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Abstract. We propose a new method for background modeling. Our
method is based on the two complementary approaches. One uses the
probability density function(PDF) to approximate background model.
The PDF is estimated non-parametrically by using Parzen density esti-
mation. And foreground object is detected based on the estimated PDF.
The other method is based on the evaluation of the local texture at
pixel-level resolution while reducing the effects of variations in lighting.
Fusing their approach realize robust object detection under varying illu-
mination. Several experiments show the effectiveness of our approach.

Keywords: Object detection, Adaptive background model, Illumination
change, Parzen density estimation, Radial Reach Filter.

1 Introduction

Background subtraction technique has been traditionally applied to detection
of objects in image. Without prior information about the objects, we can get
object regions by subtracting a background image from an observed image. How-
ever, when simple background subtraction technique is applied to video-based
surveillance which usually captures outdoor scenes, it often detects not only ob-
jects but also a lot of noise regions. This is because it is quite sensitive to small
illumination changes caused by moving clouds, swaying tree leaves, etc.

There are many approaches to handle these background changes [112,[3]4]5]
06,[7,[8,[9]. Shimada et al. proposed a background estimation method, in which
mixture-of-Gaussians is used to approximate background model, and the number
of Gaussians is changed dynamically to adapt to the change of the lighting
condition. However, in principle, Gaussian Mixture Model (GMM) can not make
a well-suited background model and can not detect foreground objects accurately
when the intensity of the background changes frequently. Especially when the
intensity distribution of the background is very wide, it is not easy to represent
the distribution with a set of Gaussians. In addition, if the number of Gaussians

T. Wada, F. Huang, and S. Lin (Eds.): PSIVT 2009, LNCS 5414, pp. 645 2009.
© Springer-Verlag Berlin Heidelberg 2009



646 T. Tanaka et al.

is increased, the computation time to estimate the background model is also
increased. Thus, GMM is not powerful enough to represent the various changes
of the lighting condition.

To solve the problem, Elgammal et al employed non-parametric representa-
tion of the background intensity distribution, and estimated the distribution
by Parzen density estimation [I]. However, in their approach, the computation
cost of the estimation is quite high, and it is not easy to apply it to real-time
processing. Tanaka et al proposed its fast algorithm to estimate the background
intensity distribution [9]. In this approach, the computational cost is greatly
reduced by efficient updating algorithm of probability distribution function.

Though these methods previously described are effective against gradual
or periodical change of background, they can not handle sudden illumination
changes because the background model is established based on statistical char-
acteristics of observed pixel values in a certain duration. To solve such a problem,
it is effective to fuse a background model which can adapt to sudden illumination
changes with the background model established according to the observation in
the past. Then, in this paper, we propose an enhanced background modeling
method under varying illumination with a “long-term model” and a “short-term
model”. The long-term model approximates the change of the pixel value such
as gradual or periodical change of background, which is acquired by a long-term
observation, and it is represented in a probability density function. The short-
term model, on the other hand, approximates the sudden background change
such as a illumination change based on Radial Reach Filter which is known as
a robust background model against varying illumination [4].

2 Long-Term Model

In this section, we describe about the long-term model. The LTM represents
the background in a certain duration. We use the fast algorithm to estimate the
background intensity distribution [9].

2.1 Basic Algorithm

At first, we describe basic background model estimation and object detection
process. The background model is established to represent recent pixel informa-
tion of an input image sequence, reflecting the change of intensity, or pixel-value,
distribution as quickly as possible.

We consider values of a particular pixel (x,y) over time as a “pixel process”,
which is a time series of pixel values, e.g. scalars for gray values and vectors
for color images. Each pixel is judged to be either a foreground pixel or a back-
ground pixel by observing the pixel process. In Parzen density estimation, or the
kernel density estimation, the probability density function (PDF) of a pixel value
is estimated referring to the latest pixel process, and, here, we assume that a
pixel process consists of the latest IV pixel values. Let X be a pixel value observed
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at pixel (z,y), and {X1, -+, X n} be the latest pixel process. The PDF of the
pixel value is estimated with the kernel estimator K as follows

1 N

PX) = STK(X - X)) (1)
=1

Usually a Gaussian distribution function N (0, X) is adopted for the estimator
KIU. In this case the equation () is reduced into the following formula:

}V Z . exp (-i(x - X))y Nx - Xi)) (2)

where d is the dimension of the distribution (for example, d = 3 in color image
pixels).
To reduce the computation cost, the covariance matrix in equation () is often
approximated as follows.
Y =0l (3)

This means that each dimension of the distribution is independent from one
another. By this approximation, equation () is reduced into the following.

N d 2
L([X]; = [X4l;)

P exp J J 4
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This approximation might make the den81ty estimation error a little bigger, but

the computation is considerably reduced.

The detailed algorithm of background model construction and foreground

object detection is summarized as follows:

1. When a new pixel value X n41 is observed, P(X y41), the probability that
X N1 occurs is estimated by equation ().

2. If P(X n+1) is greater than a given threshold, the pixel is judged to be a
background pixel. Otherwise, it is judged to be a foreground pixel.

3. The newly observed pixel value X n41 is kept in the “pixel process,” while
the oldest pixel value X is removed from the pixel process.

Applying the above calculation to every pixel, the background model is gen-
erated and distinction between a background pixel and a foreground pixel is
accomplished.

2.2 Fast Algorithm

When we estimate the generation probability of pixel value X in every frame
using equation (@) and estimate the background model, its computation cost be-
comes quite large. To solve this problem, at first, a kernel with rectangular shape,

! Here, X works as the smoothing parameter.
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or hypercube, is used instead of Gaussian distribution function. For example, in
1-dimensional case, the kernel is represented as follows.

1 . h h
K= {hr ! —25U=3 5)
0 otherwise

where h is a parameter representing the width of the kernel.
Using this kernel, equation () is represented as follows:

N
P = > e () )

where, || X — X;|| means the chess-board distance in d-dimensional space, and
¥ (u) is calculated by the following formula.

b(w) = {1 it u< |} -

0 otherwise

When an observed pixel value is inside of the kernel located at X, ¢(u) is 1;
otherwise t(u) is 0.

Thus, we estimate the PDF based on equation (@), and P(X) is calculated by
enumerating pixels in the latest pixel process whose values are inside of the kernel
located at X . However, if we calculate the PDF, in a naive way, by enumerating
pixels in the latest pixel process whose values are inside of the kernel located
at X, the computational time is proportional to N. Instead, Tanaka et al have
proposed a fast algorithm to compute the PDF, whose computation cost does
not depend on N.

In background modeling we estimate P(X) referring to the latest pixel process
consisting of pixel values of the latest IV frames. Let us suppose that at time
t we have a new pixel value X ny1, and that we estimate an updated PDF
P,(X) referring to the new X n41. Basically, the essence of PDF estimation is
accumulation of the kernel estimator, and, when a new value, X 1, is acquired
the kernel estimator corresponding to X n41 should be accumulated. At the
same time, the oldest one, i.e., the kernel estimator at N frames earlier, should be
discarded, since the length of the pixel process is constant, V. This idea leads to
reduction of the PDF computation into the following incremental computation:

_ 1 X — X4l 1 X — X n|
Rx) =R+ o () - e (7 ©
where P;_; is the PDF estimated at the previous frame.
The above equation means that the PDF when a new pixel value is observed
can be acquired by:

— increasing the probabilities of pixel values which are inside of the kernel
located at the new pixel value X; by Nlh,,

— decreasing those which are inside of the kernel located at the oldest pixel
value, a pixel value at N frames earlier, X;_n by Nlh,,.
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In other words, the new PDF is acquired by local operation of the previ-
ous PDF, assuming the latest N pixel values are stored in the memory, which
achieves quite fast computation of PDF estimation.

3 Short Term Model

In this section, we describe the short-term model (STM). STM handles short-
term changes of pixel values and detects foreground objects using Radial Reach
Filter, which is known as robust background subtraction method under varying
illumination [4].

3.1 Radial Reach Filter (RRF)

RRF judges each pixel as either the foreground or the background based on Radial
Reach Correlation (RRC), which is defined to evaluate local texture similarity at
pixel-level resolution without suffering from the effects of variation in brightness.

RRC is calculated for each pixel (z,y). At first, pixels whose brightness differ-
ences to f(x,y), the brightness of the pixel (z,y), exceed a threshold are searched
for in every radial extension reach in 8 directions around the pixel (x,y). Then,
the signs of brightness differences (positive difference or negagive difference) of
the 8 pairs, each of which is a pair of one of eight found pixels and the center
pixel (z,y), are represented in a binary code. The correlation value of the codes
between the input image pixel and the background image pixel is regarded as a
representation of their similarity.

The position of pixel (z,y) in the image is represented as the vector p =
(z,y), and the directional vector by(k = 0,1,...,7) is defined as follows. dy =
(1,007Cdy = (1,1)T dy=(0,1)TCd3=(—1,1)TC dy=(-1,0)TCd5 = (—1,-1)T
ds = (0,—1)TC and d7 = (1, —1). Then the reach {r}7_, for these directions
are defined as follows:

ri = min{r| |f(p+rdy) — f(p)| > Tp} 9)

where f(p) represents the pixel value of the position of p in the image, and Tp
represents the threshold value of brightness difference.

Based on the brightness difference between the center pixel and the pixels
selected by the reach group (defined by equation (@), the coefficients of incre-
mental encoding, or polarity encoding, of the brightness distribution around a
pixel in the reference image f is given by the following formula:

1 if f(p+rrdi) > f(p
bi(p) = b+ ridi) = J(7) (10)
0 otherwise
where k£ = 0,1,...,7. In the same manner, the incremental encoding string is

calculated for the input image g. Here, please note that the reach group {ry}7_,
is defined based on the reference image f.

b (p) = {1 if g(p+ridy) > g(p) (1)

0 otherwise
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Based on the obtained b (p), bx'(p), the number of matches (correlation), B(p)
between the two incremental encodings is calculated as follows.

7
B(p) =Y {bi(p) - bi'(p) + bi(p) - bi' (p)} (12)
k=0
where © = 1 — x represents the inversion of a bit. B(p) represents the similarity,
or correlation value, of the brightness distribution around the pixel p in the two
images, and it is called Radial Reach Correlation (RRC).

Since RRC of the input image pixels and the background image pixels repre-
sents their similarities, it can be used as a measure to detect foreground pixels.
In other words, pixels whose RRC is smaller than a certain threshold Ts can be
judged as foreground pixels. In the following formula, the foreground detection
result is represented in C(p), and it is called RRC image.

. (13)
0 otherwise

o ):{1 if B(p) <Tp

3.2 Construction of Background Model and Foreground Detection

In RRC, the similarity between incremental encoding of the background image
and the input image is calculated referring to the reach group defined in the
background image f, and foreground is detected based on the similarity. In
principle, it is possible that a fixed background image can be prepared in advance,
if the background does not change. However, if the background often changes,
using such fixed background image does not produce an accurate result. Rather,
we should update the background image properly. In STM, sudden changes of
background should be reflected and the background model is constructed based
on the observation of pixel values in very recent frames. In our approach, the
change of the background is represented in a single Gaussian distribution at
every pixel. Then, the average and the variance of the distribution are used to
represent the background image f, and RRC is calculated referring to f.

Again, we represent the pixel value of pixel (x,y) at time ¢ as d dimensional
vector X¢. Then, the average p, and the variance o? of Gaussian distribution
are updated as follows:

= (1= p)p,_y +pXy (14)

o} =(1—p)oi_ i +p(Xe— 1) (Xt — py_y) (15)
Where p is the learning rate, which is represented in the following formula:

@
L ex
(2m) 2| X2

1 _
p(H XTI X ) o)
« is a constant parameter, or an internal learning rate, and it is possible to adapt

to a sudden background change by enlarging a. Applying the above calculation
to every pixel, the parameters of Gaussian distribution are updated.
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Fig. 1. Flowchart

The detailed algorithm of background model construction and foreground de-
tection in STM is summarized as follows:

Step 1: The background image f is created from the mean value of Gaussian
distribution in each pixel.

Step 2: RRC is constructed based on the background image f in Stepl, and
each pixel of the input image is judged as either the foreground or the back-
ground. Here, we set the threshold Tp is 2.50.

Step 3: The parameters of Gaussian distribution are updated by equation
(I~ (g, if the conditions for model update in STM is satisfied. In the other
cases, the parameters are not updated. (The condition for model update in STM
will be described in sectionfl )

4 Fusion of LTM and STM

In this section, we describe the fusion rule of LTM and STM. The processing
flow is shown in figure[Il First of all, background subtraction is done according
to the long-term model. Then if a pixel is labeled as foreground, the pixel is
examined whether it is the foreground or the background referring to the short-
term model. Finally, the pixel is regarded as foreground by the rule described in
table [11

Next, we describe how to update the background model. In general, there
are two methods to update background models. The one is selective update,
which updates the model only when the pixel is labeled as background. The
other is blind update, which adds every new sample to the model. The selective
update enhances detection accuracy of the foreground, because foreground pixels
are not added to the model. However, for instance, if the background changes
while the object has been detected, regions which should be regarded as the
background keep being detected as the foreground. The blind update, on the
other hand, allows foreground objects to be added to the background model.
In case of the long-term model, this drawback is not significant since LTM is
created by observing the pixel value for a long time. Therefore, we have decided
to use the blind update for the long-term model. On the other hand, the blind
update is not suitable for the short-term model since it is very sensitive for the
changes of the pixel values. Considering these effects, we use the selective update
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for the short-term model. In particular, only when the observed pixel value is
finally judged as the background, the short-term model is updated.

5 Experimental Results

5.1 Computational Cost

To evaluate the computational time to process one image frame, we have used
data set of PETS(PETSZOOl)@ after the image resolution was reduced into 320 x
240 pixels. The data set includes images in which people are passing through
streets, tree leaves are flickering, and the illumination condition are varying
rapidly. For the evaluation of computation speed, we have used a PC with a
Pentium IV 3.2GHz and 2.0GB memory.

Figure 2l shows the processing speed of the proposed method. Where, for the
parameters of LTM, we have used N = 500, h = 9. For the parameters of STM,
we have used Tg = 6 and Tp = 2.50. The horizontal axis shows the frame
number. The left vertical axis shows the computational time and the right one
shows the number of pixels labeled as foreground by LTM.

The computation cost to maintain LTM is 23msec/frame in average, and it
does not change largely. On the other hand, the computation cost in STM varies
according to the number of pixels labeled as foreground by LTM. This is because
STM was only applied to pixels judged as foreground by the LTM. The total
computational time was about 60msec, and this is enough to achieve object
detection in real-time.

5.2 Comparison of Characteristics between LTM and STM

We have verified the characteristics of LTM and STM. To compare the charac-
teristics of each model, we have conducted experiments of object detection by
LTM, STM and their fused model. The data set includes images in which tree
leaves are flickering, and the illumination condition are varying rapidly.

Figure[Blshows results of the experiment. Figure[3(a)l [3(b)l [3(c)|and[3(d)|show
the input image sequence, the object areas detected by LTM, ones by STM and
ones by the fused model, respectively.

First, figure shows LTM could adapt the background changes such as
flickering tree leaves. However, ground and the roof were mis-detected, because
it could not adapt sudden illumination changes. Thus though stochastic adap-
tive background model is effective against gradual or periodical change of back-
ground, it can not handle sudden illumination changes because the background
model is established based on statistical characteristics of observed pixel values
in a certain duration. On the other hand, STM could adapt the sudden illumi-
nation changes. However, it could not handle a background changes such as ones
caused by flickering of tree leaves. Because STM is based on the evaluation of

2 Benchmark data of International Workshop on Performance Evaluation of Tracking
and Surveillance. From ftp://pets.rdg.ac.uk/PETS2001/ available
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Fig. 2. Computational time of proposed Fig.3. Performance comparison be-
method tween LTM and STM

the local texture, though it is effective against sudden illumination changes, it
can not handle such the background changes. As shown Figure fusing these
approaches realizes robust object detection under varying illumination condition.

5.3 Object Detection Accuracy

To evaluate the object detection accuracy, we have used two scenes shown
in Figure @ One of them is an outdoor scene(PETS2001) which was used in
Section [5.l And the other is an indoor scene, which we took a rate of 15fps.
The image resolution is 320 x 240 pixes. The indoor scene includes sudden illu-
mination changes caused by turning off and on the light. Using these data sets,
we have examined precision and recall of object detection on the basis of ground
trut}E']
Precision and recall are respectively defined as follows:

# correctly detected pixels

recision =
P # of detected pixels

(17)
# of correctly detected pixels
# of pixels which should be detected

Outdoor scene and indoor scene were composed of about 5000 frames and about
3000 frames respectively, and their first 500 frames are used for initialization.

recall = (18)

3 Several kinds of ground truth have been opened to the public through the web,
http://limu.is.kyushu-u.ac.jp/dataset
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(a) Outdoor scene (PETS2001) (b) Indoor scene

Fig. 4. Experimental data

Table 2. Object detection accuracy

Outdoor scene Indoor scene
Recall Precision Recall Precision
Proposed method 71.6% 72.6% 52.1% 60.0%
Radial Reach Filter 37.5% 224% 26.9% 24.9%
Gaussian Mixture Model 61.3% 58.2% 35.6% 46.1%
Parzen density estimation 56.3% 51.6% 37.8% 58.5%

The recall and the precision were evaluated in the rest of the data. Ground
truth represents regions that should be detected as object regions. Test data are
extracted in every 15 frames and their ground truth is added manually.

Table[2 shows the average accuracy of the proposed method, RRF [4], Gaussian
Mixture Model [§] and adaptive background model based on Parzen density
estimation [9]. This table also shows the proposed method outperformed the

other methods.

(b) ground truth (c) Proposed method

(d) RRF (e) GMM (f) Parzen density estimation

Fig. 5. Object detection by the proposed method, Radial Reach Filter, Gaussian Mix-
ture Model and Adaptive background model based on Parzen density estimation
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Figure[lshows results of object detection by the proposed method. Figure[5(a)|
~ show the input image , ground truth, the object areas detected by our
approach, the result in case of RRF, the one of Gaussian Mixture Model and
the one of adaptive background model based on Parzen density estimation, re-
spectively. For the proposed method, we have used N = 500, h = 9, Ts = 6,
Tp = 2.50. Where, an initial frame was used as a background image f in RRF.
This result shows that, RRF can not handle the background change such as
movements of cloud since the background model was created at the first frame
and was not updated in the later process. As a result, some non-object region
had been mis-detected. On the other hand, though Gaussian Mixture Model and
the adaptive background model based on Parzen density estimation could handle
those background changes, the ground and the wall of building had been mis-
detected because they were not possible to adapt sudden illumination changes.
Our method, which combines two complementary approaches properly, could
detect object regions robustly compared with the other methods.

6 Conclusion

In this paper, we have proposed a new method for background modeling based
on the combination of non-parametric background model using Parzen density
estimation and Radial Reach Filter, which is known as a robust background
subtraction method under varying illumination. In our experiment, we have got
a good result that the computational time was 60msec (about 15fps) and the
precision ratio and recall ratio were superior to the traditional approaches under
varying illumination.
Future works are summarized as follows:

— Stabilization of computational time
When a sudden background change takes place or when the proportion of
the area to be detected on the image becomes large, the computation cost
becomes large. In other words, the computational time varies largely. This
is because if the pixels are labeled as foreground by LTM, they should be
further examined, by STM, whether it is weather foreground or background.
It is not a good characteristic for real-time processing and, therefore, we
should develop a mechanism to stabilize the computation cost.

— Cooperation between Long-term model and Short-term model
Our combination rule of LTM and STM is rather simple and straightforward,
i.e., logical AND of the results acquired by LTM and STM. Therefore, it is
necessary to establish more sophisticated combination mechanism to make
better use of the characteristics of the both models.
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