and scaled with 8 different scales(0.7 to 1.4 with 0.1 intervals).
Therefore for each of the 112 texture classes, we create 8 scales(0.7 ~ 1.4), and
for each scale, 10 rotations(0° ~ 180°). Hence we’ll have 80 images for each class
in which 63 images are concurrently rotated and scaled. Then the center portion
of 128 x 128 is cropped for each image. Therefore we have 112 x 8 x 10 = 8960
of 128 x 128 images created for this database.

4.2 Experimental Results

We carried out classification experiments using the database similar to [13] and
the Gabor filter based on conventional design which is not invariant. We studied
the effects of rotation and scale changes on the method using conventional Gabor
filter banks and tunable Gabor filter bank using the large database containing
rotated and scaled textures.

Conventional Gabor filter yields the well-known(and probably the best) over-
all recognition rate of 74.7 percent on the entire 112 texture classes of Brodatz
database. However, because of its band directionality and fixed band coverage,
it is not rotation and scale invariant in nature. That’s the reason why the over-
all classification rate dropped to an average of around 19 percent when using a
large database with rotated and scaled texture images. From Table[Il it is shown
that, by using our method, the adaptive Gabor filter’s overall classification rate
is pushed back by 44.2 percent to show the effectiveness of our method even on
our extensive database.

We can see from the result that, for inhomogeneous textures tested on con-
ventional Gabor filters, the rate drop is the lowest when switched to a rotated
and scaled dataset, this is because the spectrum of those textures are highly
Gaussian and no spectral peak can be located while doing feature extraction.
Therefore, the Gabor features between the original and the rotated/scaled are
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Table 1. Comparison With Respect to Conventional Gabor Implementation(%) In-
homo — Inhomogenous; Rand — Random

Methods Datasets Inhomo. Periodic Directional Rand. Overall
Conventional no-rotation/scale 44.9 97.9 87.6 61.2 747
Conventional rotated & scaled 19.7 19.5 19.1 19.7  19.4
Our method rotated & scaled 50.2 79.7 71.7 56.7 63.7
Rotation/scale effects on conventional -25.2 -78.4 -68.5 -40.5 -55.3
Rate increase due to tuning +30.4 +60 +51.6  +37.0 +44.2

not as distinguishable as the ones with high spectral peaks. The correspond-
ing Gabor filter band will still locate similar energy values though not exactly
the same while the scale and rotation is small. Whereas for the ones with high
spectral peaks, a small change in scale might cause the peak shift to another
filter band and the each Gabor filter band could not locate the same amount of
energy anymore. In this case, the Gabor filter tuning will be necessary. This is
again justified by the column containing periodical textures. The classification
rate experience a significant drop by 78.4 percent while the conventional Gabor
filter is applied on a rotated and scaled dataset, however, we are able to push
the result back by 60 percent to 79.7 on this category by Gabor filter tuning
method. Our method improved the result for the directional category by 51.6
percent and random textures by 37 percent, which is in line with our expectation
before the experiment, since they’ve got less significant peaks than the periodical
ones.

5 Conclusion and Future Work

We address the problem of rotation and scale invariance in texture recognition
and propose an tunable Gabor filter approach to achieve concurrent rotation
and scale invariant recognition. We carried out experiments on the Brodatz
texture with a database whose size is much larger than those presented in any of
the existing methods for invariant texture recognition. The performance of our
method was tested by a comprehensive experiments across the dataset of the
entire brodatz database. The results were carefully analyzed by the grouping
based on 2-D Wold-like decomposition. Interesting pattern appears while we
compared the performance on the 4 groups side by side with the results of the
conventional Gabor filter. Those patterns can be explained by the spectral energy
distributions according to the Wold texture model. Our classification result on
the entire database(112 x 80 = 8960 images) achieves concurrent rotation and
scale invariance by 44 percent better accuracy than the well-known method by
[13]. Further improvements can be done for estimating rotation and scale change
for non-homogenous and random textures which might improve our method
further.
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